





1. Introduction

. 1
For a relativistic generalization of SU(& Budini and F‘ronsdal/ /and

/2]

duct of the Poincaré group P and the internal symmetry group S which

Michel proposed the symmetry group GPS being the semidirect pro-

contains the subgroup S[,(Z,C). In such a theory with infinite multiplets
the symmetry properties are consistent with the unitarity of the ,S -

matrix/ 3—5/.

/6] /5]

Fronsdal 7 different attempts have.been made to introduce quantized

In the papers of Feldman and Matthews' ™', Nguyen van Hieu ' and
fields describing these infinite multiplets. For the description of each (in-
finite-dimensional) multiplet the authors of the paperj6/ proposed to use

a field operator transforming according to a unitary irreducible represen-
tation of an auxialiary group isomorphic to S . Such an operator has in-
dices running over infinite values and a particle corresponds to a com-
ponent of this operator, For such a field irrespectively of the particle
spin only one wave equation can be written - the Klein-Gordon equation.
Thus all particles independently of the values of spin must satisfy the
Bosé-Einstein statistics. A different method was proposed in the papers/5’7(
According to that method an infinite number of spinor fields transforming
according to non-unitary finite<limensional representations of the auxi-
liary group and satisfying the Bargmann-Wigner equation (component or
projective physical fields) are to be introduced for the description of each
infinite multiplet, In the framework of this scheme the conventional relation
between spin and statistics holds., Further it was shown in/'r)/ (using

general considerations) that the amplitudes of crossing processes are re-



Iated among themselves by the Low substitution rule. In other words, the
Low substitution rule and symmetry propertios are compatiblex/. This state-

ment have been proved for special cases by Dao vong Duc and Nguyen

g/ l9/ xx!
8/
van Hiou K and Fronsdal = o . It has been shown also that the Barg-

mann-Wigner equation is invariant with respect to the group G.

One may naturally ask: is it possible to introduce a unique field
(big field) in the framework of the second method? Will then this field
and its component phvsical fields be local simultaneously? Further will
the field energy derived from the Lagrangian be positive definite and in-
variant with respect to the internal symmetry group ? In this paper we
shall give positive answers to all these questions. We follow the method
proposed by one of us in the paper/S/. For the sake of simplicity we con-
sider the symmetry group SL(Z,C). We note that the big field has also
been considered in the paper7. However, for particles with half-integer
spin, the big field introduced in that paper and its component field cannot

be local simultancously without symmetry breaking,

2. Basis for the Reduction SL 2C) D SU(‘Z)}’

As it is well known for the classification of elementary particles
the basis of representations correspording to the reduction
SLEZ C>D SU(Z) must be constructed, For particles in motion we
have to use the basis correspornding to the reduction SLQG) J,SU(Z)

The explicit form of the bases for both reductions was given in the

8,1
pers/ / The first one can be constructed from generalized spinors
of SU(Z> : @h' %’y 2) (the sign .~ means that correspording indices
/ T
Ir}_th paper i the term "crossing symmetry" is used. I turned out,
however, 8/ {hat the scattering amplitude has not the usual a Ezlg./cnty
propertiés, Therefore, as it has been pointed out in the papers the

Low substitution rule should be used instead of the term 'crossing sym-
metry".

We have not seen the paper/gl, we know about its content due
to another paper/10/,



are connected with the frame, in which particles are at rest), the second

is formed from spirors of the form @ b 2}—" (j;,z) transforming according
2
to corresponding spinor representations of the hom¢ 'neocus Lorenty group,

V\fnth the help of momenta (_ 11’),; the dotted indices of the spinor
4’ v (ps ) can be transformed into undotted indices. Further all
+V
upper indices can be lowered using the antisymmetric spinor Eab -

obtain thus symmetric spinors, denoted for the sake of symplicity by

P D=9 0,0, b 9=, 2y (52)

Besides the splnor (P (}’,) by multlp]yw)g the spinor @&2. (P;Z) by
a4 necessary number of momenta ( l} it is possible to intronuco

another set of 22?—1 spinors with all possible number of lower dotted
indices, Combining all these spinors we get spinor Q (f;z),a(. run-
ning now over four values 1 2,i2. Instead of the basis J @,\, (z) we
can use the basis 5_] (z) which is a linear combination of @é" (Z)

d. "
( J having a fixed value), A simple relation can be established between

the two bases 5”3(2) and @d ' (13;2.)
el

¢ asj () =%j 4‘?;]‘1") AN

The matrix A"‘zj (]’$ -kkj) ; up to some transformations, is the finite
Lorentz transformation matrix, transfering particles from the rest-state into
the state with 4-momenta P /11/,

We introduce, besides the basis @"zj <’P;Z> y another one, namely

@qz,(-—la,'z) derived from @ (P,) by substitu 5 p-—> —p

This w111 ensure the 'crossing symmetry" of the theory (by "crossing
symmetry" the possibility of the application of the Low substitution rule
is to be understood). In our paper we use only self-conjugate representa-
tions T ~v ()’,0)

From the orthogonality cordition of the basis vectors EJJ_; (Z)

the relation:

Ay Ephh) — JQ,j (p2)by, e @)



can be easily derived, where J].a(z.) is the invariant measure on the
group / 11( We prove now the following important formula

JZ, A-x,j (ty;kaA“"(i}’ii@ — Sud, o )

X Az .. . * ) ,
where A (p:14) “[Arz--~ i CB) (- () To -(3% ) |

First we consider the case with the sign + before ’f . Using (1)

% Adzj(};u,) Z‘“J(r;i'g) — ﬂ}; qu (y;z)‘@-s;(w) g;’ (z)g%(w),;,@gr.@x@

As spinors @@ _(y;z) form an orthonormalized system of vectors in the
2

Hilbert space, we have the following covariant relation

% é“g (P;Z)?dzj(}»m) — S‘r(z-uj ) (4)

where the generalized function SI‘ (Z—‘a is defined by the following

formula

|5 GF e — F6)

Inserting (4) into (3) we get (2) immediately.
b) Let us take now the case with the sign - beforef - We introduce

the transformation
xb *a ba Eab——* o 4
T @z ews™ vy gk sy — = (4b

changing the sign of the time component and leaving unchanged the signs
r §
i - 6,): 2%
of the spatial components of the wvector 1:/,, — Z_l'( /,)a . With the

halp of the following relation, which can be easily verified



o (79 = o S [P0 s Ao

we get
38 B) 5 6D B TR

As the measure c]}b(z) is also invariant with respect to the '1 ~trans--
formation we can repeat the proof of the preceding case arnd formula
(2) can be proved for both cases. The following relations (their proof

is omitted here) are also necessary in what follows

ATRSRS @r:kk) (1:F — A (*1»“) (5)

Aw@;kkﬁﬂ’i@pk@ _ sg.@+ ) (17 F*J . ®

3. Locality of the Big Ficld

Let now XP be an element of the Hilbert space recalizing the self-
conjugate unitary representation ’UN()jO . We consider w as a unique
field containing an infinite multiplet. The big field qr g/—{—w can be
decomposed into components with the help of bases (i),z) and

-(__173z> in the following way

P =3 FIOAE5,0 + DG o

oy o
The spinors qj J(f)J LP Zg(_P) satisfying the Bargmann-\Viiiner equa-
tions

~1
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can be in turn decomposed into spin states (summation over ja is un-
derstood)

Yooy — wGa)an) L W) = v )b i) -

where & and }) are particle annihilation and antiparticle creation

operators, respectively.

We write nc  the big field (7) in X -representation

(x z) fz g udzj(f}ja“‘(?5j=j?)Adzj(};l‘L?)gkkj (z)g“ﬂ“"'+
(8

az5, : 3> .- g ipx >
O 4D

>
where Jrv(})) is the usual invariant measure on the mass shell, The

Hermitian conjugate expression of the big field is

e 0 S f i, Ga)e A ik )ty <w)e"”+
T, Cr) ) A M), (e } I (1»)

Assuming that operators Q@ and }) satisfy the usual commutation rela-

tions



L=(Bii) s Paid], — S8 SGF)
[ b B, b (50 | — S Siis S 2

(10%

and using (5),(12) and the following generalized formulae for summation
over the spin index

) = A
)7 09) = g D @ oo
we get

e,V DA [ 7 el

Thus the causality cordition requires the big field to be quantized ac-
cording to the Bosé statistics in the case of a boson infinite multiplet
ard according to Fermi-datistics in the case of a fermion infinite multiplet,
Obviously for component physical field with definite values of spin, using
(10), (1) and (12) we get the conventional relation between spin and sta-

tistics. Using (4) we can rewrite expression (13) in a more compact form

[Yen)¥om], = 569)AG)

This commutation relation is invariant with respect to the symmetry
group G,

Thus for the free particles both big field and component fields can



be constructed to be local. The situation is quite different for interacting
fields. If we suppose that the big interacting field [:U(m;z) is local, i.e.

assume the relation
I"LP _x,;z),ly.*(y; w)]i_ = 0 for (_x_y)2> 0

which is consistent with symmetry requirements, then for the component

interacting fields the locality will be violated:

r o Ti7 2
[, Wy, 0], 0 for  (29)° >0
A detailed consideration of this problem will be given in a sub-

sequent papeor,

1. Lagrangian Formalism and "Crossing
Symmetry”

The Lagrangian for the whole infinite multiplet is
L 3 BRI
=) Elj{l).\.g’-_.--dx‘ Tl“ &5 “‘f‘ (15)
J d . 2x,

y /)_@ L 94eedij %1 Oy 640 gy — O
‘)Li —ZL = Q); 2 (Tr)bl W J_,___ I Ep q e dZJ} .
rl

dg.. dzj

When performing variation the component fields with different spins are
considered to be independent. Carrying out standard calculations we get

from (1’)) the following expression for the energy-momentum tensor

T ¥ O

dj.."' imdz‘
$i%j .

HZJ

.

(\U-qf"‘_‘l’"fl-“ dlj ! f'i rd_l--.ﬁ‘_i.~~dg-
B Xy (Y")q ¢

10



After the quantization we get for the encrgy of the infinite multiplet the

formula

& _ j Toot & — j a7 \/?%EJZ La@yi)a i) + B @i
— j BV [ e (52)+ W)Y 91 dee) -

The energy is thus positive definite and is invariant with respect to the

internal symmetry group.
We consider now the interaclion of an infinite multiplet with a singlet

field. The operator matrix element is of the form

Pt [ wHpnWi)dee)

(16)

where E(t, ,u) is a form-factor. In the expression (16) the field operators
of the singlet field are omitted. Inserting (8),(9) into (16) we get the fol-

lowing matrix elements for the scattering and annihilation channels:

F (s 1, u)jZkka T‘;zj (I’Z)Z"‘z;(l,z;lzkj) VA - ( 5 k@ e ( h} (17)

— —d2j—23 k, (pskks w7 .
E@,s,u)%kﬂ( WA k), (2 3)w'?( r)

(18)

Expressions (17)and(18) demonstrate in the most general manner that the
Low substitution rule holds for this case, However, there are no vyet theore-
tical arguments for analytical continuation of (17} to (18). For illustrating

let us consider the annihilation process _:{-q-% —> 040 First we

calculate explicitly the matrix element. Using (18), (1) we get
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