ОБЪЕДИНЕННЫЙ

ННСТИТУТ

ЯДЕРНЫХ

ИССЛЕДОВАНИЙ

Дубна
nimulumin
E2 - 3347

AASOPATOPUЯ TEOPETMషECKOЙ OHWKK
G. Lassner A. Uhlmann

ON POSITIVE FUNCTIONALS ON ALGEBRAS. OF TEST FUNCTIONS FOR QUANTUM FIELDS

E2 • 3347

G. Lassner A. Uhlmann

ON POSITIVE FUNCTIONALS ON ALGEBRAS OF TEST FUNCTIONS FOR QUANTUM FIELDS

Submitted to "Communications in Mathematical Physics"

[^0]

1. Introduction

In the Wightman axiomatical approach a quantum field is defined by a continuous representation of $a \quad *$-algebra R of test-functions in an algebra of (unbounded) operators in a Hilbert space with the same invariant domain and a cyclic vector (vacuum). By the Gelfand-Segal- Theo rem a continuous cyclic representation of a *-algebra is given by a continuous linear positive functional $T(B)$ on P i.e. a continuous linear functional for which $W\left(a^{*} a\right) \geq 0, a \in R$, holds. For a quantum field the positive functional π satisfies certain further conditions, i.e. Lorentz invariance, spectrality and locality. Such a functional is called Wightman-functional $1,2 /$.

The mathematical structure of such a * -algebra is described in the following section.

In this paper it is proved that there exists a set F of positive functionals on the real algebra R which ail are bounded by one continuios norm on (the linear space) R so that for every $b \in R, b \neq 0$, there exists a $W \in F$ with $W(b) \neq 0$ and consequently, the algebra R is reduced $3 /$.

It is not proved that there exist "sufficient many" Wightman-functionals among which are some with non trivial quantum field, i.e. the s-matrix is not the identity, but one may hope that the proved result is a step to the solution of this problem.

Let M be a topological space (M is the Minkowski space or the mass shell, for example) and $M^{(n)}=M x \ldots x M$ the Cartesian product of n exemplares of $M . r\left(M^{(n)}\right)$ is the normed linear space of the continuous complex-valued bounded functions $a_{n}\left(x_{1}, \ldots, x_{n}\right) x_{i} \in M$, on $M^{(n)} \quad$ with the norm $\left.\left\|a_{n}\right\|_{0}=\sup _{x_{1}, \ldots x_{n} \in M_{n}} A_{1}, \ldots, x_{n}\right) \|$. Let p_{0} be the complex field C and for $n=1,2, \ldots, \ldots{ }_{R_{n}}$ a locally real convex linear topological space (over the real field) of continuous complex-valued bourded functions on $M^{(n)}$ with a stronger topology than is determined by the norm $\left\|\|_{0}\right.$, i.e. $\| a_{n} \|_{0}, a_{n} \in R_{n i}$ is a continuous function on the topological space R_{n}.

Furthermore we assume that for $a_{n}\left(x_{1}, \ldots, x_{n}\right) \in A_{n}, b_{m}\left(x_{1}, \ldots, x_{m}\right) \in A_{m} \bar{a}_{n}\left(x_{n}, \ldots, x_{1}\right)$ is an element of R_{n} and $c_{n+m}\left(x_{1}, \ldots, x_{n+m}\right)=a_{n}\left(x_{1}, \ldots, x_{n}\right) b_{m}\left(x_{n+1}, \ldots, x_{n+m}\right)$ is an element of ${ }^{R}{ }_{n+m}$ and that the so defined mappings from A_{n} into B_{n} resp. from $R_{n} \times F_{m}$ into A_{n+m} are continuous.

The algebra R if the linear space

$$
\begin{equation*}
A=\biguplus_{n=0}^{\infty} R_{n} \quad \text { (topological direct sum } / 4 / \text {) } \tag{1}
\end{equation*}
$$

Consequently, every element $a \in R$ has the form $a=\sum_{n \geq 0} a_{n} \|_{n} n_{n}\left(x_{n}, \ldots, x_{n}\right) \in A_{n}$. and only for a finite number of indices is a_{n} different from zero. a_{n} is called the homogeneous component of the degree n of a. The mulltiplication for two elements $a, b \in f \quad$ is defined by

$$
\begin{align*}
(a b)_{n}\left(x_{1}, \ldots x_{n}\right)= & \underset{k+\ell=n}{ } n_{k}\left(x_{1}, \ldots, x_{k}\right) b_{\ell}\left(x_{k+1}, \ldots, x_{n}\right) \tag{2}\\
& k, \ell \geq 0
\end{align*}
$$

(the product on the right-hand side is the usual product of functions) and the * -operation is defined by

$$
\begin{equation*}
\left(a^{*}\right)_{n}\left(x_{1}, \ldots, x_{n}\right)=\bar{a}_{n}\left(x_{n} ; \ldots, x_{i}\right) \tag{3}
\end{equation*}
$$

(the bar on the right-hand side labels the complex conjugate function). In $/ 1,2 /$ is $\quad R_{n}=\Gamma\left(M^{(n)}\right)$ resp. $S\left(M^{(n)}\right)$ the well-known Schwartz' spaces of test-functions, but other spaces are regarded in the quantum field theory, too $/ 5 /$. Here M is the Minkowski space. Let K_{0} be the algebraical convex cover of the set of elements $a * a, a \in R$. Each element $k \in K_{0}$ has the form

$$
\begin{align*}
& k=\sum_{1=1}^{N} a^{(1)} * a^{(1)}, a^{(1)} \in R \\
& a^{(1)}=\sum_{n \geq 0} a_{n}^{(1)}\left(x_{1}, \ldots, x_{n}\right) \tag{4}
\end{align*}
$$

K_{0} is a cone, i.e.
a) for $k, k^{\prime} \in K_{0}$ and two arbitrary positive numbers s, t is $s k+k^{\prime} \in K_{0}$
and
b) if $k \in K_{0}, k \neq 0$, then $-k \notin K_{0}$.

The statement a) follows direct from the definition of K_{0} and the statement b) holds, because for each $\& \in K, 18 \neq 0$;
$i)$ the homogeneous component g of g with the smallest degree, which does not vanish identically, has an even degree, i.e.,

$$
g_{I}=g_{3 B}
$$

ii) $g_{r}=g_{2 g}\left(x_{1}, \ldots, x_{2 B}\right)$ is nonnegative on the set

$$
\begin{equation*}
\Gamma_{2 B}=\left|x=\left(x_{1} \ldots x_{2 B}\right) ; x_{1}=x_{2 B}, x_{2}=x_{2 B-1}, \ldots, x_{n}=x_{n+1}\right| \tag{5}
\end{equation*}
$$

iii) for at least one ${ }_{x}^{0} \in \Gamma_{2 g}$ we have $g_{28}\left({ }_{x}^{0}, \ldots, x_{2 s}^{0}\right)>0$.

Now we define for $k \in K_{0}$

$$
P_{n}=\sup _{x_{1}, \ldots, x_{n} \in N}\left(\left|a_{n}^{(1)}\right|^{2}+\ldots+\left|a_{n}^{(N)}\right|^{2}\right)^{1 / n}, n=0,1,2, \ldots x \text { x) }
$$

$\underline{L e m m a \quad 1}$
For an arbitrary $k \in K_{0}$ the following relations hold (k_{n} is the homogeneous component of the degree n of k):
\mathbf{x} /The application of this expression has been proposed by T.Grörnitz, Karl-Mar x - Universität, Leipzig.

$$
\begin{align*}
& \left\|\sum_{i} a_{p}^{(1)}{ }_{a}^{(1)}\right\|_{0} \leq \ell_{D} P_{a} \tag{7}\\
& \left\|\sum_{1} a_{n}^{(1)^{*}} a_{n}^{(1)}\right\|_{0}=l_{n}^{2} \tag{8}\\
& \left\|k_{n}\right\|_{0} \leq \sum_{\nu=0}^{n} \rho{ }_{n-\nu}^{\ell} \nu \tag{9}\\
& \ell_{n}^{2}-2 \sum_{\nu=1}^{n} l_{n+\nu} l_{n-\nu} \leq\left\|k_{2 n}\right\|_{0}, n=0,1,2, \ldots \tag{10}\\
& \left(P_{-1}=0\right) \text {. }
\end{align*}
$$

Proof:

(7) follows immediately from the Cauchy-Schwarz inequality by the definitions (2) and (6). Further we have

$$
\left.\left\|\sum_{1} a_{n}^{(1) *} a_{n}^{(1)}\right\|_{0}=\sup _{x_{1}, \ldots, x_{2 n}} \mid \sum_{n}^{-(1)}\left(x_{n}, \ldots, x_{1}\right) a_{n}^{(1\}_{n}} x_{n+1}, \ldots, x_{2 n}\right) \mid \geq
$$

$$
\geq \sup _{x_{1}, \ldots, x_{n}} \sum_{1} a_{n}^{(1)}\left(x_{1}, \ldots, x_{n}\right) a_{n}^{(1)}\left(x_{1}, \ldots, x_{n}\right) \mid=\rho_{n}^{2}
$$

and from this, together with (7) for $n=m$, follows (8). (9) follows from (7) by summing over all $p, q, p+q=a$. From the definition of $k{ }_{\lambda_{n}}$ we obtain

$$
\left\|\sum_{i} a_{n}^{(1)^{*}} a_{n}^{(1)}\right\|_{0}-\left\|\sum_{i} \sum_{\nu=0}^{2 n} a_{2 n-\nu}^{(i)^{*}} a_{v}^{(1)}\right\|_{0} \leq\left\|k_{2 n}\right\|_{0}
$$

and from this follows (10) by (7) and (8).

We need further a relation for a special infinite hermitian matrix H, which is defined'for a sequence a_{0}, a_{1}, . of positive numbers by

$$
\begin{gather*}
H=\left(h_{i j}\right)_{1, j}=0,1, \ldots \\
h_{r r}=a_{r}, \quad h_{i j}=\left\{\begin{array}{l}
-a_{r} i \neq j \text { and } i+j=2 r \\
0, i \neq j \text { and } i+j \text { an odd number }
\end{array}\right. \tag{11}
\end{gather*}
$$

Lemma 2
There exists such a sequence $a_{0}, a_{1}, a_{2}, .$. of positive numbers that for an arbitrary infinite vector $\rho_{=}=\left(P_{0}, \ell_{1}, \ldots\right)$ for which only finite components are not zero the relation

$$
\begin{equation*}
\underset{i: d \geq 0}{\sum} h_{1 j} P_{1} \ell_{j} \geq \sum_{i} \ell_{i}^{2} \tag{12}
\end{equation*}
$$

holds.

Proof:

We construct by induction a sequence of positive numbers a_{0}, a_{1}, \ldots such that

$$
\begin{equation*}
\sum_{i, j=0}^{m} h_{i, j} p_{i} l_{j} \geq c \sum_{m i=0}^{m} l_{i}^{2}, \quad m=0,1, \ldots \tag{13}
\end{equation*}
$$

holds, with certain numbers $c_{m}>1$. For $m=0$ we can set $a_{o}=2$. Now we assume that (13) holds for $m=n-1$ and show that we can choose a_{n} such that (13) holds for n, too, with a certain $i_{n}>1$.
From the definition of H we obtain
$\sum_{1, j=0}^{n} h_{i j} \ell_{1} \rho_{j}=\sum_{i, j=0}^{n-2} h_{i j} \rho_{1} \rho_{j}+a_{n} p_{n}^{2}-2 \underset{\nu \geq 1}{ } a_{n-\nu} \ell_{n} \rho_{n-2 \nu}$.

The sum on the right-hand side runs over all ν for which the other indices are nonnegative.

From this and the induction assumption we obtain with an arbitrary positive β

$$
\begin{aligned}
& \sum_{1, j=0}^{n} h_{1,} \rho_{1} \rho_{1} \geq c_{n-1} \sum_{\nu \geq 1}\left(\rho_{n-2 \eta+1}\right)^{2}+\left(a_{n}-\frac{1}{\beta^{2}}\right) p_{n}^{2}+ \\
& +\left(\beta \underset{\nu \geq 1}{\sum} a_{n-v} \rho_{n-2 v}-\frac{l}{\beta} \rho_{n}\right)^{2} \\
& +c_{n-1} \sum_{\nu \geq 1}\left(\rho_{n-2 \nu}\right)^{2}-\beta^{2}\left(\sum_{\nu \geq 1} a_{n-\nu} \rho_{n-2 \nu}\right)^{2} \geq \\
& \geq c_{n-1} \sum_{\nu \geq 1}\left(p_{n-2 \nu+1}\right)^{2}+\left(a_{n}-\frac{1}{p^{2}}\right) p_{n}^{2}+ \\
& +\left(c_{n-1}-R^{2} \sum_{t=0}^{n-1} a_{1}^{2}\right) \leq\left(\rho_{n-2 v}\right)^{2} .
\end{aligned}
$$

How we choose β such that $c_{n-1}-\beta^{2} \sum_{1=0}^{n-1} a_{1}^{2}>1 \quad$ and then a_{n} such that $a_{n}-\frac{1}{\beta^{2}}>1$

In this manner we have constructed an a_{n} such that the relation
(13) holds for $m=n$, too.

Now let a_{0}, a_{1}, \ldots be a sequence of positive numbers for which the assertion of the preceding Lemma holds. Then we define for $\in R$

$$
\begin{equation*}
\| \text { a }\left\|_{p}=\underset{\nu \geq 0}{\Sigma} a_{\nu}\right\| a_{2 \nu} \|_{0} \tag{14}
\end{equation*}
$$

where $\left\|\|_{0}\right.$ is the norm in $C\left(M^{(2 \nu)}\right.$) and $a^{2} \nu$ is the homogeneous component of the degree $2 v$ of $\quad .\| \| \rho$ is a continuous semi-norm on R
 sum). Let $\left\|\|_{\mu}\right.$ be another continuous semi-norm in P such that for each $\in G$ and $r=0.1, \ldots \quad\| \|_{2 r+1}\left\|_{0}<\mu_{2_{r}+1}\right\|: \|_{u}$ holds, where
n_{2+1} is a homogeneous component of and $\mu_{2 r+1}$ are positive

$$
\begin{equation*}
\|a\|=\|\cdot\|_{\ell}+\|:\|_{u} \quad a \in A \tag{15}
\end{equation*}
$$

is a continuous norm in P . Beside the basic-topology we regard in R a second topology which is determined by the norm || \|. This topology is called the norm-topology or \|| \| -topology. With this topology is R a (uncomplete) normed linear space, but not a normed algebra.

In the usual cases, where M is the Minkowski space and $R_{n}=S\left(M^{(\Omega)}\right)$ or $D\left(M^{(n)}\right)$, the Schwartz' spaces, the semi- norm \| $\|_{l}$ is Lorentz invariant and consequently, we can choose \| $\left\|\|_{\mu}\right.$ such that the norm || || is Lorentz invariant, too.

Now we state and prove the main relation for the proofs of the theorems:

Lemma 3
For every $k \in K_{0}$ holds the relation

$$
\begin{equation*}
\underset{n \geq 0}{\sum} \ell_{n}^{2}<\|k\|_{p} \tag{16}
\end{equation*}
$$

where P_{n} are the expressions (6).

Proof:
We obtain from (10)

$$
\sum_{n \geq 0} a_{n} p_{n}-2 \sum_{n \geq 0} \sum_{\nu \geq 1} a_{n}^{p}{ }_{n+\nu}^{l} n_{n-\nu}<\sum_{0 \geq 0} a_{n}\left\|k_{2 n}\right\|_{0}
$$

and in consequence of the definition (11) of H this is equivalent to

$$
\sum_{1, j \geq 0} h_{1 j} l_{1} p_{1} \leq \sum_{n \geq 0}^{\sum} a_{n}\left\|k_{2 n}\right\|_{0}
$$

From this the relation (16) follows, because a_{0}, a_{1}, \ldots is a sequence for which (12) holds.

After the preparations in the preceding section we state and prove here the main theorems.

Theorem 1
The topological closure $K_{\|}\| \|$of K_{0} in R with the norm-topology, which is determined by the norm (15), is a cone. Consequently, the topological closure $\vec{K}_{-}{ }_{-}$of K_{0} in R, with the basic-topology, is a cone, too, because $\bar{K}_{\circ} \subset k_{\| \|} \|$.

Proof:
We prove that the relations (5) i) - iii) hold for a $g \in K\left\|\|_{0} 8 \neq 0\right.$, too. Let $g \neq 0$ be an element of $K\left\|\| \text {. Then we can write } g=\sum_{n=0}^{m}\right\|_{n} \|_{n}$, where ε_{n} is the homogeneous component of the degree \quad of $g, g_{n}=0$ for $n>m$. There has to exist a sequence $k^{\nu} \in K_{0}$ with $\left\|k^{\nu} v_{g}\right\| \leq 1$ and $\left\|k^{\nu}-g\right\| \rightarrow 0 \quad$ for $\dot{\nu} \rightarrow \infty \quad$ and consequently,

$$
\begin{equation*}
\left\|k_{n}^{\nu}-g_{n}\right\|_{0} \rightarrow 0 \quad \text { for } \nu \rightarrow \infty, n=0,1, \ldots \tag{17}
\end{equation*}
$$

 be the numbers (6) of k^{ν}, then we obtain from (16)

$$
\sum_{n \geq 0}\left(P_{n}^{\nu}\right)^{2}<\left\|k^{\nu}\right\|_{\rho}<\|E\|_{\rho}+1
$$

and consequently, the sequence $p_{n}^{\nu} \quad \nu=1,2, \ldots$, is bounded for every r. Because $\neq 0$, there exists one $: \geq 0$ such that

$$
\begin{array}{lll}
P_{i m} \ell_{n}^{\nu}=0 & \text { for } & 0 \leq n \leq s-1 \\
\ell_{:}^{\nu} \text { does not tend to zero for } \nu \rightarrow \infty . \tag{18}
\end{array}
$$

Then follows from (9)

$$
\begin{equation*}
\operatorname{Pim}_{\nu \rightarrow \infty}\left\|k_{n}^{\nu}\right\|_{0}=\left\|g_{n}\right\|_{0}=0 . \quad \text { for } \quad 0 \leq n \leq 2 s \cdots 1 . \tag{19}
\end{equation*}
$$

Furthermore one has

$$
\begin{equation*}
\lim _{\nu \rightarrow \infty}\left\|k_{20}^{\nu}\right\|_{0}=\left\|g_{20}\right\|_{0} \neq 0 . \tag{20}
\end{equation*}
$$

If this is not true, i.e. $\lim _{\nu \rightarrow \infty} \eta\left\|k_{2 d}^{\nu}\right\|=0$, then we obtain $\lim _{\nu \rightarrow \infty} p_{v}^{\nu}=0$ by (10) and the first assertion of (18), which is in contradiction with the second assertion of (18). (19) and (20) are the assertion (5) i). Finally it remains to prove the statements ii) and iii) of (5). From (17) and (18) we obtain

$$
\begin{aligned}
& <\left\|g_{2 s}-k_{2 a}^{v}\right\|_{0}+2 \sum_{p=1}^{s} \ell_{a-p}^{\nu} \ell_{a+p}^{v} \rightarrow 0 \\
& \text { for } \nu \rightarrow \infty \text {, i.e. }
\end{aligned}
$$

(in the $\left\|\|_{0}\right.$-convergence) and consequently, g_{20} is nonnegative on $\Gamma_{2 s}$. Because ℓ_{*}^{ν} does not tend to zero, we obtain straightforward from (21) that $g_{2 g}\left(x_{1}, \ldots, x_{2 a}\right)$ is not identically zero on $\Gamma_{2 a}$. Hence, assen tion (5) iii) holds, too. $\bar{X}_{0}, K_{\|} \|$holds, because the norm $\|\|$is continuous in the basic-topology of P.

Theorem 2
For each $b \in R, b \notin 0$, there exists a positive continuous linear functional $F_{b}(a)$ on F, with $w_{b}(b) \neq 0$, for which $\left|F_{b}(a)\right| \leq\|A\|$. $a \in R$, holds, and consequently, the topological ${ }^{*}$-algebra P is reduced. This theorem follows from the

Lemma 4

Let K be a closed cone in a normed (or locally convex) linear space R and $b \in R, b \neq 0, b \in K$, then exists a linear continuous functional $f(a)$ on F, with $f(b) \neq 0$ and $f(a) \geq 0$ for $: \in K . / 6 /$.

If $b \neq 0$ is an element of A, then either b or $-b$ does not lie in $K\|\|$ Hence, from the Lemma 4 it follows the existence of such a functional $\nabla_{b}(a)$ on F that $W_{b}(b) \neq 0$ and $\#(a) \geq 0$ for $a \in K\|\|$ and which is continuous in the \| \| -topology of P and consequently in the basic-topology, too. $w_{b}(a)$ is a positive functional on the algebra A in the usual sence, because $\mathbb{F}_{b}(a * a) \geq 0$, then $a * a \in K_{0} \subset \bar{K}_{0} \subset K_{\| \|} \|^{*}$ Evidently, we can choose $\nabla_{b}(a)$ so that $\left|\nabla_{b}(a)\right| \leq\|a\|$ holds. From the last property it follows that the set $\left|W_{b}\right|$ is bounded in the weak topology of $A^{\text {a }}$ and consequently, by a well known theorem $/ 4 /$, we obtain the

Corollary:
The set $\left\{\nabla_{b} \mid\right.$ of all these positive linear functionals of Theorem 2 is a relatively compact set in the weak topology in R^{\prime} (the dual space of $\mathrm{A} \quad$).
References

1. A.Uhlmann, Über die Definition der Ouantenfelder nach Wightman und Haag. Wiss. Z.Karl-Marx-Univ. Leipzig, 11, 2, 213 (1962).
2. H.J.Borchers. On the Structure of the Algebra of Field Operators. Nuovo Cimento, 24, 214 (1962).
3. M.A.Neumark. Normierte Algebren. Berlin: VEB Deutscher Verlag der Wissenschaften 1959.
4. N.Bourbaki. Expaces Vectoriels Topologiques, ch. II, IV. Hermann et Cie, Paris 1955.
5. A.M.Jaffe. High Energy Behaviour in Quantum Field Theory. Preprint, Stanford.
6. М.Г.Крейн, М.А.Рутман. УМН 3 №1 (23) 3(1948).

Received by Publishing Department on May 231967.

[^0]: * On leave of absence from Mathematisches Institut, Karl-MarxUniversität, Leipzig, DDR.

 Permanent address: Theoretisch Physikalisches Institut, Karl-Marx-Universität, Leipzig, DDR.

