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1. Introduction

In the Wightman axiomatical approach a quantum field is defined by
a continuous representation of a * _algebra R of test-functions in an
algebra of (unbounded) operators in a Hilbert space with the same inva-
riant domain and a cyclic vector (vacuum)., By the Gelfand- Segal- Theo-
rem a continuous cyclic representation of a * —~algebra is given by a
continuous linear positive functional ¥(e) on F ie, a continuous linear
functional for which W%(a*a) >0, a € B, holds, For a quantum field the positi-
ve functional ¥ satisfies certain further conditions, i.e. Lorentz invariance,

)

The mathematical structure of such a * -algebra is described in

spectrality and locality., Such a functional is called Wightman-functiona.

the following section,

In this paper it is proved that there exists a set F  of positive
functionals on the real algebra R which ail are bounded by one continuios
norm on (the linear space) R  so that for every b & R, bs' o0,
there exists a W& F with W(b) < 0 and consequently, the algebra R
is reduced/ 3 .

It is not proved that there exist "sufficient many” Wightman-functionals
among which are some with non trivial quantum field, i.e, the S —matrix

is not the identity, but one may hope that the proved recult is a step to

the solution of this problem,



., The *-algebra R

Let M' be a topological space ( W is the Minkowski space or

the mass shell, for example) and M o .oxM the Cartesian product
of n exemplares of M. C(M™ ) s the normed linear space of the con~
tinuous complex-valued bounded functions &, (xy yeuyx ) x, €M, on

M Wwith the norm ”“n”ozx = 8, (x;,u,x ). Let P be the comp-
lex field € and for n = 1,2 ,r..."Rn a locally real convex linear topologi-

cal space (over the real field) of continuous complex- valued boun-
ded functions on M™ witha stronger topology than is determined by the
norm || [l g, ie. {la 1, . a, &R, is a continuous function on the topologi-
cal space R .

Furthermore we assume that for a Koo X )R, b (x0ex JERy B (x ., x,)
xn+l,..,xn+m)
is an element of P .~ and that the so defined mappings from R_  into

is an element of R, and Copm FposXp d=a (e, ox )b«
R, resp, from R, x P into P,,, are continuous,

The algebra PR if the linear space

(1)

R ® =1, (topological direct sum/ 4/)

Consequently, every element s ¢ R has the form s =§ 8 =e (xyux V&R
n>0 '
and only for a finite number of indices is a_  different from zero, ay

is called the homogeneous component of the degree of a. The mul-

tiplication for two elements a,b Ch is defined by
(lb)n(xl,...xn)= 3 'k(xl""‘k)bl(‘k-n""‘n) (2)
k+p=n
x,0>0

(the product on the right-hand side is the usual product of functions )

and the * -operation is defined by

(l*)n(xl,..,xn)u'a‘ (xn7....xt)' (3)



(the bar on the right~-hand side labels the complex conjugate function),
/1 2/ is R, =N(M )y resp, S(M™) the well known
Schwartz' spaces of test-functions, but other spaces are regarded in the
quantum field theory, too/ 5/ . Here M is the Minkowski space. Let K,
be the algebraical convex cover of the set of elements &% a , acR.,

Each element k€KX, has the form

N )
k= I a "‘a(”-. n“)GF
=1
(4)
Mo s W, verx )
n 1 n
n>o0
K, is a cone, ie,
a) for k, k"€X R and two arbitrary positive numbers s, t is

sk + tk’ € K,
and i
b) if k€K, , k40, then -k& K,
The statement a) follows direct from the definition of K, and the state-
ment b) holds, because for each & €K, , ¥*0,
i) the homogeneous component g . of g with the smallest degree,

which does not vanish identically, has an even degree, i.e,,

By =B34

1) g =gy (Xgseerixy,) is nonnegative on the set
r."=!x=(xl....x2!); "1=xza”‘2=3‘ns—l"" = n+l!(b)

iii) for at least one % €l',, we have 52!(3,,..,9“)>0 .

Now we define for k € K,
x)
Vn = sup (Iui”l2 el + Ial(‘N) ]2)K.n=0,1.2,... (6)

xl,...an-M

Lemma 1

For an arbitrary k € X the following relations hold ( k, is the ho-

mogeneous component of the degree o of k )
x/ The apphcat.lon of this expression has been proposed by T.Gornitz,
Karl- Marx- Universitdt, Leipzig.
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f: - 21,3‘ en+v pn—ug'nkﬂn‘no ;B =0,1,2,. (10)
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Proofi
(7) follows immediately from the Cauchy-Schwarz inequality by the
definitions (2) and (6). Further we have '

" -
[l% Y .(nl) |]° = sp |3 u:’) (xn,..,x )ai”(xn

n . 1
g

+1
2n

2 |3 e (g e ) 8D (x ) [0

XyamX

and from this, together with (7) fors=m, follows (8). (9) follows from
(7) by summing over all p , q , p+q=1. From the definition of k N

. an
we obtain

1T e e a1l

n n

1) it owmr
o -vafo s, o, g Ik

n

and from this follows (10) by (7) and (8).



We need further a relation for a special infinite - hermitian matrix

H, which is defined'for a sequence @ .a ,. of positive numbers by

Bo=lhy )y im0,
-a 9] and 1 + | =2r
A =a b= (11)
rr r 14
0, i) and 1 +§ an odd number
Lemma 2
There exists such a sequence 80°9, 8, of positive numbers

that for an arbitrary infinite vector f=(f, ! ,.) for which only finite com-

ponents are not zero the relation
S on, 00 > % 0? (12)
holds,

Proof:

We construct by induction a sequence of positive numbers a , g ,..
[
such that
5 0 e 5 p?
h . f >c¢ F ¢ , mw=0,1,.. "
o ML My 1 (13)
holds, with certain numbers c, >1. For ma 0 we can set aom 2.

Now we assume that (13) holds for m =1 -1 and show that we can
choose e such that (13) holds for a , too, with a certain c >1.
n

From the definition of W we obtain

t,g=0 1 11 f,9=0 I § n 1 n_an Yn_zy o



The sum on the right-hand side runs over all v for which the other

indices are nonnegative,
From this and the induction assumption we obtain with an arbitrary

positive B

n
2
p P . f, > ¢ T (! ) + (e, - y £ *
1,§=0 14 4 y - n-t VZ’ n=24 +1 n ﬁg n
s 4 :
+ (g 3 a, o, Yala f n )
v>y
2 2 2
+ c|'|—l,u>1 (’,n-2u —ﬁ (u};lun—v n -2y Y2
2 1 2
2.",,_15 (Vn—zv-o-l) + (a, —*P—i)p +
v>1 i
n-1t 2
3 s
+ (e - p°3 af) h) (‘7“_21} ) .
=0
n-t
How we choose B such that ¢ _, -B*Y ay >1 .and then @
1=0
such that a_ - —é‘;’ >1
In this manner we have consiructed an @, such that the relation
(13) holds for m=n , too.
Now leta ,a ... be a sequence of positive numbers for which the

assertion of the preceding Lemma holds, Then we define for a & R

ety =3 e lnn i (14)
where || Ho is the norm in c'™  and a,, is the homogeneous com-
ponent of the degree 2v of a .|l llpis a continuous semi-norm on R
which gives a continuous norm on R 0 " véo R, ( topological direct
sum). Let || ”u. be another continuous semi-norm in PR such that for
each e P and = 0.3, v o, ., Ho<u, ., lelly holds, where



%3:41 IS & homogeneous component of . and Bopyy 2F€ positive
constants, Then | ”,l is a continuous norm in R = @ Ropat and
vao
el s lhally+ ol aCh : (15)

is a continuous norm in R. Beside the basic-topology we regard in R
a second topology which is determined by the norm || It. This topology
is called the norm-topology or || || -topology. With this topology is R
a (uncomplete) normed linear space, but not a normed algebra,
In the usual cases, where M is the Minkowski space and
R =SM® )y o deM ™ ), ihe Schwartz’ spaces, the semi- norm || ”f

is Lorentz invariant and consequently, we can choose I 1l, such that

'y
the norm |} || is Lorentz invariant, too,
Now we state and prove the main relation for the proofs of the

theorems:

Lemma 3

For every k ¢ K, holds the relation
2 .
AL R P (16)
where f_ are the expressions (6).

Proof:

We obtain from (10)

nZo n n n oi4+¥Y n-y n an ”0

Tal -23 3 47/ 4 <% a lk
820 vd1 00

and in consequence of the definition (11) of g this is equivalent to

T oyl ty ¢ 3 gl
L1120 n>0

From this the relation ( 16) follows, because 4 , g .. I8 a sequence
0

for which (12) holds, !



IIl, Main Theorems

After the preparations in the preceding section we state and prove
here the main theorems,

T heorem 1

The topological closure X of K in B  with the norm-topo-
I ° P

logy, which is determined by the norm (15), is a cone. Consequently, the
topological closure ?o' of K in R,
cone, too, because K _C K” e

with the basic-topology, is a

Proof:

We prove that the relations (5) i) - iii) hold for a gc K” I g+ 0,
m
too. Let g &6 be an element of K” I Then we can writeg = ¥ 3 ,where
ne=0
&, is the homogeneous component of the degree » of §, g = O for
3 >m. There has to exist a sequence k' ¢ Ky withfl «¥-¢ || < 1 and
i
Nk Y—gll+0 for v+ « and consequently,
NeY —g || =+0 for v +w , n=0,l,.. . (17)
n n 0
v v v 1y* 14
Each &k has the form k -221 a P Mg, Let !, , 1 2 0,1,2,...
=1 vy

v
be the numbers (6) of kY , then we obtain from (16)

TODT <, < el v

n20

v
and consequently, the sequence Vn v = 1,2, .. is bounded for

every r. Because s ¥ 0, there exists one » >0 such that
fim ) =0 for 0 <ngs=l
ER (18)
E: does not tend to zero for v+
Then follows from (9)

v

fm kY llo= 1l 8, lly=0. for OSm<2no1 L (19)

V00

10



Furthermore one has

v
. “:_"l] k 2e “o =1 €an ”o vo. (20)
If this is not true, ie, fim 1} k: Il=0, then we obtain fim " <0
v . poroo ®

by (10) and the first assertion of {18), which is in contradiction with
the second assertion of (18). (19) and (20) are the assertion (5) i).
Finally it remains to prove the statements ii) and iii) of (5). From {(17)
and (18) we obtain

Ww* vy e 28 Y :
Hs,_—'z a, e sl 8,,—“,,||o+ﬂf"p~=o;,,_,, s, Iy <
: - pfs
v v
< ey =k Mg + 22 0, 0 =0
pet
for v + o, ie,
. - @) (€3]
Eqp (xl.....x“)=£|:nm? : . (’."“"‘1): e (X gpprmxy ) (21)
(in the || My -convergence) and consequently, B,, is nonnegative on

l"“ . Because [ ," does not tend to zero, we obtain straightforward .

from (21) that By,(x,,- %,) is not identically zero on I3, Hence, asser

tion (5) iii) holds, too, K, C V” | holds, because the norm I is con-
tinuous in the basic-topology of R. .
Theorem 2 "

For each b&R | bd0  there exists a positive continuous linear
functional ¥, (a) on P, with ¥, &0, for which |V, (a) b< lle ],

ac R, holds, and consequently, the topological * -algebra P s

reduced. This theorem follows from the

Lemma 4

Let X be a closed cone in a normed (or locally convex) linear
space B and bCR, , b8 , bJK, then exists a linear continuous

functional f(s) on ® , with 1) 40 and f(a)>0  fora ck. /6

11



If bso is an element of R , then either b or —b does not lie in

K I ”.Hence, from the Lemma 4 it follows the existence of such a func-
tional Wh(.) on PR that W ()40 andW () > 0 for acC K” il and
which is continuous in the || || - topology of P  and consequently in

the basic-topology, too, W (e) is a positive functional on the algebra R

in the usual sence, because ¥,(a*a)> 0, then s%*a © X C fo C K””'
Evidently, we can choose V), (8) so that| ", ()| < || a || holds. From
the last property it follows that the set {¥,] is bounded in the weak to-

/4

pology of R * and consequently, by a well known theorem , we obtain

the

Corollary:

The set {W, | of all these positive linear functionals of Theorem 2
is a relatively compact set in the weak topology in R*  (the dual space
of B ), '
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