$B-67$

ОБЪЕДИНЕННЫЙ
 ИНСТИТУТ
 ЯДЕРНЫХ
 ИССЛЕДОВАНИЙ
 Дубна

E2-3293

D.I. Blokhintsev

MACROSCOPIC CAUSALITY

Chapter I
 S-Matrix

 I. Introduction

 I. Introduction}

Abstract

In 1942 W. Heisenberg ${ }^{|l|}$ suggested his famous program of development of quantum field theory whioh was besed on the idea to describe the elementary phenomena by means of the S-matrix, instead of the wave funotion.

The programm has not lost its importance in further development of theoretical and experimental physics. De facto methods based on the concept of wave function gave explicit metnods well before those based on the investigation of the S matrix analytical properties.

The death of the wave function seems to be obvious. However, It is too early to rejoice at this fact because the Smatrix apparatus has no continuation to the region of small intervals, to the very heart of elementary events.

Theoretical sohemes working only with the S-matrix resemble a factory where there are only two departments: the department for reception of raw material and the department for packing finished articles; whereas, the department for processing raw material is absent.

Analytic continuation of the S matrix from the mass and energy surface allows us to look a little into this processing department, into the "very production". But the analytic continuation methods are not able to give a complete pioture of the physical phenomena in the world of elementary particles.

We realize that our present-day possibilities are very restrioted, but there are two faots which speak in favour of the S matrix methods;
a) There 1s, as yet, no one physical phenomenon in the world of elementary particles and in their interaction whioh oould not be desoribed in terms of the Samatrix
b) The S-matrix may belong, at least formally, to the observables.
c) Therefore, we have every reason to oonsider the S-matrix as a theoretical oonstruotion whioh will conserve its importanoe in future theory.

In the light of such an aspect the investigation of the S-matrix is a rather reasonable trend in theoretical physics.

2. Main Properties of the S-Matrix

The most important properties of the s-matrixwhich are expeoted to be kept in future theory are the following: $\mathcal{S}=1+i T$

1) The unitarity of the S-matrix:

$$
\begin{equation*}
S^{+}=I . \tag{1}
\end{equation*}
$$

This requirement leads to physioally transparent relations, such as "optical theorem", which show the conneotion between various processes, namely, putting $S^{r}=/+i T^{T}$, we have from (1)

$$
\begin{equation*}
\left.2 \mathcal{H}_{77} T_{\alpha \alpha}=\left(T T_{\alpha \alpha}^{+}\right)_{\alpha} / T_{\alpha}\right)^{2} . \tag{2}
\end{equation*}
$$

These relations follow from the unitarity condition.
2) The relativistio invariance of the S-matrix. This requirement may be written in the form

$$
\begin{equation*}
\mathcal{L}(q)=U S / \Lambda^{-1} q / V^{-1}=S / q^{\prime} / \tag{3}
\end{equation*}
$$

where \mathscr{G} are the dynamical variables transforming under the L_{0} rentz transformation \mathcal{L}

$$
\begin{equation*}
q^{\prime}=\Lambda q, \tag{3}
\end{equation*}
$$

U/A/is the unitary matrix of this transformation.
The relativistio invarianoe may be violated only if future theory will be based on a geometry different from the Einstein Minkorsky geometry.
3) Finally, the causality of the S-matrix.

In the method working with the wave funotion, Ir from the Sohrödinger equation

$$
\begin{equation*}
\therefore \frac{\delta W}{\delta G(x)}=g W(x) \Psi \tag{4}
\end{equation*}
$$

follows the condition [2]

$$
\begin{equation*}
[W(x), W(y)]=0 \tag{5}
\end{equation*}
$$

for $(x-y)^{2}<0$ (1.0. for the spaoe-like interval). As far as the interaotion energy W is a local function of the fields $P /(x)$ then the oondition (5) obeys the requirement

$$
\begin{equation*}
[\varphi(x), \varphi(x)]=0 \tag{6}
\end{equation*}
$$

for $(x-y)^{2}<0 \quad$. This is the mioroogusality condition. This condition may be also extended to the S-matrix, if the latter is considered as a funotional of the local field $P(x)$

$$
\begin{equation*}
S=s f \varphi(x) \tag{7}
\end{equation*}
$$

Then the microceusality may be formulated in the form:

$$
\begin{gather*}
\frac{\delta^{2} J^{\prime}}{\delta \varphi(x) \delta \varphi(y)} s^{-1}=0 \tag{8}\\
(x-y)^{2}<0,[3]
\end{gather*}
$$

for
Here we consider in detail only the third requirement imposed on the S-matrix, the requirement of causality.

This is explained by the fact that the assumption on the existence of local fields appears to be the most weak point of current theory.

3. Causality and the S-matrix

Our task is to formulate the requirements of causality directly imposed on the S matrix without recourse to the concept of field.

At first sight, such a formulation of the problem has the following unavailable contradition. The S-matrix transforms the state $\mathscr{C}_{\text {con }}$ given at $t,=-\infty \quad$ into the state $\mathscr{U}_{\text {crut }}$ studied at $t_{l}=+\infty$

$$
\begin{equation*}
Z_{\text {out }}=\hat{S^{\prime}} \Psi_{\text {is }} \tag{9}
\end{equation*}
$$

These states are not localized in the space-time and therefore there are no preconditions for the formulation of a causal connection.

This fact may be also formulated as follows: the S-matrix is defined in the spaoe of momentum-energy variables, in the manydimensional Lobachersiky space $\mathbb{P} / P /$ (see Appendix \mid), whereas for the desoription of the causal connection, the space-time variable defined in the many-dimensional Minkorsky space is needed.

Owing to this fact causality may be formulated in the language of the S-matrix with hat degree of definiteness which is compatible with the possibility of using simultancously both spaoes $\mathbb{X}(\mathcal{P})$ and $X(x)$. As applied to the S-matrix, oausality is, therefore, oalled by us maoroscopic oausality since it is just in macroscopic physios that the spaoe $X(P, x)=X(P) \times X(x)$ may be used.

Our next problems are: I. to establish necessary preconditions for the formulation of maorooausality oonditions, and then 2) to formulate the conditions of miorocausality.

Now we turn to the first preoondition, without which further analysis is impossible.

4. Space-Time Description and the S-Matrix

The S-matrix transforms the states specified at $\boldsymbol{C}_{\boldsymbol{\prime}}=-\infty$ In the state at $\quad t_{2}=+\infty$. What does the limit $\pm \infty$ means here?

The answer is the following: if the time of onllision (time of particle interaotion) is \bar{Z}, and $7^{(}$is a long time interval then in the S-matrix theory T should be assumed to be infinitely long interval, provided that $\frac{T}{T}$ is kept to be finite and $\left.\frac{\pi}{T}\right)^{\text {le }}$ is neglected as being an infinitely small value, consequently, we negleot the remainder $x^{[5,6]} 0\left(\frac{\tau^{2}}{T^{2}}\right)$.

$$
\begin{equation*}
\frac{\bar{L}}{T}>\frac{\bar{c}^{2}}{T^{2}} \tag{10}
\end{equation*}
$$

This requirement may be expressed in the language of distance. If $v \quad$ is the relative velooity of partioles then the distance botween them, corresponding to the time interval T, will be $P=\mathbb{V}$ Hence, we keep the quantities of the order $\frac{a}{P}$, where a is a certain length (m radius of sphere action", see appendix), and neglect the quantities of the order $\frac{a^{2}}{R^{2}}$ (the remainder $O\left(\frac{Q^{2}}{R^{2}}\right)$;

$$
\frac{a}{R}>\frac{a^{2}}{R^{2}}
$$

Thus we may operate with finite time intervals

$$
\begin{equation*}
t_{1}=-T \quad \text { and } \quad \tau_{2}=+T \tag{11}
\end{equation*}
$$

[^0]If only the oondition (10) (or (10)) will be fulfilled. Restrioting ourselves to finite time intervals, we oonsider the possibility of desoription of a collision process by means of packets localized in space and time.

To this end, in the next section, we will oonsider relativistic ware packets and formulate the conditions of maoroscopic oausality, using these packets.

Chapter II

The Wave Packets

5. Formulation of the Problem

The scattering matrix S for real "in" - and "out" states should obey oertain oausality conditions. However, these conditions may be formulated only if "in" states are given in the form of localized wave packets instead of plane waves.

In this oonnection it is necessary to consider possibilities of construction of narrow wave packets for relativistic partioles, which do not spread essentially during the time $T=\frac{R}{V}$ muoh longer than during the collision time \mathcal{C} (here \mathcal{P} is the distance between wave packets, and \mathcal{V}-their relative velocity).

Thus, we are looking for wave packets which satisfy the conditions:

$$
\begin{equation*}
R \gg \Delta \gg \lambda \tag{1}
\end{equation*}
$$

(λ the typioal wave length, Δ is the dimension of wave packets, P the distance between them) and

$$
|\Delta(T)-\Delta(-T)|<\Delta(-T)
$$

The smaller is the wave length t the more preoise are the conditions for the formulation of macroscopic causality for the s-matrix.

The matter is that in many papers devoted to the problem of the relativistic particle localization it is asserted that a spinor particle cannot be exactly localized since the states of positive energy do not form a complete set of functions. Therefore the eigenfunction $\delta^{\prime} / x-x /$ of the coordinate operator \hat{X} cannot be expanded in the eigenfunction corresponding only to positive energy states.

The same is related to spinless particles obeying the Klein equation.

We shall show that if quadratically integrable wave packets are used instead of the $\boldsymbol{\delta}$ function then particles can be localized in positive energy states with any degree of acouraoy.

6. Fermions

Firstly, we consider the case of Dirac partioles. Let us take one-particle state, represented by a quadratioally integrable wave function:

$$
\begin{equation*}
\psi(\vec{x}, t, \alpha)=\int c(\vec{p}) \cup(\vec{p}, \alpha) e^{i(\vec{p} \vec{x}-t 匕)} d{ }^{3} p \tag{2}
\end{equation*}
$$

where $E=+\sqrt{m^{2}+\vec{\rho}^{2}}, \quad<(\vec{\rho}, \alpha)-$ Dirac spinor, and

$$
\begin{align*}
& \text { F ic }()^{2} d{ }^{3} \rho=1 \tag{3}\\
& \text { Fe l }+\ell=1 \tag{4}
\end{align*}
$$

Now we calculate the mean square value of a coordinate, for Instance, of \bar{z}. Assuming that at $t=0, \bar{z}=0$ we have obtained
after simple oaloulations:
$\left.\overline{\Delta z^{2}}=\overline{Z^{2}}=\int / \frac{\partial c(\vec{p})}{\partial p_{z}} /^{2} d p^{3}+/ / c / p\right)^{2} s_{p} / \frac{\partial u^{*}}{\partial p_{z}} \frac{\partial u}{\partial p_{z}} / d^{\prime} p$
The last term is oharaoteristio of the relativistic pase.
Now we represent $C(\vec{P})$ in the form:

$$
\begin{equation*}
c(p)=p /+\vec{t} / / p_{0}^{3 / 4}, \quad \overrightarrow{s^{2}}=\frac{\vec{p}}{\vec{p}^{0}} \tag{5}
\end{equation*}
$$

where $\rho^{0} 1$ the quantity describing the momentum dispersion In the considered state:

$$
\begin{equation*}
\Delta p^{2} \simeq p^{o^{2}} \tag{7}
\end{equation*}
$$

The first integral in eq. (5) gives:

$$
\begin{equation*}
I=\int / \frac{\partial c}{\partial \rho_{2}} /^{2} \alpha^{3} p=\frac{\alpha}{\rho^{Q_{2}}} \tag{8}
\end{equation*}
$$

The second integral is

$$
\begin{equation*}
\left.I_{2}=4 \pi / /(f) /^{2} \xi^{2} d s M / s\right) \tag{8}
\end{equation*}
$$

where

$$
M / \xi /=\int S_{p}\left(\frac{\partial u^{*}}{\partial p_{z}} \frac{\partial u}{\partial p_{z}}\right) \frac{d \Omega}{4 \pi}
$$

and $\mathbb{M}(f)$ is equal to

$$
A /(s)=\left\{\begin{array}{l}
\frac{1}{4 m^{2}} ;{ }^{2} \ll \quad m / p^{c} \tag{9}\\
\frac{1}{4 m^{2}} \frac{4}{3} \frac{m^{2}}{\rho_{0}^{2}} \frac{1}{5^{2}} ; \frac{k}{5}>\frac{m}{p^{0}}
\end{array}\right.
$$

(See Appendix 3).

> Therefore we have that at $t=0$
> $\Delta Z^{2}=\alpha \frac{\hbar^{2}}{\Delta \rho_{\alpha}^{2}}+\beta \frac{\hbar^{2}}{m^{2} c^{2}}$
if $\Delta P_{z}^{2} \ll m^{2} c^{2}$. For $\Delta P^{2} \gg m^{2} c^{2}$ we have

$$
\begin{equation*}
\overline{\Delta Z^{2}}=\alpha^{\prime} \frac{\hat{t}^{2}}{\Delta \dot{P}_{z}^{2}}, \tag{10}
\end{equation*}
$$

where $\alpha, \beta, \alpha^{\prime}$ are of the order of unity. It is well seen that although in eq. (10) an additional term $5^{2} / m^{2} c^{2}$ appears as if pointing out that the Dirao partiole cannot be localized more exactly than within $\Delta Z_{\sim}^{\sim} \frac{\hbar}{m c}$ but, in fact, it is of no importanoe since at $\Delta P_{k}^{2} \rightarrow \infty \quad$ eq. (10) transforms into eq. (10').

Notice however that at $\Delta P_{z}^{2} \rightarrow \infty$ the considered state is not described by the function:

$$
\begin{equation*}
\psi_{z^{\prime}}(z)=\delta\left(z-z^{\prime}\right) \tag{11}
\end{equation*}
$$

since this function is not quadratically integrable but the considered state is described by quadratically integrable funotions. This quadratically integrable function $\mathcal{Y}_{y^{\prime}}(x, P) / 100 a l i z e d$ about $z=z^{\prime}$, is related to the function (11) as follows:

$$
\begin{align*}
& z \psi_{z}\left(z, p^{0}\right)=y^{\prime} \psi_{z^{\prime}}\left(z, p q+\Delta\left(z-z^{\prime}, \rho 0\right)\right. \tag{12}\\
& \Delta\left(z-z^{\prime} p^{0}\right)=\rho^{0} / \frac{1}{2}\left[\left(z-z^{\prime}\right) \psi_{z}\left(z, p^{0}\right) / p^{0 / 2}\right]
\end{align*}
$$

in this oase

$$
\psi_{x}\left(z, p_{0}\right) / \rho^{0 / 1} \rightarrow \delta\left(z-z_{0}\right)
$$

at $\rho \rightarrow \infty$. Therefore if the funotion $\psi(x)$ is oonsidered as an "ideal" eigenfunotion of the operator of the ooordinate z then the function $\psi_{s}(z, p /$ approximates it so that $\Delta / y-x ; p \% \rightarrow 0$ at $\rho^{0} \rightarrow$ (see Appendix 4).

2. Bosons

Now we turn to the spinless particles, and consider again one partiole state. The field $\varphi(x)$ may be represented in the form:

$$
\begin{equation*}
\left.\varphi(x)=\int \Delta \mid \vec{N}\right) V_{*}(x) d^{3} k, \quad V_{*}=\frac{e^{i \alpha x}}{\sqrt{\omega}}, \tag{13}
\end{equation*}
$$

where $N \vec{x}=\vec{N} \vec{x}-\omega t, \omega=+\sqrt{m+N^{2}}$
(see Appendix 5).

$$
\begin{align*}
& \text { The density } \rho(x) \text { is } \\
& \rho(x)=\frac{1}{2}\left[\Omega \varphi^{*} \varphi+\varphi: \Omega \varphi, \Omega=+\sqrt{m^{2}-\nabla^{2}}\right. \tag{14}
\end{align*}
$$

and, generally speaking, is non-definite even for positive-energy states $\quad \omega=\sqrt{m^{2}+k^{2}}$.

In this case it is also impossible to ropresent the δ-function as a superposition of waves U_{k} with $\omega>0$.

Now let us oonsider localized states with integrable density ρ. We oaloulate the quantity $\overline{\boldsymbol{z}^{2}}$ at $\boldsymbol{t}=0$ under the oondition:

$$
\begin{equation*}
\int \rho(x) d^{3} x=1 \tag{15}
\end{equation*}
$$

We have

$$
\begin{equation*}
\overline{A z^{2}}=\overline{z^{2}}=\frac{1}{2} / z^{2} / \Omega \varphi+\varphi+\varphi * \Omega \varphi / \alpha^{*} x . \tag{16}
\end{equation*}
$$

After simple calculations we find that:

$$
\begin{equation*}
\overline{z^{2}}=f / \frac{\partial x_{y}}{\partial x_{y}} d^{2} x-\frac{1}{4} /\left(s^{2} \frac{x_{y}^{2}}{\omega^{4}} d^{3} x .\right. \tag{16}
\end{equation*}
$$

This expression $1 s$ non-definite, therefore the density $\rho(\vec{x}, 0)$ cannot be treated as a density of any probability.

It might be expeoted that such Ranomalies" in the bahaviour of $\rho(\vec{x})$ arise only when the density $\rho(\vec{x})$ is oonoentrated within $\Delta x \sim \frac{\hbar}{m c}$.But this not is the oase: $\rho(x)$ may assume negative values also when $\Delta x \sim \frac{\hbar}{m e}$ (see Appendix 5B and 5C). Taking 4 in the form

$$
A(\vec{A})=A(\omega)=\mathscr{A} / \frac{\omega}{\omega_{0}} / \frac{1}{\omega_{0} / 2}, \quad \omega / \omega_{0}=\xi,
$$

we find

$$
\begin{equation*}
\overline{z^{2}}=\frac{1}{\omega_{0}^{2}} \int_{f=1 n}\left(| | \mathscr{f}^{2}-\frac{1}{4 f^{2}} / \nmid \int^{2} \frac{s^{2}}{\xi^{2}} d^{3}\right. \tag{16}
\end{equation*}
$$

It is not diffioult to ohoose suoh function \quad that $/ f^{\prime 2}-\frac{1}{4 j^{2}} / f / y \geqslant 0$ Then it is seen, that at $\omega_{0} \rightarrow \infty, \overline{z^{2}}=0$ and we come to the state with a well localized density, i.e. density which at $t=0$ is concentrated within an arbitrary small region $\Delta Z \sim \frac{\hbar}{\omega_{0}} \rightarrow 0$ (see Appendix 5).

Thus, as far as the possibility of localization conoerns, the situation is quite similar to that whioh takes place for the Dirac particle, however, the $\rho(x, t)$ for spinless partiole might not be interpreted as the density of the probability to deteot the particie near the point \vec{x} at time t.

The quantity $\rho / \vec{x}, t /$ should be considered as a purely "field" quantity representing a spinless partiole in space-time.

8. Spread of Wave Packets

Now we oonsider the behaviour of relativistic wave paokets in the oourse of time. All the above disoussed states looalized at t=0 are spreading: the quantities $\overline{\Delta x^{2}}, \overline{\Delta y^{2}}, \overline{\Delta z^{2}}$ increase. However, this inorease is such that under certain oonditions it may be said that the relativistic packet is moving during a rather long time T oonserving its oharaoteristio size.

In other words, the change in the paoket size during time T may be small as compared with its initial size even for long time intervals. Here a long time interval implies suoh interval that $R=C T>\Delta x, \Delta y, \Delta Y_{i}$ where $\Delta x, \Delta y, \Delta X$ are taken at $t=0, C$ is the velooity of light.

It is easy to show that the paoket width Δ_{μ} measured in the direotion parallel to the packet motion inorease with t aooording to the law:

$$
\begin{equation*}
\Delta_{N}^{2}(t)=\Delta_{N}^{2}(0)+\frac{t}{\Delta_{4}^{2}(0)} \frac{m^{4}}{L^{4}} v^{2} t^{2} \tag{17}
\end{equation*}
$$

and the width Δ_{α} measured in the direotion perpendicuiar to the packet motion inoreases acoording to the law
$\Delta_{L}^{2}(t)=\Delta_{L}^{2}(0)+\frac{t}{\Delta_{2}^{2}(0)} v^{2} t^{2}=\Delta_{L}^{2}(0)+\frac{t^{2}}{m^{2} c^{2}} \frac{1}{\Delta_{1}^{2}(0)} \frac{m^{2}}{E^{2}} t^{(17)}$ Here t is the particle wave length, $V=\frac{\partial E}{\partial p}$ is the packet velocity, M is the partiole rest mass, $\Delta^{2} / \sigma /$ is the value of $\Delta^{2}(t)$ at $t=0$ (see Appendix 7). From these equations it following that

$$
\begin{equation*}
\frac{\Delta^{2}(t)-\Delta^{2}(0)}{\Delta^{2}(0)} / \ll 1 \tag{18}
\end{equation*}
$$

11

$$
R=c t<\frac{\Delta^{2}(0)}{t}
$$

Now we come back to the conditions (1); (1') and oombine them with the result (1). We find the inequalities:

$$
\begin{equation*}
\Delta \frac{\Delta}{t}>R \gg \Delta \gg t \tag{19}
\end{equation*}
$$

whioh can be realized for any t under the condition that $\& \rightarrow 0$ (i.e. $\nu \rightarrow C$).

This important oondition of a possible long existence of a localized relativistic packet is exolusively the result of the relativistic effect: inorease of the partiole mass with inoreasing velocity. Thus we see that the present day theory in a formal way (because there is no praotioal way to construot arbitrary narrow s split) permits the oneparticle states which are localized in spaoe with any degree of accuracy $\Delta \rightarrow 0$ for the time intervals $T<\frac{\Delta^{2}}{\lambda \epsilon} \rightarrow \infty$ (at $\lambda \rightarrow 0$). This gives the possibility to formulate conditions of macroscopic causality directly for S-matrix, taken on the mass- and energy surfaces. $[6,7]$

Chapter III

Condition of Macroscopic Causality

9. Description of Collisions by Wave Packets

In the foregoing we have shown that possibility of constructing the wave packets which keep their dimensions during the time $T=R / \mathscr{V}$ ($V-1 s$ the relative velooity of packets, $R-$ is the distance between paokets). The condition which restricts the distance R reads

$$
\begin{equation*}
\frac{\Delta^{2}}{t}>P>\Delta \rightarrow \lambda \tag{1}
\end{equation*}
$$

where $\Delta-1 s$ the dimention of the wave packet. Under these conditions the wave packet retains its dimensions during the time $T=\frac{R}{V}$ and represents the state of a partiole with the momentum $p=\frac{\hbar}{\lambda}$ looalized in the region Δ.

Fig.l shows the description of the partiole oollision by wave packets. In a non-transparent soreen x ' x 'there are two diagrams A and B whioh are opened during a short time $\boldsymbol{t}_{\mathrm{j}}=-\boldsymbol{T}$ so that there appear localized wave packets $U_{1}\left(x_{1}\right)$ and $U_{2}\left(x_{2}\right)$, removed apart at the distance AB=R. These packets are moving along the lines $\mathbb{K}_{1} \mathbb{K}_{l}^{\prime}$ and $\mathbb{K}_{l} \mathbb{K}_{l}^{\prime}$, increasing in a certain degree their dimensions. The packets $\mathcal{C}_{1}^{\prime}\left(x_{1}\right)$ and $U_{2}^{\prime}\left(x_{2}\right)$ are the same packets in the time $t_{\alpha}=T$

When the condition (1) 1s fulfilied the dimensions of these packets little differ from those of the initial packets C, and U_{2}.

In the region S the wave packets begin to interaot between them. This region is a source of secondaries and soattered waves.

Now we turn to mathematioal desoription of the collision of these packets, using the S-matrix theory.

We write the S-matrix in the form:

$$
\begin{equation*}
\langle t / 5 / i\rangle=i_{f i}^{5}-(2 \delta)_{i}^{4} \delta^{4}\left|\rho_{f}-\rho_{i}\right|\langle t / T / i\rangle, \tag{2}
\end{equation*}
$$

where as usual (i) denote the quantum numbers of the in- state Ψ_{c} and (f) are those for the out-state Ψ_{f}. P_{i} is the total momentum in the in-state, \mathcal{F}_{f} is the same quantity for the out--state. The matrix element $\langle f / T / i\rangle$ can be represented in a more detalled form:

$$
\begin{equation*}
\langle+\mid T / i\rangle=\frac{\left\langle P_{m} P_{m-1}, \ldots P_{n+1} / I \mid P_{n} P_{n-1} \ldots P_{1}\right\rangle}{\sqrt{2 P_{m} P_{m} 2 P_{m+1}+2 P_{1}^{0}}} \tag{3}
\end{equation*}
$$

where $\left\langle p_{m}, p_{m=1}, \ldots P_{n+1} / i / P_{1,}, \rho_{n}, \ldots P_{,}\right\rangle$
 are their fourth components. Further

$$
\begin{align*}
& \mathscr{S}_{f}=p_{m}+p_{m-1}+\cdots+P_{n+1} \tag{4}\\
& \rho_{i}=p_{m}+p_{n-1}+\cdots+p_{1} \tag{4}
\end{align*}
$$

In what fellows for the sake of simplicity, we shall restrict ourselves to the simplest case of the collision of two scalar particles. In this case the instate Ψ_{c} is represented by two wave packets $\mathcal{C}_{l}\left(x_{j}\right)$ and $\mathcal{C}_{k}\left(x_{f}\right)$ of the above-considered type. For the scalar particles these packets on be represented in the form of the integrals:

$$
\begin{equation*}
u(x)=\frac{1}{(2 \vec{n}) / 1 /} \left\lvert\, u(p) \exp (i p x\rangle \frac{d j}{2 p^{0}}\right., \tag{5}
\end{equation*}
$$

where $\rho^{0}=+\sqrt{\vec{p}^{2}+11^{2}}$. The wave function of the initial state in the momentum representation will be of the form:

$$
\begin{equation*}
\Psi_{c n}\left(p_{i} p\right)=\frac{\tilde{C}_{x}\left(\vec{P}_{i}\right)\left\langle\tilde{C}_{1}\left(\overrightarrow{P_{1}}\right)\right.}{\sqrt{2 P_{2}^{0} 2 P_{1}^{0}}} \tag{6}
\end{equation*}
$$

From (3) (5) (6) we get :

$$
\begin{aligned}
& Y_{\text {ur }}\left(n_{m}, \rho_{m-1}, \ldots \rho_{s}\right)=\cdots(2 \pi)_{i}^{s} /\left(\Gamma / \rho_{r}-\rho_{i}\right) \text { a }
\end{aligned}
$$

$$
g\left(x_{m}, x_{m-1}, \ldots x_{3} / x_{2}, x_{1}\right)=-\frac{4 \theta^{2} g_{0}\left(x_{m}, x_{m-1} \ldots x_{3} / x_{2} x_{1}\right)}{\theta t_{2} \hat{t_{1}}},
$$

where G_{0} is the invariant funotion of the co-ordinates $\left.g_{0}\left(x_{m}, x_{m-1}, \ldots x_{3} \mid x_{1}, x_{1}\right)=\int \delta \delta^{*} / p_{m}+p_{m-1}+\cdots+p_{3}-p_{c}-p_{p}\right) *$
 We notice that due to the presence of the δ-function under the integral in g and g_{0} these functions are translation-iuvariant and depend only on the difference of the variable $x_{m}, x_{m}, \ldots x, x$
11.Conditions of Macroscopic Causality

Now we may formulate the principle of maorooausality:
a) the wave paokets $u_{e}\left(x_{2}\right)\left(\Delta x_{2} \sim L\right)$ and $\left.u, / x_{1}\right)\left(\Delta x_{1} \sim L\right)$
removed apart at the distance

$$
\begin{equation*}
\left|\overrightarrow{x_{2}}-\overrightarrow{x_{1}}\right|=|x|><\gg t \tag{13}
\end{equation*}
$$

contribute to $\varnothing_{\text {aut }}$ provided only that

$$
\begin{equation*}
x^{2}=\left(t_{2}-t_{1}\right)^{2}-\left(\overrightarrow{x_{2}}-\overrightarrow{x_{1}}\right)^{2}>0 . \tag{14}
\end{equation*}
$$

b) Further $\phi_{\text {out }}=0$ if the co-ordinates of the partioles $x_{m}, x_{m,}, x_{3}$ oreated in the collision lie out of the future light vone With respect to the points x_{2}, x_{1}

$$
\begin{array}{cl}
\left(x_{s}-x_{2}\right)^{2}>0 & \left(x_{s}-x_{i}\right)^{2}>0 \\
t_{s}>t_{2} & t_{s}>t_{1} \tag{15}
\end{array}
$$

$f=m, m-1, \ldots 3$. Thus the function $g\left(x_{m}, x_{m, \ldots, x_{3}}\left(x_{2} x_{1}\right)\right.$ must consequently vanish outside the above-mentioned space-time regions, however, only asymptotioally, 1.e. for

$$
\begin{equation*}
P \rightarrow \infty,\left(t_{s}-t_{s}\right),\left(t_{s}-t\right) \rightarrow \infty \tag{16}
\end{equation*}
$$

From the physioal point of view these conditions are identical with the requirements of classical macrosoopio oausality and imply the assumption that all the partioles in the final state Fout oan be produced (or ohange their state) later than the initial packets exchange the field quanta (see Fig. 2).

The usual local theory satisfies, of course, the above stated requirement of maorocausality.

This requirement will be satisfied also by any scattering matrix in which the miorooausality is violated only in a small localized space-time region.
12. Some Properties of the Co-Ordinate Representation 171 .

We represent the S-matrix in the form

$$
\begin{equation*}
\dot{S}=c^{\cdot \dot{\prime}}=\sum_{s=0}^{\infty} \frac{c^{s}}{S^{\prime}} \eta^{s} \tag{1}
\end{equation*}
$$

where $\}^{\prime}$ is the phase operator. This operator is an Hermitian
one

$$
\begin{equation*}
\xi^{\prime}=k^{+} \tag{2}
\end{equation*}
$$

The condition (2) provides the unitarity of the operator. In the matrix form, in the asymptotic space e(p) eqs.(1) and (2) read:

$$
\begin{gather*}
\left\langle P / S^{\prime} \mid P\right\rangle=\sum_{j=c} \frac{c^{s}}{S^{\prime}}\left\langle P / \dot{Q}^{\prime} / P^{\prime}\right\rangle \tag{i}\\
\left\langle P / \dot{B} \mid P^{\prime}\right\rangle=\left\langle P^{\prime} / \dot{B}^{\prime} \mid P\right\rangle \tag{2}
\end{gather*}
$$

the elements $\left\langle P / Z^{\prime} / \rho\right\rangle_{\text {being }}$ of the form

$$
\begin{equation*}
\left\langle P / Q^{\prime} / \rho^{\prime}\right\rangle=\frac{\left.c^{2} / p-j\right) \beta(p)}{\sqrt{2 p^{0}+2 p^{0}}}, \tag{3}
\end{equation*}
$$

where $\boldsymbol{P}=\sim \rho, \boldsymbol{P}^{\prime}=<\rho^{\prime}$ are the total momenta in the initial and final states. The form (3) ensures the validity ofthe law of multiplication

$$
\begin{equation*}
\left\langle\rho / \eta^{\prime} \mid P^{\prime}\right\rangle=\left\langle\left\langle\rho / \beta^{\prime} / P^{\prime \prime}\right\rangle d \omega\right| P^{\prime \prime} /\left\langle P^{\prime \prime} / \dot{Z}^{\prime} / P^{\prime}\right\rangle, \tag{4}
\end{equation*}
$$

where

$$
\begin{equation*}
d \omega(p)=\frac{d^{3} p}{2 p^{0}} \tag{5}
\end{equation*}
$$

is the volume element in the Lobaohersky's spaoe

$$
p^{0}=+\sqrt{p^{2}+m^{2}} .
$$

Now we consider the S-matrix in the co-ordinate space $\mathscr{X}(x)$.

The matilx element $\hat{\imath}$ is now written in the form

$$
\begin{equation*}
\langle x / \hat{z} \mid x\rangle=\left\langle x / \hat{\xi}+/ x^{\prime}\right\rangle=\left\langle x^{\prime} / \imath / x\right\rangle^{*} . \tag{6}
\end{equation*}
$$

The multiplication of this matrix is defined by the law:

$$
\begin{gather*}
\left\langle x / s^{2} / x^{\prime}\right\rangle=\int\left\langle x / \eta / x^{\prime \prime}\right\rangle+x^{+} / x^{\prime \prime}-x^{\prime \prime \prime} \mid \\
\left\langle x^{\prime \prime \prime} /\left\langle/ x^{\prime}\right\rangle d^{\prime \prime} x d^{\prime \prime} x^{\prime \prime \prime}\right. \tag{7}
\end{gather*}
$$

where $\chi^{(1 / x} / x /$ is the positive-frequency singular function

$$
\begin{align*}
& D^{+}(x)=\int \frac{e^{i p x} d{ }^{3} p}{2 p^{c}}, \tag{8}\\
& p^{0}=\sqrt{p^{2}+m^{2}} .
\end{align*}
$$

This funotion has the property

$$
\begin{equation*}
\langle\infty+(x-y)]^{+}=\infty^{+}(x-y) \tag{9}
\end{equation*}
$$

In the transition to the momentum representation
$\left\langle\rho / z^{\prime} \mid p\right\rangle=\int \frac{p^{\cdot p x}}{\sqrt{2 p^{0}}}\left\langle x / \hat{\xi} / x^{\prime}\right\rangle \frac{e^{i p^{\prime} x^{\prime}}}{\sqrt{2 p^{0}}} d x^{4} d^{4} x^{\prime}$
this law of multiplication automatically reproduces the law of multiplication in the Lobachersky's space and returns us to the elements. of the $\hat{\imath}$ matrix represented in the form (4). In this case the appearance of the function $\delta \sqrt{4} / \boldsymbol{\beta}-\boldsymbol{\rho} /$ ensuring the validity of the conservation law of the total momentum $\mathcal{J}=\underline{\Sigma} \boldsymbol{P}, \mathcal{P}=\underline{\leq} \rho^{\prime}$ is due to the translation invariance of the matrix elements. Owing to $\left\langle x^{\prime} / \eta / x^{\prime}\right\rangle$ the fact that the space-time is homogeneous, these matrix elements are functions of only the differences of the variables x and X^{\prime}. In view of the transformation (10) we note that the elements of the phase operator $\left\langle\dot{\mu} / \zeta^{1} / x\right\rangle \quad$ may have a spectral expansion going beyond the limits of the space $\mathcal{P}(P)$.

For further consideration it is more convenient not to distinguish between the variables $x=\left(x_{1} x_{z} \ldots x_{m}\right)$ related to the final state and the variables $x^{\prime}=\left(x_{1}^{\prime}, x_{2}^{\prime} \ldots x_{n}^{\prime}\right)$ related to the initial state and denote all by

$$
x=\left(x_{1}, x_{2}, \ldots x_{m}, x_{m+1}, x_{m+2}, \ldots x_{w}\right)
$$

The matrix element

$$
\begin{equation*}
\left\langle x / \hat{h} / x^{\prime}\right\rangle=\left\langle\left(x_{1}, x_{2}, \ldots x_{1}, \ldots x_{\alpha,} x_{n}\right)\right. \tag{11}
\end{equation*}
$$

will be the function of the differenoes $\mathcal{X}_{4}-\mathcal{X}_{k}$.
In looal theory miorocausality is displayed by the appearance in this matrix element of definite singularities which are looated on the light cones:

$$
\begin{equation*}
\left(x_{i}-x_{*}\right)^{2}=0 \tag{12}
\end{equation*}
$$

or at the points

$$
\begin{equation*}
x_{i}=x_{k} \tag{12}
\end{equation*}
$$

13. Acausal S-Matrix

Instead of the local matrix (11), we oonsider now a non-local acausal matrix in which the singularities characteristic of the local matrix are excluded completely or partially. This new matrix
\hat{h} is considered by us as a function of a four-dimensional time--like unit vector n. We denote the elements of this matrix by

$$
\begin{equation*}
\left\langle x / \hbar \mid x_{i}^{\prime} n\right\rangle=\left\{\left(x_{1}, x_{i}, x_{i} \ldots x_{k} \ldots x_{w}, n\right)\right. \tag{13}
\end{equation*}
$$

$$
\begin{equation*}
M^{2}=1 \tag{13}
\end{equation*}
$$

We introduce the functions of the space point $\rho(f, n)$
by means of which we want to eliminate (completely or partially) singularities characteristic of local theory.
r
Basing on certain considerations which will be presented below we call these functions "pseudo-sources".

For the sake of definiteness, these functions are assumed to be the functions of the invariant x)

$$
\begin{equation*}
P^{2}=\frac{1}{2}\left[(\xi \pi)^{2}-\xi^{2}\right] \tag{14}
\end{equation*}
$$

x)

This assumption is not, of course, obligatory.
which, in the frame of reference where $n=(1,0,0,0)$, degenerates in a three-dimensional sphere:

$$
\begin{equation*}
P^{2}=\vec{\xi}^{2}=\xi_{1}^{2}+\xi_{2}^{2}+\xi_{3}^{2} \tag{15}
\end{equation*}
$$

Thus, we suppose that

$$
\begin{equation*}
\rho(f, n)=\rho / \frac{R^{2}}{R^{2}} / \tag{16}
\end{equation*}
$$

where $C t$ is a certain lenght characteristio of the scale of the space region ($\sim c y^{3}$) inside whioh oausality is violated (it is assumed that the function rather rapidly tends to zero at $R / \alpha \rightarrow \infty /$

Suppose that the matrix element (II) has a singularity in the variable $x_{c}-x_{x}$; we eliminate this singularity by averaging the element (II) over the function of the pseudo-source:

$$
\begin{align*}
& \left\langle/ x_{1}, x_{2}, \ldots, x_{i} \cdot-x_{x}, \ldots x_{w}, n /=\right. \\
= & \frac{2}{2} / x_{n}, x_{2}, x_{3} \ldots x_{1}, x_{n}-5, \ldots x_{w} / \rho(f, n) d^{q} . \tag{17}
\end{align*}
$$

If the
vertex of the light cone $\left(x ;-x_{k}\right)^{2}=0$ is considered as a source of singularity then the averaging (17) means the replacement of the point source by the extended source which has the volume of the order of $\sim a^{3}$. If the singularity is at the point $/ x_{0}=x_{x} /$ then this point is replaced by the volume \sim ci ${ }^{3}$.

Thus the averaging reduces to the replacement of the point sources by the extended ones; that is why we called the function
$\rho(\xi n)$-"pseudo-source". When averaging miorooausality is violated only in a small space region which is localized in the volume a^{3} (whioh is, naturally, assumed to be small). Owing to this fact, macrooausality is violated at all, by averaging (17).

Notice that the Fourier transform of the pseudo-source

$$
\rho(f, n) \quad \text { (16) is of the form }
$$

$$
\begin{equation*}
\tilde{\rho}(\underline{q}, n)=\tilde{f}\left(\frac{\tilde{p}^{2}}{\alpha^{2}}\right) . \tag{18}
\end{equation*}
$$

where

$$
\begin{equation*}
p^{2}=\frac{1}{2}\left[(s n)^{2}-g^{2}\right] . \tag{18}
\end{equation*}
$$

From (17) it is seen that the Fourier transform of the aoausal matrix $/(x ; n)(17)$ is simply the product of the Fourier transform of the local matrix $\{(x)(11)$ and that of the pseudo-source (18):

$$
\begin{equation*}
\left\langle p / q^{1}\left(n /\left|p^{\prime}\right\rangle=\left\langle p / p / p^{\prime}\right\rangle \cdot \tilde{p}(q, n)\right.\right. \tag{19}
\end{equation*}
$$

Hence, it follows that if the Fourier transform of the matrix $h(x), \tilde{h}(P)$ is the Hermitian matrix, then the Fourier transform of the matrix $\{(x, n),\{(\rho, n) w 1 l l$ be also Hermitianm provided that the vector n either is indepednet of the vectors, or is their symnetrical function.

The Hermitioity of the acausal phaseratrix $\tilde{\{ }(P, n)$ provides the unitary of the acausal scattering matrix $\hat{S}(n):$

$$
\begin{equation*}
\hat{s}(n)=e^{i \hat{\xi}(n)} \tag{20}
\end{equation*}
$$

Thus it is shown, that one may oonstruot the soattering matrix S in whioh: a) microoausality is violated, but b) maorocausality and c) unitarity are satisfied.

14. Remarks on the Functions $\rho(\xi, n)$

Now we oonsider the problem of the choioe \boldsymbol{n} by means of which pseudo-sources $\rho(f, n)$ were oonstruoted. In principle, there are two possibilities: a) the veotor n is not oonnected with the system of interacting particles. In this case we oall the vector n external. The assumption about the existence of such an external vector single out with neoessity some frame of reference (or some frames of referenoes) and thereby violate

- the usual interpretation of relativistic invariance.

Such singled out frame of referenoe may turn out to be the physioal vaccum system. ${ }^{[8]}$ We shall not discuss in what follows to what degree such assumptions are compatible with the known physical facts. In any case, the situation is not trivial, at all. It seems that only comparison of the results on colliding beams with those on fixed target may clear up these problems.
b) Turn to the second possibility when the vector n is a function of the dynamioal variables of the system of interesting particles (their momenta). Now we call the vector n internal.

In this case we may totally oonserve relativistio invarianoe in its usual interpretation.

It is only causality that will be violated, and only in a small space, of the order of Q^{3} which is connected with the interaction partiole region. The most natural way of introducing the internal vector is to identify it with the total momentum \boldsymbol{J} vector of the system more exactly, with the unit vector $\mathcal{P} / \sqrt{\rho \ell \ell}$:

$$
\begin{equation*}
n=\frac{\rho}{\sqrt{\mathcal{J}^{2}}} \tag{21}
\end{equation*}
$$

This may be done because the S-mattix has no non-zero matrix elements between states with different total momentum ρ and \mathcal{J}, $\boldsymbol{\rho}^{\prime} \neq \boldsymbol{\jmath}$.

$$
\begin{equation*}
(\mathcal{S} / \hat{S} / \hat{J})=0 \tag{22}
\end{equation*}
$$

The same relates to the ξ^{1} matrix

$$
\left(\Gamma / h^{\prime} / \rho\right)=0, \quad \text { for } \rho \neq \rho
$$

Moreover, if the matrix element $\}\left(x, x_{j}-x_{A}\right)^{j}$ s divided into complexes with smaller number of variables:

$$
\begin{array}{r}
h\left(x_{1}, x_{<} \ldots x_{k}, x_{k+1}, \ldots x_{v}\right)=3\left(x_{1}, x_{i} \ldots x_{k}\right) \times \\
\times \beta^{\prime \prime}\left(x_{k+1}, x_{k+2}, \ldots x_{N}\right) \tag{23}
\end{array}
$$

then such a complex in the momentum representation (due to trans lation invariance) has again no matrix elements with $\mathcal{P}^{\prime} \neq$

Therefore the momentum P may be asoribed to the total matrix as well as to individual complexes $f(x), f(x), f / \pi /$ eto. It is clear that if one or several partioles of a complex are removed from the others at a large distance this complex vanishes for finite sphere of particle interaction).

Therefore one should not think that the removed particle may affect the others only because its momentum is involved in the total momentum; when a particle is removed apart from the others, the corresponding matrix element must tend to zero ${ }^{x}$). Thus, in eq. (19) the vector N may be assooiated with the total momentum of the system P (according to eq. 21).

Now we turn to the analytical properties of the acausal matrix S From (19) it follows that in the example under oonsideration the analytical properties of the S° matrix are new as oompared to those of the J^{\prime} matrix in local theory, and defined by the analytioal properties of the Fourier transform $\tilde{\rho}(9, n)$ of the pseudo-souroe $\rho(5, n)$.

The new singularities of the S matrix are identical with those for the function $\tilde{\rho}(q, n)$. The problem of the nature of allowed singularities is not yet sufficiently investigated

In paper $[5]$ a particular case $1 s$ considered when these singularities are poles located symmetrically on the imaginary axis

[^1]In oonolusion it should be noted that the properties of the functions $\rho(\xi, k)$ are introduced as a method for constructing the aoausal matrix, as an example.

The refusal from microoausality in a small scale will give rise to serious geometrical consequenoes: the conoept of fourdimensional pseudo-Euclidean co-ordinates of the point t, x, y, x may loss in this situation not only its meaning (if it is not already the oase in modern field theory) but also a purely formal maaning. Therefore it is more reasonable to consider our constructive method as a formal way to map a "magic circle" (the scale of this circle is defined by the elementary length $\boldsymbol{a}^{\text {" }}$) inside which a situation may occur which radically differs from that given by the modern theory.

Conclusion

The \mathcal{S}^{\prime} matrix is, in prinoiple, a physically observable quantity. This suggests an idea that one ooncept of \mathcal{S}^{\prime} matrix will survive the modern local theory and will be a part of future theoretical conceptims. However, this "future" S matrix will, apparently, obey the routine conditions a) unitarity, b) causality.

In the present investigation we admitted condition a) as obligatory and focused out attention of condition b). We showed that causality, as applied to the S^{\prime} matrix, oontains the contradiction which is based on the complementarity of the spacetime description and the momentum energy description. This contradiction may be reduced only in the framework of essentially pegrened requirements of causality i.e. In the framework of the macrosansality.

These weekened requirements make it impossible to catch the particles in violation of the local mioroaausality, even if the latter is violated.

Therefore the limits of macrocausality turn out to be "tolerable" and include a very large number of acausal theories.

APPENDIX I

The Lobachersky 's spaoe is the space of a constant of negative ourvature K. In the three dimensional case this space is described by the metric

$$
\begin{equation*}
d S^{+}=d p^{2}+d p_{i}^{2}+d p_{3}^{2}-\frac{\left(p_{1} d p+p_{3} d p_{1}+p d / s\right)^{2}}{m^{2}+p_{1}^{2}+p_{2}^{2}}, \tag{1}
\end{equation*}
$$

where $d \mathcal{S}$ is the interval between two infinitely close $\left.p_{3}+d p_{3}\right)$ points with the comordinates $\left(P_{P}, P_{l}, P_{3}\right) \quad$ and $\left(P+d P_{i}, P_{l}+d P_{l}\right.$, The quanta $N=-\frac{1}{m^{2}}$ determines the space curvature, m is the radius of curvature.

To the metric (I) there corresponds the element of the volume:

$$
\begin{aligned}
& d \omega=\|/\| \operatorname{det} g_{i x} \|= \\
& =\frac{d p_{2} d p_{2} d P_{P}}{1 p^{\theta}}=\frac{d p_{1} d P_{2} d P_{2}}{\sqrt{m^{2}+p_{1}^{2}+p_{2}^{2}+p_{3}^{2}}}
\end{aligned}
$$

Here $\mathcal{G i c}_{i k}$ is the metric tensor of the form (1). As will be seen from $\% 9$, in the matrix elements of the operators and in the wave functions in the momentum representation there appear multipliers, like $\frac{1}{\sqrt{2 \mu}}$; Whioh are, at first sight, noncovariant. However, after the matrices have been multiplied, these factors lead to the appearanoe of the expressions
Which ensure the oovariance: This expression is the element of the volume in the Lobachersky's space $\gamma(P)$.

APPENDIX 2
Action Sphere C
Some idea about the comparison of the terms $\frac{a}{R}$ and $\frac{a^{2}}{R^{2}}$ may be obtained from the theory of elastic soattering.

Let $\psi(x)$ be the wave function and $V(x)$ the interaction energy. Then

$$
\begin{equation*}
\psi(x)=Y(x)+\int g(x-x) \mid V(x) / \psi(x) / d^{3} x^{\prime} \tag{I}
\end{equation*}
$$

where $\psi_{s}=e^{\text {iNK }}$ is the incident wave with the momentum \mathcal{K}, $g(x x)$ is the Green function

$$
\begin{equation*}
g(x-x)=\frac{1}{4 x} \frac{e^{i k / x-x\rangle}}{\left.1 x-x^{\prime}\right)} \tag{2}
\end{equation*}
$$

Expanding $g(x-x /$ in the inverse powers of $R=/ x /$, we find

$$
\begin{equation*}
U(x)=\psi_{0}(x)+\frac{A}{4 \pi} \frac{e^{i K R}}{R}+\frac{B}{4 \pi} \frac{C^{i K R}}{R^{2}}+O\left(1 / R^{3}\right) \tag{3}
\end{equation*}
$$

R may be assumed to be a large quantity, if

$$
\begin{equation*}
\frac{A}{R} \gg \frac{B}{R} \quad \text { i.e.if } \quad R \gg \frac{\beta}{A} \tag{5}
\end{equation*}
$$

The elinor $U_{r}(P, \alpha)$ can be written for $E>0$ in the form

$$
\begin{array}{ll}
q=1 & \tau=l \\
u(1)=w & u(1)=0 \\
u(2)=0 & u(l)=w \\
u(3)=\frac{P_{w} N}{m+E} & u(3)=\frac{\eta^{*} N}{m+E} \\
u(4)=\frac{\eta w}{m+E} & u(y)=-\frac{P N}{m+E} \\
w=\frac{1}{\sqrt{2}}\left(1+\frac{m}{E}\right)^{1 / 2} & \Pi=P_{x}+i P_{y}
\end{array}
$$

Hence, it is seen that the traces of bilinear combinations for $r=1$ and 2 are identical. A simple oaloulation gives

$$
\begin{align*}
& \text { So } \left./ \frac{\partial \dot{u}^{2}}{\partial \tilde{p}_{z}} * \frac{\partial u}{\partial p_{z}}\right)=\frac{1}{8}\left(1+\frac{m}{E}\right)^{-1} \frac{m^{2} p_{z}^{2}}{E^{G}}+ \\
& \frac{1}{2}\left(1+\frac{m}{E}\right)^{-1} \frac{1}{E^{2}} 1+\frac{p^{4}}{\left(1+\frac{m}{E}\right)^{2} E^{4}}+ \tag{2}\\
& \frac{1}{4} \frac{m^{2} p^{4}}{\left(1+\frac{m}{E}\right)^{2} E^{6}}-\frac{2 p_{z}^{2}}{\left(1+\frac{m}{E}\right) E^{2}}-\frac{m p_{z}^{2}}{\left(1+\frac{m}{E}\right) E^{3}}+ \\
& \left.\frac{m p^{2}}{\left(1+\frac{m}{E}\right)^{2} E^{5}}\right\}+\frac{1}{2} \frac{\left(E^{2}-m^{2}-p_{z}^{2} / p_{z}^{2}\right.}{E^{6}}\left(1+\frac{m}{E}\right)_{x}^{-3} \\
& \times\left(1+1 / 2 \frac{m}{E}\right)^{2} \geqslant 0
\end{align*}
$$

Noting thet

$$
\begin{equation*}
\int \rho^{2} d \Omega=\frac{4}{3} \pi \rho^{2}, \int \rho^{4} d \Omega=\frac{4}{5} \$ \rho^{4} \tag{3}
\end{equation*}
$$

we find

$$
M=\frac{1}{4 \pi} \iint_{\rho}\left(\frac{\partial U^{*}}{\partial \rho_{y}} \frac{\partial u}{\partial \rho_{2}}\right) d \Omega=\left\{\begin{array}{l}
\frac{1}{4 m^{2}} ; \rho<m c \tag{4}\\
\frac{1}{3} \frac{1}{\rho^{2}} ; p>m \in
\end{array}\right.
$$

or

$$
A\left(5, \frac{m}{p_{0}}\right)=\left\{\begin{array}{l}
\frac{1}{4 m^{2}} ; \xi \ll \frac{m}{p_{0}} \tag{5}\\
\frac{1}{4 m^{2}} \frac{4}{3} \frac{m^{2}}{1 \rho^{2}} \frac{1}{5} ; \xi>\frac{m}{p^{0}}
\end{array}\right.
$$

The integral of $M(\xi)$ is of the form

$$
T_{2}\left(\frac{m}{p^{0}}\right)=\int_{0}^{\infty} / 2 / 5 / \operatorname{l}^{2} \xi^{2} d \xi M\left(\xi, \frac{m}{\rho^{0}}\right)
$$

This integral tends to zero at $\frac{m}{\rho^{0}} \rightarrow 0$ since the region where $M(f)=\frac{1}{4 m^{2}}$ reduoes as $\frac{m}{p^{0}}$ decreases. At $\frac{m}{\rho^{0}} \rightarrow \infty$ it is finite and equal to $\frac{1}{4 m^{2}}$.

APPENDIX 4

Let us oonsider the connection between the wave function representing the state looalized about the point $X=x^{\prime}$ and the $\delta-$ function. We dencte this funotion by $\mathcal{H}_{x}(x, e)$ where $L i \simeq \frac{1}{10}$. It can be of the form

$$
\begin{equation*}
\mathscr{F}_{x},(x, a) \simeq e^{-\frac{(x-x)^{2}}{2 a^{2}}} \tag{7}
\end{equation*}
$$

Mh1s function leads to $\overline{\left(x^{\prime}-x^{\prime}\right)^{2}}=c^{2}$ so that at $\langle i \rightarrow c|, x \times y^{2} \rightarrow 4$ the function $\mathcal{F}_{x} \cdot(x, a) / \sqrt{\alpha} \cdot$ has a limit $\delta(x \cdot x i /$ at $\langle t \rightarrow 0$

$$
\begin{equation*}
{\underset{x}{x}}^{\psi_{a \rightarrow 0}(x, a) / \sqrt{a}} \rightarrow \mathscr{L}_{x}(x)=f\left(x^{2}-x\right) \tag{8}
\end{equation*}
$$

Therefore
$x V_{x}(x, a)=x^{\prime} \psi_{i}(x, a)+\sqrt{k}\left(\frac{x}{a}-x \cdot \frac{\frac{4}{x} \cdot(x, a)}{\sqrt{a}}\right]$.
The last term tends to zero at $Q \rightarrow O$ owing to (8) and the relation $\left(x-x^{\prime}\right) \sigma\left(x-x^{\prime}\right)=0$.
A. Usually the Fourier representation for the scalar field is $\rho(x, 0)=e^{-\frac{e^{2} x^{2}}{2}} \frac{\left|c_{1}\right|^{2}}{\omega_{1}}\left\{1+\left\lvert\, \frac{c_{2}}{c_{1}} / \cos (\Delta \vec{R} \vec{x}+\varphi)\right.\right\}$.
written in the form

$$
\begin{align*}
& \text { written in the form } \tag{5}\\
& \varphi(x)=\int \frac{\left(\langle\vec{k}) e^{i k x}\right.}{\eta L i} d^{3} k=\int \frac{c(\vec{k})}{\sqrt{2 \omega^{\prime}}} U_{k}(x) d^{3} k=\int A(\vec{k}) U_{R}(x) d^{3} k(1)
\end{align*}
$$

$A(\vec{K})$ in contrast to $C(\vec{K})$ is not a scalar.
β The fact that the quantity $\rho(\vec{x}, t /$ is non-definite is seen
ffom the following, example. We put
$\frac{C(\vec{K})}{L_{1}}=\frac{c_{1} e^{-\frac{\left(\overrightarrow{k_{2}}-\overrightarrow{k_{1}}\right)^{2}}{2 \sigma^{2}}}}{a^{1}}+\frac{c_{2} e^{-\frac{\left(\vec{K}-\overrightarrow{k_{2}}\right)^{2}}{2 \theta^{2}}}}{u^{3}}$.
We find $\rho(\vec{x}, c)$
$f(x)=c_{1} \int \frac{\rho^{-\frac{\left(\vec{k}-\vec{k}_{1}\right)^{2}}{2 e^{2}}+i \vec{k} \vec{x}}}{c^{2}} d^{3} k+c_{2} \int \frac{e^{-\frac{\left(\vec{k}-\vec{k}_{2}\right)^{2}}{2 b^{2}}+i \vec{R} \vec{x}}}{\omega} d^{3} k$.
For simplicity we assume that $\mid \overrightarrow{K_{1}}-\overrightarrow{K_{2}} / \gg \boldsymbol{C}$.
Further
$\Omega \vec{\varphi}=p_{1}^{*} e^{-\frac{e^{2} x^{2}}{2}-i \vec{k} \vec{x}}+c_{2}^{*} e^{-\frac{p^{2} x^{2}}{2}-i \overrightarrow{k_{2}} \vec{x}}$
From here
$\rho(\vec{x}, c)=\frac{1}{2}\left(\Omega \bar{\varphi} \varphi+\bar{\varphi}^{\prime} \Omega \varphi\right)=e^{-\sigma^{2} x^{2}}\left(\frac{\left.1 e_{1}\right)^{2}}{\omega_{1}}+\right.$
$\left.+\frac{\mid c_{1} c_{i}^{\prime}}{\omega_{1}} c_{0,}(\Delta \vec{k} \vec{x}+\varphi)+\frac{\left(c_{1} c_{c} \mid\right.}{\omega_{2}} c_{c_{0}}(\Delta \vec{k} \vec{x}+\varphi)+\frac{\left|c_{y}\right|^{2}}{\omega_{y}}\right]$,
where $\varphi=$ azgy $\frac{c_{i}}{c_{i}}$. Now we be.11eve that $\omega_{2} \gg \omega_{1},\left|c_{1}\right|,\left|c_{2}\right|$ are comparable. Then

It is seen that if $/ \frac{C_{2}}{C_{1}} />/$ then $\rho(\vec{X}, O /$ periodioally changes the sign.

The density is in this case not too strongly localized
(it was assumed that b is small) and in any case the quantity $\Delta x^{2}=\frac{1}{6^{2}} \quad$ is by no means connected with the Compton wave-length $\frac{1}{m} c^{\circ}$

c. Negative Values of $\overline{\Delta Z^{2}}$

Now we turn to the one-dimensional case. Eq.(16)' reads now

$$
\overline{\Delta Z^{2}}=\int_{-\infty}^{+\infty}\left[\left(\frac{\partial A^{2}}{\partial x^{2}}-\frac{1}{4} A^{2} \frac{k^{2}}{\omega^{4}}\right] d x\right.
$$

We put $A=1$ for $\quad \omega=\sqrt{N^{2}+1}<\Omega \gg /$

$$
A=e^{-a^{2} / 2}(\omega-\Omega)^{2} \quad \omega>S
$$

(the partiole mass is taken to be unity). Going over to the integration over $C \mathcal{D}$ wet

$$
\begin{equation*}
\frac{1}{2} \overline{\Delta y^{2}}=\left(e^{\infty} a^{2}\left(\omega-\omega^{2}\right)^{2}\left(\omega-a^{4}\right)^{2}\left(1-\frac{1}{\omega^{2}}\right)^{1 / 2} d \omega-\right. \tag{7}
\end{equation*}
$$

$-\frac{1}{4} /\left(1-\frac{1}{\omega^{2}}\right)^{1 / 2} \frac{d c^{2}}{\omega^{2}}-\frac{1}{4} /\left(1-\frac{m^{2}}{\omega^{2}}\right)^{1 / 2} e^{-\sigma^{2}}\left(\omega-\frac{\omega^{2}}{2} \frac{d \omega}{\omega^{2}}\right.$.
It is sufficient to consider two first integrals.
Assuming $a(\omega-\Omega)=\xi$ we find that the first integral will be of the order a and the second one is simply calculated and for $S \gg \quad$ is $-/ / 4\left(\frac{\pi}{4}\right)=-\frac{\sqrt{F}}{6}$ the third integral is far smaller.

At $a \ll \frac{\pi}{16}, \overline{\Delta \cdot z^{2}} \approx-\frac{\pi}{8} \frac{\hbar^{2}}{m^{2} c^{2}}$ - In the cass of
three dimensions, under the normalization oondition (15) we have not suooeeded in finding an example with $\overline{\Delta z^{2}}<0$.

APPENDIX 6

Let us oonsider a relativistic packet desoribed by the fiela $\varphi(x, t)$ $\bar{\varphi}(\vec{x}, t)=\int \frac{c(\vec{k})}{a} e^{i(\vec{x} \vec{x}-\omega \dot{t})} d^{3} k$

$$
\begin{equation*}
\left\langle\frac{\partial \varphi^{*}(\vec{x}, t)}{\partial t}=\int c^{*}(\vec{k}) e^{-i(\vec{k} \vec{x}-\omega t)} d^{3} k\right. \tag{1}
\end{equation*}
$$

The density $\rho(\vec{x}, t)$ is determined by the expression

$$
\left.\rho(x, t)=\frac{i}{2} / \varphi \frac{\partial \varphi}{\partial t}-\varphi \frac{\partial \varphi}{\partial t}\right)
$$

The localization will be strong if φ or $\frac{\partial \varphi}{\partial t}$ are strongly
localized, We choose $C(k)$ in the form

$$
\begin{equation*}
c(k)=N e^{-\frac{\left(\vec{R}-\overrightarrow{R_{l}}\right)^{2}}{2 e^{2}},} \tag{4}
\end{equation*}
$$

where $\mathcal{N}=\frac{1}{\sqrt{8^{3}}}$. Then

$$
\begin{align*}
\frac{\partial \varphi(x, t)}{\partial t} & =-i N \int e-\frac{\left(k-k_{1}\right)^{2}}{2 b^{2}}+i k x \tag{5}\\
& \cong d^{3} k= \\
& \frac{e^{-} \cdot \frac{x^{2}}{2 a^{2}}}{2 a}
\end{align*}
$$

where $a \sim \frac{1}{6}$. At $Q \rightarrow 0$ this function is arbitrary strongly localized about $x=0$. The conneotion of such a function with the δ Punction was considered in Appendix 4.

APPENDIX 7

We calculate the spreading of a relativistio packet, starting from its representation in the form ($(I) A p p .6$) and taike $C(K)$ in the form ((4)App.6). If b is not too large then the field $\varphi(\vec{x},+)$ can be represented in the form

$$
\begin{equation*}
\varphi(x, t)=\frac{\mathcal{N}}{\omega_{1}} e^{i(\vec{k} \vec{x}-\omega t)} I(\vec{x},+1) \tag{1}
\end{equation*}
$$

$$
I(\vec{x}, t)=\int e^{-\frac{\left(\vec{k}-\vec{k}_{1}\right)}{2 p^{2}}+i\left(\vec{x}-\overrightarrow{x_{1}}, \vec{x}\right)-i\left(\omega-\omega_{0}\right) t} d t^{3} k
$$

For definiteness we put $\vec{k}_{1}=\left(k_{x_{1}}, 0,0\right)$.
Then
$\omega-\omega_{1}=\frac{k_{x}}{\omega_{1} q_{x}}+\frac{1}{2 \omega_{1}}\left(q_{x}^{2}+q_{y}^{2}+q_{x}^{2}\right)-\frac{1}{2} \frac{k_{x_{1}}^{2}}{\omega_{1}^{3}} q_{x}^{2}$,
where $q=K-K$, A simple oalculation yields
$I(x, t)=A(t) e^{i \alpha(x, t)-\frac{(x-y, t)^{2}}{2 \Delta_{n}^{2}(t)}-\frac{y^{p}+z^{2}}{2 \Delta_{L}^{\varepsilon}(t)}}$,
where $A(t)$ is a slowly ohanging quantity $\alpha \quad$ is a real number and the quantities $\Delta_{11}^{2}(t)$ and $\Delta_{f}^{2}(t)$ are

$$
\begin{align*}
& \Delta_{1 \prime}^{2}(t)=\frac{1}{b^{2}}+\frac{b^{2} m^{4}}{w^{6}} t^{2} \tag{5}\\
& \Delta_{1}^{2}(t)=\frac{1}{b^{2}}+\frac{e^{2}}{w^{2}} t^{2} \tag{5}
\end{align*}
$$

Putting $\frac{1}{b^{2}}=\Delta^{2} / c /$ these formulas oan be rewritten in the form

$$
\begin{equation*}
\Delta_{i \prime}^{2}(t)=\Delta^{2}(0)+\frac{t^{2}}{\Delta^{2}(c)} \frac{m^{4}}{E^{4}} 2^{2} t^{2} \tag{6}
\end{equation*}
$$

$$
\begin{equation*}
\Delta_{1}^{2}(t)=\Delta^{2}(0)+\frac{\lambda^{2}}{\Delta^{2}(0)} V^{2} t^{2} \tag{6}
\end{equation*}
$$

Here $\lambda=\frac{\hbar}{\rho}$ is the particle momentum $V=\frac{\rho}{E}$ is its velocity. From the first formula it is seen that for $m=0$ the wave packet does not spread in the longitudinal direction as it must be for particles without rest mass (in this oase there is no dispersion of the de Broglie waves). The formulas for $\Delta_{\mathcal{L}}^{\ell}(t)$ can be also derived from the diffraction theors. The increase of the beam width due to the diffraction is determined by the multiplier 3,

$$
\begin{equation*}
\sim e^{-\frac{a^{2}}{x^{2}} \sin ^{2} 2} \tag{7}
\end{equation*}
$$

where c is the diameter of the diaphragn orifice t is the wave length, ϑ is the angle defining the beam width. The width $\rho=\operatorname{RH}_{\text {mia }}$ where $R=v$ 'is the distance to the diaphragm. Therefore
$\sim e^{-\frac{a^{2}}{t^{2}} \sin ^{2} \theta} \simeq e^{-\frac{a^{2}}{t^{2}} \frac{\rho^{2}}{v^{2} t^{2}}} \simeq e^{-\frac{\rho^{2}}{\Delta^{2}}}$
so that

$$
\begin{equation*}
\Delta_{\rho}^{2}=\frac{t^{2}}{t^{2}} V^{2} t^{2} \tag{9}
\end{equation*}
$$

according to eq. (6) for Δ_{\perp}^{2}.
This formula can be also represented in the alternative form

$$
\begin{equation*}
\Delta_{\rho}^{2}=\frac{\Lambda_{0}^{2}}{a^{2}}\left(\frac{m}{E}\right)^{2} c^{2} t^{2} \tag{10}
\end{equation*}
$$

where $\Lambda_{0}=\frac{\hbar}{m c}$. In this formula the multiplier $\frac{m}{E}$ characterizing the dalay of the clock is olearly seen.
1.W. Heisenberg, Zs.fur Phys., 120, 513 (1962).
2.Н.Н.Боголрбов, Д.В.山ирков, Введение в теорир євантованных полеи, М-Л., 1957.
3.S.Tomonaga, Progr.Theor. Phys., 1, 27 (1946).
4. Меддународная зимняя мкола теоретическои физики при

Объединенном институте ядерных исследовании, т.3, Дубна,1964.
5.D.I.Blokhintsev, G.I.Kolerov, Nuovo Cim., V. 34, 163 (1964).
6.Физика высоких энергй и теория элементарних частиц, Наукова дуика, 1966.
7.D.I. Blokhintsev, G.I.Kolerov, Nuovo Cim., 44, N. 4 (1966). 8.D.I. Blokhintsev, Phys.Lett., V.12, N. 3 (1964).

Heceived by Publishing Departinent on April 21, 1967.

Fig.1. The wave packets \mathbb{C}_{1} and \mathbb{C}_{2} are formed at the time $t=-T$ moment by means of the diaphragms A and $B ; \quad S^{\prime}$ is the zone of collision at $t=0 ; U_{2}^{\prime}$ and U_{1}^{\prime} are the same packets at $t=+T$, but somewhat spreaded.

Fig. 2. An example of location of the primary wave packets U_{1} and. U_{2} for which the macroscopic causality is valid $B_{1} A_{1}, B_{1}$ and $A_{2} U_{2} B_{2}$ are the light cones.

Added in Proof
page 25 , formula (14) should read as

$$
R^{2}=\left[2(k n)^{2}-5^{2}\right]
$$

page 26 , formula (15) should read

$$
R^{2}=\xi_{1}^{2}+\xi_{2}^{2}+\xi_{3}^{2}+\xi_{4}^{2}
$$

page 26, dine seven instead of space region " $\sim \alpha^{3}$) read "space time region" ($\left.\sim a^{4}\right)^{\prime \prime}$
page 26 , line $19,2 \mathrm{l}$ instead of $\left(\sim \alpha^{3}\right)$ read $\left(\sim \alpha^{v}\right)$
page 27, line 2 instead of "space region" read "space time region"; instead of a^{3}, read at"
page 27, line 4, instead of "is violated" read"is not violated".
page 27, formula (18) should read as

$$
R^{2}=\left[2(q n)^{2}-q^{2}\right]
$$

[^0]: x Here we do not consider long-range interaotions, like the Coulomb one, where $\tau \quad$ is an indefinite quantity.

[^1]: This fact is not connected with the acausalitz considered by us: in the usual local theorz the scattering matrix also depends on the total momentum of all the particles involved in the reaotion and when one of them is removed apart the corresponding matrix element tends to zero.

