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Chapter I 

S-Matrix 

1. In~roductiog 

Ill 
In 1942 w.Beisenberg suggested his famous program of 

development of quantum field theory which was based on the idea 

to describe the elementary phenomena by means of the S-matr1x, 

instead of the wave function. 

The programm has not lost its importance in further 

d·evelopment of theoretical and experimental physics. De facto 

methods based on the concept of wave function gave explicit 

metnods well before those based on the investigation of the S

matrix analytical properties. 

The death of the wave function seems to be obvious. However, 

it is too early to rejoice at this fact because the S-matrix 

apparatus has no continuation to the region of small intervals, 

to the very heart of elementary events. 

Theoretical schemes working only with the S-matrix resemble 

a factory where there are only two departments: the department 

for reception of raw material and the department for packing 

finished articles; whereas, the department for proces~ing raw 

material is absent. 

Analytic continuation of the S-matrix from the mass and 

energy surface allows us to look a little into this processing 

department, into the "very production". But the analytic 

continuation methods are not able to give a complete picture 

of the physical phenomena in the world of elementary particles. 

J 
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We realize that our present-day possibilities are very 

restricted, but there are two facts which speak in favour of 

the S-matriX methods; 

a) There is, as yet, no one physical phenomenon in the 

world of elementary particles and in their interaction which could 

not be described in terms of the S-matrix. 

b) The S-matrix may belong, at least formally, to the 

observables. 

c) Therefore, we have every reason to consider the S-matrix 

as a theoretical construction which will conserve its importance 

in future theory. 

In the light of such an aspect the investigation of the S-matriX 

is a rather reasonable trend in theoretical physics. 

2. Main Properties of the S-Matrix 

The most important properties of the 3-matrix which are expected 

to be kept in future theory are the following: .5"== I""' 'T 

1) The unitarity of the S-matrix: 
,. 

S'SV = E. 
(1) 

This requirement leads to physically transparent relations, such as 

"optical theorem n, which show the .Jenne otion between various 

processes, namely, putting .f'=l+iT , we have from (1) 

.2 :hn z:"' =frr% .. = ~/?;/'!~. 
(2) 

4 

These relations follow from the unitarity condition. 

2) The relativistic iuvarianoe of the S-matrix. This requirement 

may be written in the form 

~J"I!-) = V.J"IA-'f.)V-'=J"II/. 
J 

where tf are the dynamical variables transforming under the 

L
0
rentz transformation ~ 

P;= A1-
' 

V( -'1/is the unitary matrix of this transformation. 

The relativistic invarianoe may be violated only if future 

theory will be based on a geometry different from the Einstein

Minkovsky geometry. 

J) Finally, the causality of the S-matrix. 

In the method working with the wave function, ~ from the 

Sohrodinger equation 

W!x) iV' 
follows the 

[W(.r}~ W(:t)} = o , 

(J) 

(J) 

(4) 

(5) 

for f.r-¥f"< 0 ( i.e. for the space-like interval). As far as the 

interaction energy W is a local function of the fields ~IX/ 

then the condition (5) obeys the requirement 

/$1f'lxJ ~(x)]=O 
' ' (6 ) 
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~~~-<1 -~'., 'el' lJ ~ ..... 

for (X-)' J .t < 0 . This is the microcau!!YJ:!z condition. 

This condition m83 be also extended to the S-matrix, if the 

latter is considered as a functional of the local field ~/x) 

~z.Y/1/rx.J.J . 

Then the microcausality ~ be formulated in the form: 

for 

$-if 

J'P/x.Jd"Yl/Y) .)'_, -o' 
tX·-.¥)~" 0 C~.l . 
Here we consider in detail only the third requirement 

imposed on the S-matrix, the requirement of causality. 

This is explained by the fact that the assumption on the 

existence of local fields appears to be the most weak point of 

current theory. 

J. C~u~ality_and the S-matr~ 

(7) 

(a) 

Our task is to formulate the requirements of causality 

directly imposed on the S-matrix without recourse to the concept of 

field. 

At first sight, such a formulation of the problem has the 

following unavailable contradition. The S-matrix transforms the 

state ~ given at 

studied at ~ = r oo 

t' =- oc:> 
/ 

... 
~d=s~ 

6 

into the state ~~ 

(9) 

These states are not localized in thespace-time and therefore 

there are no preconditions for the formulation of a causal oonnec-

tion. 

This fact may be also formulated as follows: the S-matrix is 

d~fined in the space of momeptum- energy variables, in the man,y-
,/~J l41 

dimensional Lobachevsky space v.r'/7 (see Appendix !),whereas for the 

description of the causal connection, the space-time variable defi

ned in the many-dimensional Minkovsky space is needed. 

Owing to this fact causality may be formulated in the language 

of the S-matrix with hat degree of definiteness which is compatible 

with the possibility of using simultaneously both spaces J'ii(P) 

and ~(~). As applied to the 5-matrix, causality is, therefore, 

called by us macroscopic causality since it is just in macroscopic 

physics that the space t??f;:.x) = t/?{P)K~{.x) 
may be used. 

Our next problems are: I. to establish neoessar,y preconditions 

for the formulation of maorooausality conditions, and then 2) to 

formulate the conditions of miorocausality. 

Now we turn to the first precondition, without whiCh further 

analysis is impossible. 

4. Space-Time Description and the S-Matrix 

The S- matrix transforms the states specified at ~, = - 0""' 

in the state at t., = + oO • What does the limit :t' 00 

means here? 

7 
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The answer is the following: if the time of o~llision ( time of 

particle interaction) is ~ • and T is a long time interT&J. 

then in th.e S-matrix theory T should be assumed· to be 1nf1n1te;L;r 
. l.t 

long interval, provided that ~ is kept to be finite and('~ 
is neglected as being an infinitely small value, consequently, 

)Cs;'1 &I.J we neglect the remainder x 0 t;,.,/ .' 

- z 
-!:_ >'> ...L. 
T 'r" 

(10) 

This requirement may be expressed in the language of distance. If 

~ is the relative velocity of particles then the distance 

between them, corresponding to the time interval T, will beAP·~~ 
Hence, we keep the quantities of the order ~ 

R where « 
is a certain length ( " radius of 

and neglect the quantities of the 
sphere action", see appendix), 

a.l ,f ~e J orderif (the remainder Of j;/); 

~ >> .!!...~ 
~ R.t, 

Thus we may operate with finite time intervals 

~.~-r and ~ =r- 7'. 

·--------------------
x)Here we do not consider long-range interactions, like 

is an indefinite quantity. 
CoUlomb one, where r 

8 

I 

(10) 

(11) 

the 

if only the condition (10) ( or (10~ ) will be fulfilled. 

Restricting ourselves to finite time intervals, we consider the 

possibility of description of a collision process by means of 

packets localized in space and time. 

To this end, in the next section, we will consider relativistic 

wave packets and formulate the conditions of macroscopic causality, 

using these packets. 

qhaJlter II 

The Wave Packets 

.5. Formulation of the Problem 

The scattering matrix S for real "inn -and "out" states 

should obey certain causality conditions. However, these condit

ions may be formulated only if "in" states are given in the 

form of localized wave packets instead of plane waves. 

In this connection it is necessary to consider possibilities 

of construction of narrow wave packets for relativistic particles, 

which do not spread essentially during the time r• ~much longer 

than during the collision time ~ ( here ~ is the distance 

between wave packets, and tr -their relative velocity). 

Thus, we are looking for wave packets which satisfy the 

conditions: 

R ~>a >> >:. 

( x the typical wave length, ..1 is the dimension of wave 

packets, R the distance between them) and 

I 4tr/-tJ(~r)/ <.< LJ(-r/ 

9 
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1'he smaller is the wave length .t the more precise are the 

conditionsfor_the formulation of macroscopic causality for the 

S-matrix. 

The matter is that in many papers devo,ed to the problem 

of the relativistic particle localization it is asserted that a 

spinor particle cannot be exactly localized since the states of 

positive energy do not form a complete set of functions. Therefore the 

eigenfunction all'~· -~;/of the coordinate operator Jf oannot 

be expanded in the eigenfunctions corresponding only to positive 

enerr;y states. 

'J.'he same is related to spinless particles obeying the Klein 

equation. 

'!le shall show that if quadratically integrable wave packets 

are used instead of the cr function then particles can be 

localized in positive energy states with any degree of accuracy. 

6.~~ 

Firstly, we consider the case of Dirac particles. Let us 

take one-particle state, represented by a quadratically integrab-

le wave function: _ ~f;;X- [r:j 
~f.~~ c, o~.)-= /crJ;'Ju r·~ a()e «'i' ,) 

where 
---~ ~ 

E, '~'" /mt f_/) t( (.P, ot)- Dirac spinor, and / 

·~/~ C/PJ/ (d~;J -=/ , 

.-.I' ~ 
.)/) tt (t' "'./ 

Now ~e calculate the mean square value of a coordinate, for 

inst~nce, of -~ • Assuming that at t=O, ~ =0 we have obtained 

lO 

(2) 

(J) 

(4) 

after simple calculations:. 

L1Z ... = r -j) t?cr~-; ;.tp~? + /;t:"/1'.//.e.fJ. / 1« * e9u)t1?~ c,) 
prj, / "/' v-1- P~ 

The last term is characteristic of the relativistic case. 

Now we represent C' / 1'/ in the form: 

r (P) = /t'i/ ~~" /-- ~ , 
I I _,t) 

where .1' I) is the quanti t,y desori bing the momentum dispersion 

in the considered state: 

A p_" :::c pi 
. ¥ 

The first i~tegral in eq. (5) gives: 

.!. : /j _j£/.l~Zp =:::= Ji_ 
1 / r J1- l'o.;. 

The second integral is -!t = ~~ /f/f.t)/" .t'1tll'l ~ (.1) 

where 

~ (IJ =/.n (~« * ~ tl) ty'Q 
1' d~ ;~ 9Yf 

I 

and.,//();/ is equal to 

....L. 

I fHI.t 1 

//'f/ = ¥ -~ _f_ t "''> ::. v«rJ _L_ T ,.,. • .1" ' 
1-111.2 

l'<< ~" 

(See Appendix J), 

II 

• 

(5) 

(7) 

(e) 

(e)' 

(e)• 

(9) 



Therefore we have that at t•O 
-- h.t . ;S"' 

A ~ .L = at .t1 p .t + j1 -;;;;7;i 
.# 

1f A ~.t.<<mle~. For ~ ~:' >>.ln~C'~ we have 

-- / ~~ 
Ll .c~ = o( ~ , ' 

4 .P_.,.. 

where,.//? .t' are of the order of unity. It is well seen that 

(10) 

(loS 

/r/ ~.y 

although in eq. (10) an additional term ~lc~ appears as if point-

ing out that the Dirac particle cannot be localized more exactly 
li 

than within Ail"'me but, in fact, it is of no importance since at 

P .z I 
ll 1 - ~ eq. (10) transforms into eq. (10 ) • 

Notice however that at A ~.t- ~ the considered state is not 

described by the function: 

Jj,(<J = Jf,r-~;J (11) 

since this function is not quadratically integrable but the consi

dered state is described by quadratically integrable functions. This 

quadratically integrable function -~,(-";~localized about J •i!', 

is related to the function (ll) as follows: 

~ '1,;, (.r, .Po; c: ~' ¥;,, {~ I''+ A (z- .z-/ .P <>) 
(12) 

A f.e--~'P7 = ~ovr .?-¥1 ~, r ~ Po,//1""4} 
(lb 

in this case 

~ (~ 1'//p·~ - J'(~-~ .. ) 

I2 

I 

I 

at .P~-.-. Therefore if the function~{¥/ is considered as an 

"ideal" eigenfunction of the operator of the coordinate ~ 

then the function J';r~ .P/approximates it so that Ll(¥-~/ .P'J.- o 
c 

at ~-- ( see Appendix 4). 

l.L..]~ 

Now we turn to the spinless particles, and consider again one-

particle state. The field ~/'~,/may be represented in the form: 

P/x/=_/..p/"..,./t{.,r~.Ja/.:IA' ~ =.e"·.~r~' 
" j/W" 

(lJ) 

where A' X ~ A' .X- ~ ~ w ::: + v 
' r.-

( see Appendix 5) • 

The density ,/f:k.) is 

_/'(xJ = ,/ f Q y::;"~ + JP ".Q t,P_/)' Q;:: + T..:n.,- v.t (14) 

and, generally speaking, is non-definite even for positive-energy 

states C..:J = /" ,t??-l + K.f • 

In this case it is also impossible to represent the 

ion as a superposition of waves t{- with C<.J > 0 

$- funct-

Now let us consider localized states with integrable density~ • 

We calculate the quantity ,rl. at e-o under the condition: 

.Pr x.J ,l'..l.x = .I . (15) 

We have 

~~ _,. ?" = -t~<'.z(j; P"P + $1? ~ Jt!'j~.J.x. 
(16) 

After simple calculations we find that: 

z.t :::- t;;JP 1 ~"K- ! //.H'I~ ;If"/ «' ... *' :7"/ iJK.r f //" .0 ~ , 
(16) 

IJ 



.._. 
This expression_ is non-definite, therefore the density ,P{X/)) 

cannot be treated as a density of &n7 probability. 

It might be expected that such ~omalies• in the bahaTiour 

of ./'(XJ arise only when the density .;PI'.XJ is concentrated within 
/i /.1 X ...._ _,; .But this not is the oase,Pfx) may as~ume negative 

.1i values also when LJ X._ -:--- ( see AppendiX 5B and 5C ). Tald.ng A 
/71(! 

in the form 

fi(/c/ =A'fw) = y /:;: J ~~ , 4}{ = t tv.. I 

we find 

..?'~ = .L ;;-1,/"~- ...L_ ~~/q r~<"-'~ 
c.v.r /L' f' .l'.t./ J / .fj.t 

0 

(16) 

.J'>,N 
It is not ·difficult to choose such function ~ that#,~ ~;l/:1/ftiJ 
Then it is seen, that at tV"--, ~.1. =0 and we come to the 

state with a well localized density, i.e. density which at t•O is 

concentrated within an arbitrary small region A Z- t!; -- 0 

( see Appendix 5). 

Thus, as far as the possibility of localization concerns, the 

situation is quite similar to that which takes place fer the Dirac 

Jlarticle, however, the ,I'( X, t)tor spinless particle might not be 

interpreted as the density of the probability to detect the 
·~ 

particle near the point ~ at time t. 

The quantity_? IX: t) should be considered as a purely •field" 

quantity representing a spinless particle in space-time. 

I4 

8. Spread of Wave Packets 

Now we consider the bahaviour of relativistic wave·paokets 

in the course of time. All the above discussed states localized 

at t•O are spreading: the quantities ~ x.l, ~ yL, A z~ increase. 

However, this increase is such that under certain conditions it 

may be said that the relativistic packet is moving during a 

rather long time T conserving its characteristic size. 

In other words, the change in the packet size during time T 

may be ~1 as compared with its initial size even for long time 

intervals. Here a long time interval implies such interval that 

.A'= eT>> Ax, A )j .0.¥, where A% J .d ~A X are taken at t•O, C 

is the velocity of light. 

It is easy to show that the packet width .t1 u measured in 

the direction parallel to the packet motion increase with t 

according to the law: 

.d .t (t) = LJ.t( ") + ..:t._ m ~" 1/ .tt'.t 
II II 4:/o) C-1' 

and the width LJ..L measured in the direction perpendicular to 

the packet motion increases according to the law 

(17) 

~; (~!-)- LJ.: (o/.,;. ,,;i (o) 1r ~e ~-=A}!")+; ~.t Afft~J ~ .t p.<_11S 

Here .l is the particle wave length, 1/ .. :: is the packet 

velocity, m :is the particle rest mass, LJ~/tJ/:1s the value 

of A-l(~ at t=O ( see Appendix 7). From these equations it follow

ing that 

/ .4"(~) --~~)I<< I 
AlfpJ 

I5 
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if 

A'=ct <:: 
A <to/ 
;t 

Now we come backto the conditions (1)}(1
1

) and combine them with 

the result (1 ). We find the inequalities: 

~ .dy >R:>>~>>:t (19) 

which can be realized for a:ny t' under the condition that~- 0 

( i.e. v--e ). 
This important condition of a possible long existence of a 

localized relativistic packet is exclusively the result of the 

relativistic effect: increase of the particle mass with increasing 

velocity. Thus we see that the present day theory in a formal way 

( because there is no practical way to construct arbitrary narrow s 

split) permits the onepart1cle states which are localized in space 
At 

with any degree of accuracy ..d- () for the time intervals T< ..ll' ·-..-

( at k-?C' ). This gives the possibility to formulate conditions of 

macroscopic causality directly for S-matrix, taken on the mass- and 
[6 ¥] 

energy surfaces. ' 

Ch&,t!Llli 

Condition_gf Macroscopic Causal!!l 

9, Description of Collisions by Wave Packets 

In the foregoing we have shown that possibility of construc

ting the wave packets which keep their dimensions during the 

time 'r= ~v- ( v-- is the relative velocity of packets, 

If- is the distance between packets). The condition which restricts 

the distance R reads 

L12 
- >> R >> A >>A" 
i:. 

!6 

(1) 

where A ·- is the dimention of the wave packet. Under these 

conditions the wave packet retains its dimensions during the time 
,R T,.,. v- and represents the state of a particle with the 

momentWII p "'" ~ localiZed in the region .1 • 

Fig.l shows the description of the particle collision q, 
· II 

wave packets. In a non-transparent screen ..JC ·x there are two 

diagrams A and B which are opened during a short time 't, "'- T 

so that there appear localized wave packets 

tt, (x,J and ~(X~) , removed apart at the distance AB-R. These 

packets are moving along the lines N_ tt, 1 
and ~ t<,', increasing 

I I 
in a certain degree their dimensions. The packets V, I'Z,J and «.tl'~l 

are the same packets in the time c" ::: r L 

When the condition (1) is fulfilled the dimensions of these 

packets little differ from those of the initial packets &(, 

and tl.,_ • 

In the region S the wave packets begin to interact between 

them. This region is a source of secondaries and scattered waves. 

Now we turn to mataematical description of the collision of 

these packets, using the S-matrix theory. We wri-

te the S-matrix in the form: 

< /-/ r;t.> = ,~. -k'-'J ~· d' _.I;; -J;J< ://7'/t), (2) 

where as usual ( i.) denote the quantum numbers of the in- state 

~ and (,;t J are those for the out-state is the total ¥; . 5; 
momentum in the in-state, ~ is the same quantity for the out

-state • The matrix element <':1/'i/i) can be represented in a more 

detailed form: 

I7 



<.t/rli). = ·<&&-/ __ ./t,.,II/1!. t;., ---P,> 
TL /',.:; .t ;:.,: --- .!~"' I 

(.3) 

where < ~- 1!., .. t; n I 1/,l!,, /}.. 1 ••. ~ > 
is the invariant function of the momenta -"! .P...,..,. If'; ~ ·, /',,;~; _ .. P/' 

I 

are their fourth components. Further 

.J: =- /,; ,.P;,._, + - -- .... .Pn.., 

P:o.,.p_ f----.,.p 
Vi /;1 h-1 1 

(4) 

(4j 

In what follows for the sake of simplioit7, we shall restrict 

ourselves to the simplest case of the collision of two scalar 

particles. In this case the in-state Jt;" is represented b7 two 

wave packets ~/:z;) and u; fx_,) of the above-considered t7pe. For 

the scalar particles these packets can be represented inhe form 

of the integrals: 

HI~"/-= h:Jk /j(,P/~.;t;p /;""~7 K~ 
('~~ :/v /;{'/ '/.tp•' ') (5) 

where / 0 = f-/P<~"/II.c • The wave function of the initial state 

in the momentum representation will be of the form: 
,., ... ,..,., ..... 

!(;(~f)= ''~ 11./ ti,(P,J 

I'.? I'.· Jl'" 
.(. I 

(6) 

From (J) (5) (6) we get : 

~~ (!},., t:,_,_ --· !}) ·= . R~Y,r 1/; -.J7/ .( 

< !/,, ;;,,.,, .. I; li/ I! J,>). ~ ~~ ·~ ;) tY1 1 «'jf 
X -------- tf I ---------"J----==~~-~---_-- tt_ I~ J , f, 

1
.--------

) .-? /'' 'I''' .II) ,. ... ; I? " 11 ~ 
IN < dl ·I - • • J -< ~ -t r 1 

(7) 

J8 

and for m•4 ( the elastic collision) 

~_, (~ ~) = ~ .. {~ /]) -k»l~·/t~~1 +/} ·!j-/J). 

<~~4//l/f1 > - / ... ~( ... , 17'~1-u'.lf!' 
7l /. ~r'1Jt/, /j'/ ,HI~~~~· 

(1,~, • ./,/! 0 <£1 <r~ "(' ;. :1' 
10. Space-Time Description 

(8) 

c~J 
Now we go over to the co-ordinate representation. For this we 

multipl7 the left-hand side of (8) b7 

I e~e fifi/.,Xm +~.,.x"n,.,-+ --- + IJX~J 1 , . -- -·-

m,o /!';., --· ./~• (.!_;,) ~(, -~) 

and integrate over tiJ~ tiJ/__,.:. t/";:. Further b7 (5) we express 

tl(7) in terms of u(x): 

~ "" -- tt(.r)Ne;t.. -/~~ 1c1Jx ,;/~) I f r. 
.t I"' (-!V~ , j• 

Then from (7) we get 

?~ (x"'~ .x ,_,. .. Is)= -(i;) ~;ijf.r,.., ... x,.._,, -- . .rj /X~x,) ~ 
Jt u.t { x,.l «, ( .x,) tY .t.x~ ~ .J .X, 

and in similar wa7 from (8) 

(5) 

(9) 

l!ut r.:r .. ~J = P!.r.r;, XjJ-f.,~ :ftr..¥j." .xj)~ .r,J~r.x:,/~/~JR'!r,d!¥,<9~ 

In this case we have 

t'J (X~ .X,.,, . _ X~ I Xj A:-,) '" Gf I ; 

.,. /c:r ~ 1!. "",_ .-: - - - -1- R · ,-1)_ - ,P J < ,.0,., /",.. -; -- - 1 I l/ /-?. ,o > " /" ,.,., ' 3 < ' I ; ""J I 

ttx,.o~'//1, .r,. + · ·- + -1 ~ -!%_ ~ -I! x,)/ ~J~ tP J;,.., -· "'-'/; 
• 0 "~() J,/.}IJ ~1', < ',.,.,- .• <r~ 

(10 ) 

I9 



or 

J (X, ..)£'- -, - - - .X_, I X~ .A:;) = y fJ
1
g.,(x ... .)(.,., ... .2J 1x< -¥,) 

~ ~ I ~· I J 

p~ ~~ (11) 

where ~~ is the invariant function of the co-ordinates 

J~ (x,.., X,...
11 

_ •• X 4 /X~ ,x,) = / E'fP, +fl,_,+ •-- .,_1-~ -f/)" 
(1'.. 1'.. P./I/P b>,.:x.-~/i(,t!_..r. +---+P.x-I?~·-P.:.:·)'a'J~d'J{.;·"'J.'(l2) 

Jfl
1 
,.11 _ •• J -t;,'; l''t''., ,., i J • < ' ''.1'./l'!lP,:.,--ll'.• 

We notice that due to the presence of the tf- function under the' 

integral in ! and I., these functions are translation-invariant and 

depend only on the difference of the variable .X,., X..,., __ . ·x . 
) I ' 

ll.Conditions of Macroscopic Ca~lity 

No~ we m~ formulate the principle of maorooausality: 

a) the wave packets «.,tx.,)(AJC<-t)and U,,l.r,/( tJ .X.~ ""~) 
removed apart at the distance 

/_c;-X,/= /X/ >l>>.t 

contribute to ~~ provided only that 

._xJ r ('ti -"t,).t- (~-X,}~>(') 

b) Further 1-t == 0 if the co-ordinates of the particles 

(lJ) 

(14) 

.:r, .JC"' -1 -- x. created in the collision lie out of the future light oone 
.I I ,} ~ 

with respect to the points ~ x, 
~ 

(x.J'-.x~ ;.e >c..? (.2$ -.-c;).t >o (15) 

Cs >~ tS' > t:, 
(155 

20 

J'-= m, m-t , . - · .1 • Thus the function j'/'.2",, .z-_ .1 _. -~ xstx<~ A;) 

must consequently vani.sh outside the above-mentioned space-time 

regions, however, only asymptotically, i.e. for 

R ·- oc:> ,~ ( t..r - t:,_ J / ( rs - t;. .;._,. .,..., (16) 

From the physical point of view these conditions are identical 

with the requirements of classical macroscopic causality and imply 

the assumption that all the particles in the final state ~~~ 

can be produced ( or change their state) later than the initial 

packets exchange the field quanta ( see Fig.2). 

The usual local theory satisfies, of course, the above 

stated requirement of maorooausality. 

This requirement will be satisfied also by any scattering matrix 

in which the miorooausality is violated only in a small localized 

space-time region. 
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12. Some Pr_operties of the Co-Ordinate Representat1onl71 

We represent the S-matrix in the form 

' ·• - -~ "'"" .r "'s . .rt '=:' c :- c- _t h 
~ J'/ ~ , 
J '" . 

where ?' is the phase operator. This operator is an Hermitian 

one .i ·~ r = i . 

The condition (2) provides the unitarity of the operator. In tke 

rna trix form, in the asymptotic space '/l.(p) eqs. (1) and (2) read: 
1 ,.,_ J' ~ 

<t-'!J'/r.) -= £ ~ <PI~J/1''.> 
J-=c J. 

<PI?/~·.> ~ < P/ ?Jr.)."' 

the clements <1'1.?/P)being of the form 

(1'/?Jt>'.) -= ,.~,. (.P-P:/ ?I"~ P'/ 
),t;:>o ___ ./,Pc' 

·-:1 . ....-- C)l /. , 
where J ~..c.: I', :1 ~..,:::: P are the total momenta in the initial and 

(1) 

(2) 

(l) 

(2~ 

(J) 

final states, The form (J) ensures the validity cfthe law of multi-

plication 

< IJI P '¥jp') -=-fil'/2 /I'~ e/4Jf.PY(P"'/2 i.P)' 
(4) 

22 

where d~/' « 4./(_,o/ - j ,PD 

is the volume element in the Lobachevsky•s spaoe 

~u= +/)' .. il+ml • 

(5) 

Now we consider the S-matrix in the co-ordinate space if?fx). 

" The mat:tix element ? is now written in the form 

<.){'lifx') = <x;j~'/.:e>: < x'ltJ.x> * 

The multiplication of this matrix is defined by the law: 

<.z-/l-LJ.;c') =/<~:/?/.k "/ alf "'/~-"-.X u:J If 

<x '"/?/.xr> d'"'.x "',./~· ,,.,. 
' 

where ~~is the positive-frequency singular function 

oZf""/~/ =/ :/'~:~t'T'~ j 

.;-" 0 ,_. / .;1'4! .,..hit 

This function has the property 

/ c<f ~~·-..S~J./ -1-= o2f jt'..t -~.J 0 

In the transition to the momentum representation 

/ 

L!) '_/J~ I jo '_xJ 
I C" _., ... ~ 

<I> I? I~·> = -- <.X/!/;%''> e t~.A.- d .x ' m-o ~ 

2J 

(6) 

(7) 

r (8) 

(9) 

(10) 



·--·· ··- .. .,.c --

this law of multiplication automatically reproduces the law of multi

plication in the Lobachevsky's space and returns us to the elements. 
" of the ~ matrix represented in the form (4). In this case the 

appearance of the function J' "/.?- .I'J ensuring the validity of the 

conservation law of the total momentum .F:LPf~~P'is due to the - ' 
translation invarianoe of the matrix elements. Owing to <.::t'f~/x·> 

the fact that the spaoe-time is homogeneous, these matrix elements 

are functions of only the differences of the variables ~ 

and X' • In view of the transformation (10) we note that the 
·1 

elements of the phase opera tor <X I 7/ .x > may have a spectral 

expansion going beyond the limits of the space J?(l') · 

For further consideration it is more convenient not 

to distinguish between the variables .X"' (X, .x, - -- X,....) 

related to the final state and the varia:t>les .X'= r~; .JC/- - .X"~) 
related to the initial state and denote all by 

.X==(..Xi X. ___ x_ X.rn,.., X~ ... t .. --...x..#)· 
' ._ J ,,, ~ ) ••• I 

The matrix element 

<~jh 1X ·) = J.(x X X ..:.t· --X ) 
(11) 

-~ /1 - (""" , , • J - .. , .J- - K J .,t,. 

will be the function of the differences .x-x ... "' 
In local theory microcausality is displayed by the appearance 

in this matrix element of definite singularities which are located 

on the light cones: 

( .z,. - xk) ~ = o 
(12) 

24 

or at the points 
..r, :;t~ 

(12) 

lJ. Acausal S-~ 

Instead of the local matrix (ll), we consider now a non-local 

acausal matrix in which the singularities characteristic of the 
--- [5.1 
local matrix are excluded completely or partially. This new matrix 

-1 

? is considered by us as a function of a four-dimensional time-

-like unit vector n, • We denote the elements of this matrix by 
1 

<xl~!x; n > = t (x,,x<,- xl .. x"' __ . .xN, lrj 
(lJ) 

nt=l • ' (lJ) 

We introduce the functions of the space point_;<>( J; n) 
by means of which we want to eliminate ( completely or partially) 

singularities characteristic of local theory. !' 

Basing on certain considerations which will be presented 

below we call these functions 11 nseudo-sources". --------
For the sake of definiteness, these functions are assumed 

to be the functions of the invariant x) 

x) 

.R .t =- ..t. I( fn)l- tl) .! L I . . 

This assumption is not, of course, obligatory. 
25 
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which, in the frame of reference where ~ =(i,o,o,o), degenerates 

in a three-dimensional sphere: 

R" = .t""*"-= .F.t+J.t+i.t • (15) 
, , J 

Thus, we suppose that 

_/)1'1, n) • //~ /, (16) 

where tt is a certain lenght characteristic of the scale 

of the space region (~ e.r -:J inside which oausalit;r is violated 

( it is assumed that the function 

tends to zero at ~ --+ e>a ) 

/ rather rapidl;r 

Suppose that the matrix element (II) has a singularit;r in the 

variable ~ -~~ ; we eliminate this singularit;r b;r averaging 

the element (II) over the function of the pseudo-source= 

f (..t; ~ --- x,. -Xx
1 

.. _ x,,, nj = 
' ' I 

-=fi/A:~,x< ,..t,. .. x, -.x,.-,;i -- .x...,.j_;O(J:n)«".; 
.C17) 

If the 

vertex of the light cone (Jr,·-Jr~JZ:Ois considered as a source of 

sineularity t~en the averaging (17)-means the 

replacement of the point source by the extended source 

which has the volume of the order of .... 0: 1 
• If the singularity 

is at the point (x, =-.X,. ) then this point is replaced by the 

volume "' ·t"c .I 

Thus the averaeing reduces to the replacement of the point 

sources by the extended ones; that is why we called the function 

26 

~1,1/-•pseudo-source•. When averaging miorooausalit;r is violated only 

in a small space region which is localized in tae volume a 3 

( which is, naturally, assumed to be small). Owing to this fact, 

macrooaus~is violate~ at all, by averaging (17). 

where 

Notice that the Fourier transform of the pseudo-source 

.fl(J;h) (16) is of the form 

.... - .1(1 ... ./ 
.fl(fl; n) = ?'( ~~) ,. 

R"".f-= .. //r9'nft-~'V . 

(18) 

(laS 

From (17) it is seen that the Fourier transform of the acausal 

matrix!/~~)(17) is simpl;r the product of the Fourier transform 

of the local matrix ll~(ll) and that of the pseudo-source (18): 

(P/lfh)/P:J-== </JI?/,#'.)~/9; n). r 
(19) 

Hence, it follows that if the Fourier transform of the matrix 

P f.x~ ?'"""( 1'/ is the Hermi tia.n matrix, then the Fourier transform 

of the matrix ?f~~h~ ?f"}'n) will be also Hermitia.nm provided that 

tne vector 11 either is indepednet of the vectors, or is their 

symrnctrical function. 
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The Hermitioity of the acausal phase 1111.tr1X lf ~h) .... 
provides the unitary of the acausal scattering matrix f (h)/ 

A 1 

.Yfn)= e i~rnJ . (20) 

Thus it is shown, that. one may construct the scattering matrix 

in which: a) microoausality is violated, but b) maorocausality 

and c) unitarity are satisfied. 

14. ~!..J!!Lthe Functions p(J, lzj 

Now we consider the problem of the choice l'l by means of 

which pseudo-sources ~(~ 11) were constructed. In principle, there 

are two possibilities: a) the vector It is not connected with 

the system of interacting particles. In this case we call the 

vector n external. The assumption about the existence of such 

an external vector single out with necessity some frame of 

reference ( or some frames of references) and thereby violate 

.... the usual interpretation of I·elativistic invariance. 

Such singled out frame of reference may turn outto be the 

physical vaccum system.[IJ We shall not discuss in what follows 

to what degree such assumptions are compatible with the known 

physical facts. In any case, the situation is not trivial, at all. 

It seems that only comparison of the results on colliding beams 

with those on fixed target may dear up these problems. 

b) Turn to the second possibility when the vector ~ is a 

function of the dynamical variables of the system of interesting 

particles ( their momenta). Now we call the vector h !a!~· 

28 

In this case we ·may totally conserve relativistic invarianoe in 

its usual interpretation. 

It is only causality that will be violated, and only in a 
s 

small space, of the order of tl which is connected with the 

interaction particle region. The most 

the internal vector is to identify it 

natural way of introducing 

with the total momentum ~ 

vector of the system more exactly, wih the unit vector .? ~: 

h = !ff. 
(21) 

This may be done because the S-mattix has no non-zero matrix 

elements between states with different total momentum J' 
./'~.?: A A I 

tJ'I S/?) ·= o . 

1 

The same relates to the ? matrix 

(JY{JF'J =o 
/ 

for fi=Jl' 

andf'' 
" 

(22) 

Moreover, if the matriX element PfX. .t;';.lAJis divideq. into complexes 

Vlith smaller number of variables: 

A(~·· .., X , j - .l ~'/-.· X J( j .. C 1, ;< < -" K .XK.,, J --" .)( .·'{' - "/ ( _,_, < -- K , . 
(2J) 

)( p '('..l'~ +/ XK,..l''--. x . ..,) 
' 

then such a complex in the momentum re~resentation ( due to trans -

lation invariance) has again no matrix elements with .?'# .?~'. 
29 
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Therefore ~he momentum P may be ascribed to the total matrix 

as well as to individual complexes /f~J,~7x~J1-t/etc. It is clear 

that if one or several particles of a complex are removed 

from the others at a large distance this complex vanishes 

for finite sphere of particle interaction). 

Therefore one should not think that the removed particle may 

affect the others only because its momentum is involved in the 

totalmmentum; when a particle is removed apart from the others, 

the corresponding matrix element must tend to zero x) • Thus, 

in eq. (19) the vector It may be associated with the total 

momentum of the system P ( according to eq. 21). 

Now we turn to the analytical properties of the acausal matrixr 

From (19) it follows that in the example under consideration the 

analytical properties of the ~ matrix are new as compared 

to those of the f matrix in local theory, and defined by the 

analytical properties of the Fourier transform /fJ.n) of the 

pseudo-source .f'( J; it/ · 
The new singularities of the ~ matrix are identical with 

~hose for the function)/~ n) • The problem of the nature of 

allowed singularities is not yet sufficiently investigated. 
csJ In paper a particular case is considered when these 

singularities are poles located symmetrically on the imaginary 

axis 

x7This fact is not connected with the aoausalitz considered by 
us: in the usual local theorz the scattering matrix also depends on 
the total momentum of all the pa.rti~les involved in the reaction and 
when one of them is removed apart the corresponding matrix element 

tends to zero. 

JO 

In conclusion it should be noted that the ~ropert~es of the 

functions .fJ(F, o/ are introduced as a method for construollng 

the acausal matrix, as an example. 

The refusal from microcausality in a small scale will give 

rise to serious geometrical consequences: the concept of four-

dimensional pseudo-Euclidean co-ordinates of the point~~~/~~~· 

may~ssin this situation not only its meaning (if ·it is not 

already the case in modern field theory) but also a purely formal 

meaning. Therefore it is more reasonable to coasider our 

constructive method as a formal way to map a "magic circle" 

( the scale of this circle is defined by the elementary lengthp") 

inside which a situation may occur which radically differs from 

that given by the modern theo~. 

£2!!2~ 

The J1 matrix is, in principle, a physically observable 

quantity. This suggests an idea that one concept of ~ matrix 

will survive the modern local theory and will be a part of future 

theoretical conceptias. However, this "future" J1 matrix will, 

apparently, obey the routine conditions a) unitarity, b) causality. 

In the present investigation we admitted condition a) as 

obligatory and focused out attention of condition b). We showed 

that causality, as applied to the J"' matrix, contains the 

contradiction which is based on the complementarity of the space

time description and the momentum energy description. This 

contradiction may be reduced only in the framework of essentially 

WC•J?:ene(1 requirements of causality i.e. in the framework of the 

tlE;.(:ro~all&q_ 11 ty • JI 



These weekened requirements make it impossible to catch the 

particles in violation of the local miorocausa!!~' even if the 

latter is violated. 

Therefore the limits of macrooausality turn out to be 

"tolerable" and include a very large number of aoausal theories. 

J2 

APPENDIX I 

The Lobaohevsky's space is the space of a constant of 

negative ourvature K. In the three dimensional case this space 

is described by the metric 

d.l'~: ll';c.t_,.p/J'.I.+,~.e- /~H'P.~IJP'}J ·.i-11~/,-:J ~ (l) 
. .. 4 m.i+/!.t+l!.t. 

I :t 

where tr'f is the interval between two infinitely close lj+t¥'JJ) 
points with the co-ordinates I~-~- 1) and(,~J.;.IJI'"' 4.,.ei'J.: 

1 

The quanta A"= -n:~ determines the space curvature, .In is the 

radius of curvature. · 

To the metric (1) there corresponds the element of the vOlume: 

dt'v = / <2d .f_-K II = 

n/.t; ell' /1 (/ IJ c/ //eN'~ oi/J - :::: 

//'/ l'.m.t+~~ +,P_,~.;.f?~ 
I " S 

Here ?,'K is the metric tensor of the form (1). As will be seen 

from ? 9, in the matrix elements of the operators and in therwave 

functions in the momentum representation there appear multipliers, 
I 

like ~- , which are, at first sight, noncovariant. However, 
r".ll"" 

after the matrices have been multiplied, these factors lead to the 

appearance of the expressions 

Which ensure the covariance: This expression is the element of the 

Volume in the Lobachevsky's spaoe If? { P) • 

JJ 
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APPENDIX 2 --
Action Sphere a 

a 
Some idea about the comparison of the terms 11 

may be obtained from the theory of elastic scattering. 

a& 
and f?.l 

Let if/(~/ be the wave function and Vfx) the interaction 

Energy. Then 

Yf:x) = '/; (.x/+ ftr".:k.· -.x:l Vt'x/ 'l'fx:J~:Jx', (l) 

··-

tK¥ 
where Sf= e is the incident wave with the momentum /( , 

j(x x) is the Green function 
(? t'-t' /X-.x1 

tJ /.JC. -X') == _!_ / r Y~ /.x-.xY 

(2) 

Expanding J/X-J<.·) in the inverse powers of /1 =/X/ , we find 

4 e> ,K'R 8 ~ df',f 1 

jb(:A:) = ~ (x)+ _.. - ·-t- ·-~ + o( j{,J) $'~ A' ,-;; ~./. ,.. /. (J) 

R may be assumed to be a large quantity, if 

.Jf!_ .>7 JL 
I( I? 

i.e.if 

34 

./}_ 
~>> ~ 

v 

(4) 

(5) 

APPENDIX J 

The apinor U,("!ij can be written for £ .>Oin the form 

f: •I 

tti'~')=.N 
I( f.t) ,. 0 P.. .AI' 
~ k(~) ::z ht+€ 

11/.,/:: ~ 
hf+€ 

,).,/ = _L /1 + l1t_ J ~ 
ffll t:/ 

~rJ 
II{ I}= 0 

tl(.t)= vV 
tt{J) -= n ~X 

m-;-£ 

it!t):- 1 v'l 
h1+E 

n = J!.·+i~ 

Hence, it is seen that the trac.es of bilinear combinations for 

r•l and 2 are identical. A simple calculation gives 

?/k* -~~) = ...L (!+ ,_ J-1 m4fl/ 
p~ ~~ I £/ E~ ·+ 

_1 (1 of- 11!. J -1-L /; •-1-
.t E/ f~ 1 1 

/'.., , 
(1+ ;J~Er; + 

/11./ ~~ ....!_ . .! /!, .t. r 
m p_.t. 

~ 

(I+ ;JEJ + s- (I + ;-J~E ~ (!+ ;JE~ 

.. -l (E.t-m-t- {·~ ,P-~' (i+ ;-) )I 

c-~ 
h1 -1>- ' j 

(/-.< ;-J.eEr + ./ 

)( (11-%; ):( ~0 

J5 

(l) 

(2) 
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Noting that 

Atc;/Q -- f -;;p.t / lj: fp~g ;:;. ..!!_ ~ p., 
/~ s 

we find 

11 = '_ f'.h (Btl* 9u) /n -lf;,.t •P.c:< me 
~;, / "'~ f) P.. 9 ~ CT ~c - J 

.l ~ I I T p.e ; P>> m~ 

or 

M(t, ;'o)= (
-L. . .I<< .L?1.. 
'1' h1.t J .Po 
1 y mL I . f 
~ T(~:Jt T-~ 

The integral of /V (l') is of the form 
~ 

>"> .!!!. po 

I.t (f.) = fl//.;)/L.f~tiJ 11(~ ;) . 
0 

111 
This integral tends to zero at?-+ tJ since the region where 

N/1) = L<tm• reduces as .-t!!... Q.ecreases. At !!!..._O<>it is 
7 " 

1 
po jJ'' 

finite and equal to --- • 
fm£. 

J6 

(J) 

(4) 

(5) 

(6) 

APPENDIX_! 

Let ua consider the connection between the wave function 

representing the a tate localized about the point X.:::::~ ' and the 

cr'-funotion. We denote this function by ~(..z~~where tf ~ 1~,; • Jt can 

be of the form _ (X-~').t. 

I/~ (x a) ~ e ~ c-{ ~ • (7) 'XI .I 

Thia function leads to ~,·-.x')-!. -=tt.f. so that at a-c (.-t , ~ ;J .{~:r' 

the function ~.(~a* · has a limit ct{x :k :1 at tf --.. ~7 

~ rx_ a~ ~ Sf r~/ = {r/.1· - J: -; • 
(8) 

Therefore Cl'-o 

I/, (. ..,r;;-ft . V{ · ( ~ cd J .z r... .x, a,) -= .x' ~ (2· ~ ; ~ /a, 1 ~ -~ :J ~ -----' 
X' .A:' .I / 1~ -

/'{?' 

(9) 

The Ja.st term tends to zero at tf . ._ () owing to (8) and the relat-

ion (z-x1d'(x -.x~=O • 

J7 
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.4 Usually the Fourier representation for the scalar field is 

written in the form 

./)1~1 ,SJ. , ct?)_q_ ;·Kx PiJ.K =/·cr K/ V;lxJa/~K=ftmv,;'1'f.r)ti1K (1) 
Tl .ft.;; )"it:; 

,ji(K} in oontr$.81; to e( .KJ is not a scalar. 

/J The fact that the quantity _;O(X: tJ is non-definite is seen 

ffom the following,example. We put 
(,t''-;?J~ /- -~~ 

{'(~:~) t.; f!- ~' - c.K-Ai 
---'"-- :.=. + . ~ e .i,~ • 

t .. ' , ..... · t...J 

We find ~1.;; e.) 
(.·-·.,./.. --~ 

' / - K-1<,) + i;x f _(K-K.t) +/Rx 
rxJ= (~ .f <t'.l! t"{J,K'+~ L-~~·J!. Gf'JK 

{f.) w 

For simplicity we assume that / k;- K; / >"> ~ • 

Further 

- t'(...tl!. . ·--2 <;; -:;=: e, fl e --z- - ( K, .x.. Iii- - f' .t.x < --
+ ~ e ---r-- i~.X 

From here 

jJ (£ c I = -L(Q 0 Y.' + ~-,52 Cf' ) !r e -t'lX'~/ / t!, j-! 
~ ,/ ~ / L W + 

I 

;e t.' I I l + , < -~ ._, c~ e - - e. ~ £1,) (4K j, -r'f-: 1 + ~I P,_ /AK.X +Y' 1 1- ._d J 
Cv' / ,. o ~ti:J I • / (. 1 ·• 

I ~ ~ 

c. 
where Y'~a·~ ~ . Now we believe that ~ :>:;o-t0 If!,~ /C</ . c, ~ ) 
are comparable. Then 

)8 

(2) 

(4) 

,L_xl. t. 

.f>(~ o) s= e---:;-- ;;;1 
/1 +1:"1 ~(A R-x +'F)} • 

I I 
(5) 

It is seen that if / :~1 then j:Jf~ c) periodically changes the 
I 

sign. 

The density is in this case not too strongly localized 

( it was assumed that b is small) and in any case the quantity 

LI.Xt = f; is by no means connected with the Compton wave-lengtht .. 

c·. Negative Values of A~l 

Now we turn to the one-dimensional case. Eq.(l6)' reads now 

L1 L l = + '?t/ _#) l_ ..!... ,#.t _ _j:_ :tj.tl ~· _j,Ll8 1( ,. w'f 
We put A=l for 

4.J = r;;F;; < fi >> I 

~= e ·- a}f (f6.1--r2J~ - W>J2 

( the particle mass is taken to be unity). Going over to the 1 

integration over ~ we get -. ./ 4-;--.t = le -o.t(t4J--g_)~-f-0-.5l 1~/1- - 1 )~-~ 
~ ... u {' / { ' «;~ tff a.; - (7) 

51 C>o 

-..!.. '//- ~) Yt. t¥:4J -..!.. 1/1- 111 i)% e -14 ifCAJ- Q~;.;l.-1 ~/{· G.J 14J'- 't/t' Cc:J~ (-<.:J.t. 
I - $2_ 

It is sufficient to consider two first integrals. 

Assuming ff (tV- RJ= .F we find that the first integral will 

be of the order t'i' and the second one is simply calculated and for 

Q>>l is -J;(~J=- ';I the third integral is far smaller. 
-r /G 

J9 
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I I~ v-L 

t t¥<</' / A·z ~ -~ L_ 
" m.tc~ • In the case of 

three dimensions, under the normalization condition (i5) we have 

not succeeded in finding an example with L1~l-c 0 

APPENDIX 6 

Let us consider a relativistic packet described by the field~/.K,~ 

,";;(£ t) =/C(i/Je 1'(-k-:x ... -c.vo~-/ HJ~ 
., ' c ... .> • (1) 

t _;~;.x: -F/ = /c"'(K}e -t/-K~ .. -c.P'~~J.t' ... (2) 

The densit:f(X, t) is determined by the expression 

.,Pf ~ t-J = .L" I y/! >P -IF- y:7 ~ r9 fl/ ; 
vt- 8~ / 

The localization will be strong if ~ or ~ are strongly 
~~ 

localized, We choose t'~~ in the form 

- (.i'-il,;L 
c-(.K) = vV e "~' , 

I 
where VI= v:-; • Then ,,., 

(J) 

(4) 

J(/?(~~f) ~ ~ _(1<-K,).t. 
at =-t'vV/e ·~ ~,£:x.a~g~=- (.5) 

·-.... - .£!£_ ::: e ,..~~ .x . e ...!(1~ 

/ ,;;-
where tJ' "-' T . At tP- CJ this function is arbitrary strollgly 

localized about x=O. The connection of such a function with the 

.d function was considered in Appendix 4. 
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APPENDIX 1 

We calculate the spreading of a relativistic packet , starting 

from its representation in the form ((I)App.6) and take<{~,/ 
in the form((4)App.6).If, is not too large then the field ~~;;~_; 
can .be represented in the form 

v./' i/ K.%- ,..,.f) 
JPI-Xi"'J =;;;:; e If~+J' 

I 

where 
( --

/t 
k'-K,) . - ..... ...,. 

Zf.i;tJ= e- .PI'~ + ,f~-K,X)-t(W-"-''oJt tY~K 

For definiteness we put -k/{ Kx o.~ o). ,, 
Then 

/('~ I (11 l .e l) I /( .l 
(,A.) - c.v, = - 1, + - 7". r 1J "f" If - - _.!!... at. 

{.J
1 

X .!UJ. If 1"_y .¥ .! ~J 7'j 
I I 

where 8 = K- K. • A simple calculation yields 
, , . i 

'o( ~~· t-J (X- ~ ~) 
I 1~ t) = ,/fft/e' / - ,.., Ll!te-J -

yi-r.zJ. 

.f~L (t} 
L 

(1) 

(2) 

(J) 

' 

(4) 

where ..4/t} is a slowly changing quantity cL 

quantities tJ,: (t) and LJ..: (t;} are 

is a real;number and the 

.t1 L(t) = ...f_ + ~ ~ h1 ~ f < 
It ~~ tJ, 

i. . I ~~ A (t)=- ~_;_ t.i 
.i. -"'L " . .t. /,• ... v 

Putting(~ .::: IJ<(cj these fonnulas 

.t ~/.1 i 2 

· LJ 11 {t)~ A tO/+ I.J<(t:') 

4! 

can be rewritten 

/11~ J-'t'~ - l 
E~ 

(5) 

(5~ 

in the form 

(6) 



r 

Ll~ lt/ ·; JJ"foJ+ .1:_ 1/tt.t 
.L . A'f"l 

(6) 

Here 1" = Pli is the particle momentum tl""=- .f!. is its velocity. 
£ 

From the first formula it is seen that for m=O the wave packet 

does not spread in the longitudinal direction as it must be foT 

particles without rest mass ( in this oase there is no dispersion 
l 

of the de Broglie waves). The formulas for A-L (-t) can be also 

derived from the diffraction theory. The increase of the beam width 

due to the diffraction is determined by the multiplier J, 

- at z 
'"" (;? "J.i -ju1 it 1 

(7) 

where &f is the diameter of the diaphragm orifice ;t is the wave 

length, it is the angle defining the beam width. The width .P ::.RIJ .. t"" 

where .R,. VTis the distance to the diaphra~. Therefore 

~ ~.t 
- a.t . "- 9- - ~lL_ - ~ ·"'- e _tz."'- ( ::::::: e . ~t. 1/ltl ::::e. e A, .I' (8) 

so that 
A<l ;ti 
(..J,~~-= a_L v<r- ~. 

l 
according to eq. ( 6) for L1..L. 

(9) 

This formula can be also represented in the alternative form 

l -l. 
t1.i = .11.. ( ~) t!.t.t.(. , (10) 

.Jl tJi t: 

where.IJ •. :'>,! . In this formula the multiplier --1;; characte-

rizing the dalay of the clock is clearly seen. 
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s. -A 8 

Fig.l. The wave packets ~, and ti.L are formed at the time 

'f:-r moment by means of the diaphragms A and B; J" is the 
I 

zone of collision at t:~~rO ; t(.t and U,' are the 

same packets at 't"'= +T 1 but somewhat spreaded. 

44 

A, 

·"' • I :e ~ I 
i 
I 

--

B& 

s, 

--->~ 

F1g.2. An example of location of the primary wave packets tl, 

and. £A1 for which the macroscopic causality is valid 

;#,If, 4, and ~ ~ 4. are the lieht cones. 
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Added in Proof 
-----------

page 25, formula (14) should read as 

2 A' = [2rtn)~-;~ 
page 26, formula (15) should read 

/:>2_ I. .2 . ~ . J /\ - l + l ·+ 1 ·t- I 
I .2. ~ t,l 

paBe 26, ~ne seven instead of .,space region"(.., a .J) 
read Space time regionH (..., a i' j ,, / 

page 26, line 19' 21 instead of r- a ~read (- cr 'I) 

H 

page 27, line 2 instead of space region 
N 1/ .J ~ 

read space time region; instead of a ' read a ,, 

page 27, line 4, instead of 11 is violated" read"is not violated". 

page 27, fo~mula (18 ) should read as 

,R ~ == [ !l( q,rt) J._ c;. .2] 


