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Chapter I

S-Matrix
1. Introduction

In 1942 W.Heisenberg'l'augsested his famous program of
development of quantum field theory whioh was based on the idea
to describe the elementary phenomena by means of the S-matrix,
instead of the wave funotion,

The programm has not lost its importance in further
development of theoretical and experimental physics. De facto
methods based on the concept of wave function gave explicit
metnods well before those based on the investigation of the S-—
matrix analytiocal properties.

The death of the wave function seems to be obvious., However,
it 18 too early to rejoice at this fact because the S-matrix
apparatus has no continuation to the region of small intervals,
to the very heart of elementary events.

Theoretical sohemes working only With the S-matrix resemble
a faotory where there are only two departments: the department
for reception of raw material and the department for packing
finished articles; whereas, the department for processing raw
material is absent.

Analytic continuation of the S—matrix from the mass and
energy surface allows us to look a little into this processing
department, into the "very production". But the analytic
continuation methods are not able to give a complete picture

of the physical phenomena in the world of elemsntary particles.



We realize that our present-day possibilities are very
restriloted, bﬁt there are two faots which speak in favour of
the S_matrix methods;

a) There 1s, as yet, no one physical phenomenon in the
world of elementary particles and in their interaction whioch oould
not be desoribed in terms of the S-matrix.

b) The S— matrix may belong, at least formally, to the
observables.

¢) Therefore, we have every reason to oonsider the S-matrix
as a theoretical oonstruotion whioh will conserve its importanoce

in future theory.

In the light of such an aspect the investigation of the S-matrix

1s a rather reasonable trend in theoretical physics.

2. Main Properties of the S5-Matrix

The most important properties of the S—matrix which are expected
to be kept in future theory are the following: S= s+ T
1) The unitarity of the S-matrix:

S8 = 7. @

This requirement leads to physioally transparent relations, such as
“optical theorem", which show the conneotion between various
processes, namely, putting J'=/+.7" , we have from (1)

¢ B — S -/ K4

These relations follow from the unitarity condition.
2) The relativistic invariance of the S-matrix., This requirement
mdy be written in the form

Xsry) = UsIA“g/V =518, (3

where 9; are the dynamical variables transforming under the

Lorentz transformation Jf
#'=Ng ()

677/;9/13 the unitary matrix of this transformation.,

The relativistic invarianoe may be violated only if future
theory will be based on a geometry different from the Einstein -
Minkovsky geometry.

3) Finally, the causality of the S-matrix.

In the method working with the wave funotion, fzr from thé

Sohr3d1nger equation

;¥ =4 wrix) ¥ (4

g 6rx)
follows the condition [z]

[Wix),W(i)] =0, )

. ‘
for KI'-}/ < O ( 1.e. for the space-like interval), As far as the
interaotion energy W 1s a local function of the fields $/Z/
then the oondition (5) obeys the requirement

Y1) prx)f=e @)
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for /.l'-j/ ‘tco . This is the miorcoausality ocondition.
This oondition may be also extended to the S-matrix, if the
latter is oonsidered as a funotional of the local field P/x/

=5 ) N

Then the microoausality may be formulated in the form:
&is P
S Clx) S s ’

L3
tor (y-y/t<0 ‘Y
Here we oonsider in detail only the third requirement

(8)

imposed on the S-matrix, the requirement of causality.
This 1is explained by the fact that the assumption on the
existence of local fields appears to be the most weak point of

current theory.

3. Causality and the S—matrix

Our task is to formulate the requirements of causality
directly imposed on'the S_matrix without recourse to the concept of
field.

At first sight, such a formulation of the problem has the
following unavailable contradition., The S-matrix transforms the

state % given at 2 = - o= into the state 7

studied at tfe =7 oo

jg“t=j% .

(9

These states are not localized in the space- time and therefore

there are no preconditions for the formulation of a causal connec-—

- tion.

This fact may be also formulated as follows: the S-matrix is
defined in the spaoe of momeptum— energy variables, in the many-
dimensional Lobachevsky space d’/"y (see Appendix Ik)",lvhereas for the
desoription of the causal connection, the space~time variable defi-~
ned in the many-dimensional Minkovsky space is needed.

Owing to this fact causality may be formulated in the language
of the S—matrix with hat degree of definiteness which is compatible
with the possibility of using simultaneously both spaoces xCr
and %/x/ « As applied to the S-—matrix, oausality is, therefore,
oalled by us maoroscopic causality since it is just in macroscopic
physics that the space %/@ 1‘/ = R(F) x Rlx)
may be‘used.

Our next problems are: I. to establish necessary preconditions
for the formulation of maorooausality oonditiocns, and then 2) to
formulate the conditions of miocrocausality.

Now we turn to the first precondition, without whiéh further
analysis is impossible.

4. Space-Time Desoription and the S-Matrix

The S-matrix transforms the states specified at f, =~ o

in the state at t.z =+ o2 , What does the limit X o°

means here?



The answer is the following: if the time of onllision ( time of
particle interaction) is ir, and 7 1s a long time interval
then in the S—matrix theory T should be assumed to be infinitely

long interval, provided that -5- is kept to be finite and((jgju
. 7.

71
1s neglected as being an 1nf1n1te1y small value, consequently,

we neglect the remainder oL C7f<j://

—d
> ;},E-_‘ (10)

L]

Ny

This requirement may be expressed in the language of distance. If
e 1s the relative velocity of partioles then the distance
between them, corresponding to the time interval T, will be £=u-7"

Hence, we keep the quantities of the order j?' s Where o
1s a certain length ( " radius of sSphere action“, see appendix),
and neglect the quantities of the ordeﬁp.(the remailnder 67(2>/),

>
V4 ,?l . (101)

Thus we may operate with finite time intervals

L <~7" . Z, =+ 7 (11)

x)
Here we do not consider long-range interactions, like the

Coulomb one, where Z° 1s an indefinite quantity,

1f only the oondition (10) ( or (153 ) will be fulfilled.
Restrioting ourselves to finite time intervals, we oconsider the

possibility of desoription of a colllsion process by means of

packets localized 1ln spaoe and time,
To this end, in the next section, we will oonsider relativistic

wave packets and formulate the conditions of maoroscopic ocausality,

using these packets,

Chapter II

The Wave Packets

5. Formulation of the Problem

The scattering matrix S for real "in" —~ and "out" states
should obey ocertain ocausallty conditions. However, these condit-
ions may be formulated only if "in®" states are given in the
form of localized wave packets instead of plane waves,

In this oonnection it is necessary to consider pessibilities
of construction of narrow wave paokets for relativistic partioles,
which do not spread essentially during the time 7“'55 much longer
than during the collision time T ( here A is the distance
between wave packets, and 2~ ~their relative velocity).

Thus, we are looking for wave packets which satisfy the

conditions:

£ =>4 >>X (1)

( A the typloal wave length, A 1is the dimension of wave

packets, A the distance between them) and

Jarr)-al-r)) << a(~7/ . a5




The smaller is the wave length z the more preolse are the after simple oaloulations:

conditions for the formulation of macroscopio oausality for the ‘ — J— 9( 74 .;9(/ 0’ €))
: | T 2. /,/ / /c//'/ P.

S-matrix. AZ - //’4- / / /0’)/° 2/’

The matter is that in many rapers devoted to the problem
The last term 1s ocharaoteristio of the relativistio oase.

of the relativistic particle localization it is asserted that a -
Now we represent C’/_/’/ in the form:

spinor particle cannot be exactly localized sinoe the states of

] >
positive energy do not form a complete set of funot:l.ons. Therefore the ofr) = /ﬂy%ﬂ/, j";«% ? ®)
eigenfunction 6:/1 I/or the ocoordinate operator X oannot where 2°1is the quantity desoribing the momentum dispersion
be expanded in the eigenfunctions oorresponding only to positive 1n the obnsidei‘ed state:
enerpy states., AP"Q‘/"‘ , (N

The same 1s related to spinless particles obeying the Klein T
equation. The first integral in eq. (5) gives:
We shall show that if quadratically integrable wave packets // gc /J VP = . (8
are used instead of the ; function then particles can be ‘ /0%
localized in positive energy states with any degree of acouraoy. The second integral 1s ,
(8)

6. Fermions ‘. 97'////."//3}' /f‘//f/ s

Firstly, we consider the case of Dirac partioles, Let us where

take one-particle state, represented by a quadratiocally integrab-

, VAN TYWL: O)
le wave funotion: / eir 7 d{/c’;(ﬁ;- £/ ; ./#// /-f /’ 3{3 2
t‘ P/ e ’
W/l ué/ / 1/0 » (2) !

end 4/#/ 1s equal to

- 2, 5¢ ”
= A
where £ =+ /)7 e ) P/ Dirac spinor, and

. _ Ay P ”’/.r
erer a2y , (3 ””J g ”
,,/ A/W/ / 1

(9

o LI i 5,
Sl e 7, (4) 972 3 ¢ A s £2>> 7773 il
Now we calculate the mean square value of a coordinate, for
instance, of & Assuming that at t=0, -e; =0 we have obtalned (see Appendix 3).
10 t




Therefore we have that at t=0
Py 31

(20)

) . <
it 4 GQ(,,,QJ. For 47X >>/m%?% we have

— A° (16)
4~ ="25%3 >

where e// ' are of the order of unity, It 1s well seen that
i 5%, .
although in eq. (10) an additional term <j¢c! appears as i1f point=-
ing out that the Dirao particle cannot be localized more exactly
than within AZ"'M'% but, in fact, it is of no importanoe since at
4 /.
A&- — o= eq., (10) transforms into eq. (107) .
<
Notice however that at A@ — o< the considered state 1s not

desoribed by the funotion:
)’f,/-é'/ - os“/,‘_?y . (11)

since this function is not quadratically integrable dbut the consi-
dered state is described by quadratically integrable funotions. This
quadratically integrable function _Y;, /{PZ}ooalized about & =&’
is related to the function (11) as follows:

2 Y, (% P) = z’?{,,/z, PY + Alz-x'p%)
' (12)

A(2-2P) = PUf(2-2) Y. (%, P %]

(12')

in this ocase

.02 Pl gt — Sl2-2)

P ) v
at P -—»o=, Therefore 1if the funotion jf;/l/ 18 oonsidered as an

njdeal® eigenfunotion of the operator of the coordimte &
then the funotion $,/z Ajapproximates it so that 4/r-& 9o
at /22> ®o ( see Appendix 4),.

1e Bosons

Now we turn to the spinless particles, and consider again one-—
partiocle state, The field W/X/ may be represented in the form:

S = 5 Gl & = Z—, (13)
7%

rAX

g
where WNHX =AX — ¢ ¥ , T At pt
( see Appendix 5) .

The density/O/J'-/ is

P} =F[ R RP], R =t Fmi- gt Y

and, generally speaking, 1s non-definite even for positive-energy
states U = Pyl pxl

In this case it is also 1mpossible to represent the - funct-
ion as a superposition of waves 04', with o >0 . "

Now let us oonsider locil-.ized states with integrable density/o .
We oalculate the quantity ! at Z=0 under the condition:

//o(x//ix =4 . ' 15)
We have
42 - F =y (2200« 0 0 Pz 6
After simple calculations we find thats
—_— £
7= ﬁf"s--’//‘i 73 .
_//a'(’/ﬂ” Y2 // 4.)"( . 163
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This expression is non-definite, therefore the demsity /o[.i;D/
cannot be treat'ed as a density of any probability.

It might be expeoted that such Ranomalies™ in the bahaviour
of/o/i"/ arise only when the density_/o/.i"/ is ooncentrated within
ax v/;’{’.But this not 1s the casey ©O/%X/ may assume negative
values also when 4.~ Z ( see Appendix 5B and 5C ), Taking A

Vo d
in the form
RS = Rle) = P (E )L S =,
we find

L 1T o oy T e

J') 7

It is not diffiocult to ohoose suoh function / thatﬂ %,,,/fy/o

Then it is seen, that at J,—»ee, < =0 and we come to the
state with a well localized density, i.e. density which at t=0 1s
concentrated within an arbitrary small region4 Z ~ ZE Enall %

( see Appendix 5).

Thus, as far as the possibility of localization concerns, the
situation 1s quite similar to that which takes place for the Dirac
particle, however, the O(x #/for spinless partiole might not be
interpreted as the dens;.ty of the probability to detect the
particle near the point x at time t,

The quantity/a/.z; ¢/ should be considered as a purely “field"
quantity representing a spinless particle in space-time,

Al e/ - 4)0e) + L

8., Spread of Wave Packets

Now we oonsider the bahaviour of relativistic wave paokets
in the oourse of time. All the above discussed states localized
at t=0 are spreading: the quantities _4_57,74‘7; a4z increase,
However, this inorease 1s such that under certain conditions 1t
may be said that the relativistic packet 1s moving during a
rather long time T oonserving its charaoteristio size.

In other words, the change in the paoket size during time T
may be small as ocompared with i1ts initial size even for long time
intervals. Here a long time interval implies suoch interval that

R=CT>>A4X 48Y,0r 4.6 42X, 450X gre taken at t=0, C
1s the velooity of light,

It 1s easy to show that the paoket width A,, measured in
the direotion parallel to the packet motion increase with 2
aooording to the law:

2 A ot e €D
4, 0¢) = al(e)+ e//é_.,z/z‘

and the width AJ measured in the direction perpendioular to

the packet motlion increases acoording to the law

375 % REHCAS- '/o/ £ et
e
Ve

Here /t 1s the partlocle wave length, 1s the packet
velooity, /7?7 is the partiole rest mass, A%/6/1s the value

of 4%/ at t=0 ( see Appendix 7). From these equations it follow-

ing that
47y 4%/ [ __ 7
/ Al/o/ /

(18)

I5
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R=c¥t¥ < _A___/.EZ
r

Now we come backto the conditions (1)7(1’) and oembline them with

the result (1 ). We find the inequalities:

a4 :
A_}—- >p>5>A>> A (19)

which can be reﬁized for any Z under the condition that P e,
( 1.0, V—>C ),

This important oondition of a possible long existence of a
loocalized relativistic packet 1s exolusively the result of the
relativistic effect: lncrease of the partiole mass wilth lnoreasing
velocity. Thus we see that the present day theory in a formal way
( because there is no practioal way to construot arbitrary narrow s
split) permits the oneparticle states which are localized in spa.:e
with any degree of accuracy A-—DO for the time intervals 7"<Idc—-»co
( at A0 ). This gives the possibllity to formulate conditions of
macroscoplc causality directly for S-matrix, taken on the mass— and

[é,+]

energy surfaces.

Chapter III
Condition of Macroscopic Causality

9, Description of Collisions by Wave Packets

In the foregoing we have shown that possibility of construec—
ting the wave packets which keep their dimensions during the
time 77 = 'e/y-— ( 2~ 1s the relative veloolty of packets,
1s the distance between paokets). The condition which restricts

the distance R reads

£

— >>L>> 4 > 2,
x , &))

16

where A -— 18 the dimention of the wave packet. Under these

conditions the wave packet retains its dimensions during the time
7= -} and represents the state of a partlole with the
momentum & = */* looalized in the region 4 ,
Fig.l shows the description of the partiole oollision by
wave packets. In a non-transparent soreen X ixllthere are two
diagrams A and B which are opened during a short time ¥ =-7"
so that there appear localized wave packets
U,(%/) and 4, (X,) , removed apart at the distance AB=R, These
packets are moving along the lines I(,a, ’and IQ l(" s lncreasing
in a certain degree their dimensions, The packets l/,I/I,/ and ‘Q'@/
are the same packets in the time t.e =7 o
When the conditlorn (1) 1s fulfilled the dimensions of these
packets little differ from those of the initial packets &,
and ¢y
In the reglon 8 the wave packets begin tc interaot between
them. This reglon is a source of secondaries and scattered waves.
Now we turn to mathematloal desoription of the collision of
these packets, using the S-matrix theory, We wri-

te the S—matrix in the form:

<f/;,/‘4)=‘%_éyz.;*/j;_j;/(f/r/a), (2

where as usual /C./ denote the quantum numbers of the 1in- state
;y‘ and (#/ are those for the out—state K . j: is the total
momentum in the in-state, Z; 1s the same gquantity for the out-
~state . The matrix element <7#/7/<) can be represented in a more

detalled form:

I7
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VER 24, - L (3)

where < 75, /e, - LA A, P>

is the 1nva.r1ant function of the momenta 2 Zmo £, A 150, .. . ~°
/’

are their fourth oocmponents. Further

jg Y R SR LLR S
(4)
‘/i.):/?’ f’;’ - f’~—--f€ . (45

In what follows for the sake of simplioity, we shall restriot
ourselves to the simplest case of the collision of two soalar
particles. In this case the in-state }/{ 18 represented by two
wave packets /Z,/Z}/ and ¢ /Z,)of the above-considered type. For
the scalar particles these paokets oan be represented in the fomm

of the 1ntegra.ls H

“«/2/ %’// d//’/ey ] ‘,P‘, ) , (5)

where A %= ¢} B%¢m< . The wave function of the initial state

in the momentum representation will be of the form:

Yiop) = Lelld 4t/ ®
F2pe2pe
From (3) (5) (6) we get !
Wt )=l fi 17
5% e . P )L /S . . e 1 o o f
W7 ol 1L02 1 trydioi) LT &)
S ELS, At SR pe

and for m=4 ( the elastio oollision)

L. (%L =2, (% /3/—/{F/J?/f’/f’+/}-/’~4/,

£8/1/8%
SREI/RED ///”/’/M (8)
Vj/;./‘/'oo f’zfc
10. Space-Time Description
[¥]

Now we go over to the co—-ordinate representation., For this we

multiply the left~hand side of (8) by
/ o [l Bt By K + =~ 5X,) ]
/4_9/2/0-1) /_/220 i/o,:,, 7z

and integrate over a’s ﬁ”/’ (ot -7 =+ d'o. Further by (5) we express
¢/F/ in terms of k/.x/.,
@ .

2P° /4;///”/ S0l lxfalx . (5)

Then from (7) we get

ﬁa‘/ /I", X ., I/""A”/ /j’/’rm ,.,_, e X /_z-‘r/,, (9

XU (), (X)X, o X,

and in similar way from (8)

In this case we have

j/x" ‘x‘m-/, - x /,I 1- )=

TR, e
/ - * * /‘"/’/(/o Ty~ F/[//’ 22« o)

é.a;é////z -f-.-~+/’x-,ox /,‘;)]
[/’ *”ff:-/—- jpp ‘/J/a (/’/’ ./‘5?

I9




or .
. 7 ¢
F Em, Xpey o2y 2, 1) = = TP Il X Koy -2, 1%, 1)
’ H
7% % 11)
where fu is the invarlant funotion of the co-—ordlnates

9o (Fom, Xy - Xy 1%, %, ) = ff €Y ol === 7B L2 €
4 3 . . 3L Al AP
X - - - - = ()
By BI85 3plilly Fut === # B2, 08 £ )] S Sl T12)

We notice that due to the presence of the J- function under the
integralin ; and g these functions are translation~invariant and
¢

depend only on the difference of the variable In)l}- e X,

11.Conditions of Macroscopic Causality

Now we may formulate the principle of macrocausality:
a) the wave paokets (Il/-‘lj,//Af(vé/and PREVILES ~Z:)
removed apart at the distance

JE Z )= 1x] =L >>F

(13)

contribute to 2“ , brovided only that

b) Further P”t = 1f the co-ordinates of the partioles
fnlx.fi--l-?, oreated in the collision lie out of the future light vone

with respect to the points X, X,
/

/X}—.X“/'e>0 (X -z )t >0 (15)
Z >7, ¢. >t
s < fy ’ (155

20

Sepmym-s 4.-- 3 , Thus the funotion §/ 2, 2., --., K/ %, %))
must consequently vanish outside the above-menticned space-time

reglons, however, only asymptotioally, l.e. for

R oo, (62 ) (t-2)oe . (6>

From the physlcal point of view these conditlons are identical
with the requirements of classical maoroscoplo ocausality and imply
the assumption that all the partioles in the final state f%ur
oan be produced ( or ochange thelr state) later than the initial
packets exchange the field quanta ( see Fig,2),

The usual loocal theory satisfies, of course, the above
stated requirement of maorocausality.
This requirement will be satisfied also by any scattering matrix
in whioch the microcausality 1s violated only in a small localized

space-~tlime region.

21
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12. Some Properties of the Co-Ordinate Representation

We represent the S—matrix in the form
Feete F et ®
where f is the phase operator. This operator is an Hermitian
one Y r
/ =4 . (2)
The condition (2) provides the unitarity of the operator. In the

matrix form, in the asymptotic space;R_(p) eqs.(1) and (2) read:

SPISIPD = Z L2 cp/5rD €
J=c :
<PIEIPD < SPIOIPDT
2
the elements (f’/?'/f’)being of the form
CPIEIPS = P TS e8P |
/,/;76._» (,1/)01 (3)

where f)‘;./_‘//’ ’ f;ZP'ELre the total momenta in the initial and
final states, The form (3) ensures the validity €the law of multi-
plication , _
P12 :/(//?YP’) ;/u/ﬁy(ﬁ'/z‘//’) ’
(4)

22

where

is the volume element in the Lobaohevsky’s spaoe

LPl= ) mt

4

The mattix element é is now written 1n the form

<X/ /x> = (x/; D= xS/ >*

The multiplication of this matrix is defined by the law:
<x/$¥fx’} =ﬁ.&.‘/{/—! DA Y -x) «

SxA Pt > N A
Az
where 0‘3(/1/15 the positive-frequency singular function
F )= )Y
= jﬂ(‘ 7
VA 2y B

This funotlon has the property

/"a’,‘/"?"ﬂ/_/ f= o f/.z—y/ .

In the transition to the momentum representation

.0,
lpx ¢

e o *x

<P/SIpD> e i ¢
?/P' =/—~—- X/ / . ;
Tome STV

23

(5)

Now we consider the S-matrix in the oco-ordinate space f/x/ .

(6)

N

C))

(9

(20)



this law of multiplication automatically reproduces the law of multi- or at the points

plication in the Lobachevsky’s space and returns us to the elements. ( 23
;) 1

of the 2 matrix represented in the form (4). In this case the

appearance of the function J' 9/./" -7 / ensuring the validity of the

conservation law of the total momentum f-—_z’Pl fézp'is due to the 13, Acausal S-Matrix

translation invariance of the matrix elements, Owing to LX/9/%°>

the fact that the space~time is homogeneous, these matrix elements Instead of the local matrix (11), we oonsider now a non-local

are functions of only the differences of the variables X acaugal matrix in which the singularitiles characteristic of the

5]
local matrix are excluded completely or partiallyl: This new matrix
4

? 1s oconsidered by us as a function of a four-dimensional time-~

and X' . In view of the transformation (10) we note that the

-4
elements of the phase operator X/%/x > may have a spectral
-1like unit vector n . We denote the elements of this matrix by

expansion going beyond the limits of the space J?(P/ .
: "
(-Z’/?/x/’ﬂ) = é (r"',,-"}[l; ..I‘ - ---x,y’ ﬂ/

For further consideration it is more convenient not

(13)
to distinguish between the variables X =( X, X, . .- xm)

related to the final state and the variables -X'=(% X, - - 3‘4/ ni=y (13/)

related to the initial state and denote.all by

X=0X x, ...X, X, Z, RS 4yvay SN
e, my Lrres, Larrl, / We introduce the functions of the space point ©/'# r/

The matrix elénent by means of which we want to eliminate ( completely or partially)

. i singularities characteristic of local theory. r
SE/0/x D= 60 2, . %, X X)) ()

Basing on certain comsiderations which will be presented

below we call these functions "pseudo-sources".

will be the function of the differences &, — X
< « For the sake of definiteness, these functions are assumed

In loocal theory microcausality is displayed by the appearance
P v PP to be the functions of the invariant X7

in this matrix element of definite singularities which are loocated
on the light cones: 7 .1/— e p ) 28

R=F[(52)°- ] eP)

(2 -x,)%=c¢

3 Af/ =’

This assumption 1s not, of course, obligatory.

24 25



which, in the frame of reference where /22 =(5.,0,0,0}, degenerates jo{}:ry-'pseudo-source'. When averaging miorooausality is violated only

in a three-dimensional sphere:

/f’l e £¢+!¢+€ s ‘ (15)

]

in a small space region which is localized in the volume &% 3

.

( whioh is, naturally, assumed to be small). Owing to this faot,

macrooausality is violated at all, by averaging (17).
Thus, we suppose that

- <
pltn) =05/, (16)

Notice that the Fourier transform of the pseudo-source

pPlEn) (16) 18 of the form
~ g 7L
Plyn) =¥ %5 ),

where <Y 1s a certain lenght characteristio of the scale 8)
of the space region /’9 c.r"/ inside whioh ocausality is violated
( 1t is assumed that the function / rather rapidly where
tends to zero at % — =° / f-\,{: ‘d//ﬂﬂ/‘—;‘f/
Suppose that the matrix element (II) has a singularity in the < ' (135

variable 'Z;-w'fx ; we eliminate thls singularity by averaging
the element (II) over the function oF the pseudo-source?

é/*;, ):" -I" -I,) N x“’, ﬂ/ - From (17)'11: 13 seen that the Fourier transform of the acausal
an m.trix /44/(17) is simply the product of the Fourier transform
’ of the local matrix 4rx/(11l) and that of the pseudo-source (18):

=305, %, 4, . Xk, K] plER) K.
e KB/ () IPD = CP/0/PD 1S 1) r

e
vertex of the light cone (Z--x./z-—o is considered as a source of

(19

singularity then the averaging (17) means the Hence, 1t follows that if the Fourier transform of the matrix

. -~
replacement of the point source by the extended source . ?/1/1 ?/ﬂ/ 18 the Hermitian matrix, then the Fourier transform

£
which has the volume of the order of v & « If the singularity of the matrix J/z, 4/ $/P#/ will be also Hermitlanm provided that
/ 4

1s at the point /X, =4, / then this point 1s replaced by the tae vector #  elther is indepednet of the vectors, or is their

~
volume ~ -4t . symmetrical function.

Thus the averaging reduces to the replacement of the point

sources by the extended ones; that is why we called the function



The Hermitioity of the acausal phase mtrix f/ﬁ, 7/
. : -
provides the unitary of the acausal scattering matrix .14(95/7
. 1
cernl

j;‘//z/' =€ (20)

Thus it is shown, that one may oonstruct the scattering matrix
in whioh: a) microoausality is violated, but b) maorocausality

and ¢) unitarity are satisfied.

14, Remarks on_the Functions O(f#/

Now we oonsider the problem of the choioe 2 by means of
which pseudo-souroces Jp(gt r@/ were construoted, In principle, there
are two possibilities: a) the veotor X is not oonnected with
the system of interacting particles. In this case wa oall the
vector A external, The assumption about the existence of such
an external vector single out with necessity some frame of
reference ( or some frames of references) and thereby violate
the usual interpretation of relativistic invariance,

Such singled out frame of referenoe may turn out to be the
physical vaccum system.[ej We shall not discuss in what follows
to what degree such assumptions are compatible with the known
physical facts. In any case, the situation is not trivial, at all.
It seems that only comparison of the results on colliding beams
with those on Ffixed target may dear up these problems.

b) Turn to the second possibility when the vector # is a
function of the dynamiocal variables of the system of interesting
particles (  their momenta). Now we call the vector /~ internmal.

28

In this case we may totally oonserve relativistio invariance in

its usual interpretation.

It is only causality that will be violated, and only in a

F]
small space, of the order of 17 4 which is connected with the
interaction partiole region. The most natural way of introduoing
the internal vector is to identify it with the total momentum f’
P

vector of the system more exactly, wih the unit vector 15;5;; .

4=%

J . (21)

This may be done because the S-—mattix has no non-zero matrix
elements between states with different total momentum 77 and 371
e

PP - o
[P/ $1T) =0 (22)

1
The same relates to the 2 matrix

(FI8)9) =0 | 1t PrP

Moreover, if the matrix element ?/uﬁl}ﬂﬁps divided into complexes
with smaller number of variables:
5/ . . o
%/ '/If - lK,’IA"IJ""X.V/:i/JI '2¢ "]AA’/‘
oy ' 23
X? Jﬂ’*/lxkrl,._.x_v}

then such a complex in the momentum representation ( due to trans -

- /
lation invariance) has agaln no matrix elements with J;1éjp .
29
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Therefore the momentum P may be asoribed to the total matrix

as well as to individual complexes f/-“% ?Z‘%f'ﬁ/eto. It is clear
that if one or several partioles of a complex are removed

from the others at a large distance this complex vanishes

for finite sphere of particle interaction),

Therefore one should not think that the removed particle may
affect the others only because its momentum is 1nv§1ved in the
total mmentum; when a particle is removed apart from the others,
the corresponding matrix element must tend to zero x) « Thus,
in eq. (19) the vector # may be assooiated with the total

momentum of the system P ( according to eq. 21).

Now we turn to the analytical properties of the acausal matrix §

From (19) it follows that in the example under oonsideration the

analytical'properties of the .S” matrix are new as oompared
to those of the ‘}V matrix in local theory, and defined by the
analytioal properties of the Fourier transform J57Zl3/of the
pseudo-souroe /o(f, r) -

The new éingularities of the m;{ matrix are identical with
“those for the function/‘ov/g »n/ . The problem of the nature of
allowed singularities is not yet sufficlently 1n§estigated.

In paper [—S-J a particular case 1s consldered when these
singularities are poles located symmetrically on the imaginary

axis

x/This fact 18 not connected with the acausalitz considered by
us: in the usual local theorz the scattering matrix also depends on
the total momentum of all the particles involved in the reaction and ﬁ

when one of them 1s removed apart the corresponding matrix element
tends to zero. '
30
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In oonoclusion it should be noted that the properttes of the
functions _/0/}; ’yare introduced as a method for construcling
the aoausal matrix, as an example,

The refusal from microoausality in a small scale will give

rise to serious geometrioal consequences: the coﬂoept of four-

dimensional pseudo-Euclidean co—ordinates of the poilnt t,x,y,z.
may lossin this situation not only its meaning ( 1f -1t 1s not
already the oase 1n modern fleld theory) but alsc a purely formal
maaning. Therefore it 1is more reasonable to éonsider our
constructive method as a formal way to map a “"magic circle"®

( the scale of this circle is defined by the elementary lengthg )
inside which a situation may occur which radiocally differs from
that given by the modern theory.

Conclusion

The ~f’ matrix is, in prinoiple, a physically observable
quantity. This suggests an idea that one ooncept of J” matrix
will survive the modern local theory and wlll be a part of fiture
theoretical conceptias. However, this ®"future® .JV matrix will,
apparently, obey the routine conditlons a) unitarity, b) causality.

In the present investigation we admitted oondition a) as
obligatory and focused out attentlon of conditlon b). Wé showed
that causality, as applied to the .5’ matrix, oontalns the
contradiction which 1s based on the complementarity of the space-
time description and the momentum energy description. This
¢ontradiction may be reduced only in the framework of essentlally

¥eerened requirements of causality i,e, in the framework of the

RaGrosansality, 31




Phese weekened requirements make it impossible to catch the
particles in violation of the local

latter is violated.
Therefore the 1limits of macroocausality turn out to be

ntolerable" and include a very large number of acausal theories.
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miorecausality, even 1f the

APPENDIX X

The Lobachevsky®s spaoce 1s the space of a constant of
negative ourvature K. In the three dimensionmal case this space

is described by the metrio

2
z?ﬂ!htz agal,.aOZI*“’??‘- /cfﬂd?vgggﬂe‘»égaﬁg/” (L

£ &z F3
Ve -+/g + 5?

where ¥ 1s the interval between two infinitely close {:*”l’j/
points with the co-ordimates /2 £ £ )  and /rfm//;l Belfy
The quanta /f/-‘-‘ -,;’/1 determines the space curvature, 47 1s the
radius of curvature. -

To the metric (1) there corresponds the element of the v0lume:

Aew = ety )=

ARARAE AP AP AR
/P | /,;l+4014/:‘*/;“
Here y‘.x is the metric tensor of the form (1). As will be seen

from 3 9, in the matrix elements of the operators and in the wave

functions in the momentum representation there appear multipliers,

/
1 — .
ike b s s whioh are, at first sight, noncovariant, However,
after the matrices have been multiplied, these factors lead to the
appearanoe of the expressidns
which ensure the covariance: This expression is the element of the

volume in the Lobachevsky”s space %[p/ .
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APPENDIX 2
Action Sphere cZ

Some idea about the comparison of the terms ;— and F
may be obtained from the theory of elastic soattering.
Let %%/ ve the wave function and V(x/ the interaotion

aergy. Then

W(x) = e fags J90% -2 VxS Hx)T X, @

2.7 4
where S{’:f 4s the incident wave with the momentum X',

;/_11/ 1s the Green function

2 cw/X-x1 (2)
//.1 .1/ ~ — :
9» /xX-27
Expanding //J’-J"/ in the 1nverée powers of £ =/%x/ , we find
t? (’ s
2 = ____,-
¥r=/= —— t e k" 0/ 1)

4

R may be assumed to be a large quantity, if

2,
e

A_T— i.e.if ﬁ)) .g .
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PENDIX 3

The spinor &,(“«/ can be written for £ >01in the form

T =/ z=-2
a£l) = p “(1)=0
Ure)=o e = w
“(3) = ,—M_ Ul(i) = 1N (D
mrE m+E :
ury)= ZH_ ury=- X
”r L m+rE
/ /7 = /;._‘"G
*,—,.—_//4.

Henoe, 1t 1s seen that the traces of bilinear oombinations for
r=l and 2 are ldentical. A simple ocaloulation glves

,0/52;-“;’;/_ 7+ ’”/’”’"”

///,c’”/ /Di

/*
fl/ //+ /E’r +‘ (2
2 ”’!4’ : !4"' m/ol
4 . Z -

//-f-.?’-’-’ E-,é //-/- Z'IZ/EZ //_,. M/£3

m A AF - pt

F /7‘1_/_ ”m //D //+m/




Noting that )
Z - S5, 5 ¢ 7 ;
SR = TP [p@ = Lipy
we find

’
j Ty *P<< e
/ du* du ._;/’h"/
/‘7‘97/;5’0/9@ 9,3/”’9 ,

, v
3 pe ) P>>me

7 Gt ? fee 2
M/flﬂ"' 7 e
L gomt o, .
tm? 3 [P g Pe

The integral of /V/f/ is of the form

1,(%5) = //f’/f// ‘EiAr M/ E

z)

77
This integral tends to zero at /"5'3""0 since the region where
”/f/: 4 reduoes as _/:_”;

L
finlte and equal to

decreases. At %—»oo it is

*

LA
§$mt
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(4

(5)

(6

APPENDIX 4

Let us oonsider the connection between the wave function
representing the atate loocalized about the point X =2’ and the
J'-—funotion; We denote this funmotion by %/J;‘i/where oy~
be of the form

g/ (X a) ~ € Lat , 7

This funotion leads to /&’ X/ =41 4 that at (v —c [x 2 )¢

7%‘5 » It can

the funotion y@(‘*}"%— “has a Umit &/ 2 ¥/ o4 4, %
(8)
Blxalge — Y la)=dtray).
Therefore @ —» 0
: Y (x, )
-1'}g,/x,a/--x’;g//_z-/ﬂ/f)ﬁ//x—xy——»/;:—~ . (9)
Z -

The last term tends to zero at £ — @ owing to (8) and the relat—

ton fX-x)Ix-x=0 .




APPENDIX5

A Usually the Fourler representation for the scalar field is

written in the form
X/ =
Ix/ — 7

S/A) in contrast to ¢(X/ 1s not a scalar.
/A The fact that the qua.ntity/o/x-;tyis non-definite 1is seen
ffom the following. example, We put

: L=~/
(&) | e Im" g e /J‘,, )
(o (% r
We find o/, ¢/
/A/—k/"
/= O - Z +’kx (A’—A" -
// / (d’ d’:\’*(_’i/e 727-7‘-/4’1@/.’(
FA% :
o
For simplicity we assume that /A;,’- A?/ > £ .
Further
_efxt - £ixe >
- £L L X : %
R¥=67€ < ‘ o+ E;c? 2 7S
From here
_ R - — 2l <
- . X
PUE) =4 (@PV+ P R¢) =0T/ '“*/:’,/ +
/

Z

7.

/e
— &’J/AKJ +)//-r

+

/(f,/:y/,d x”y,_ g/

s .
where ’4‘62'9? -(——‘— . Now we belleve that £, >'>(4J,) /"//, /¢,/

s
are comparable., Then

LY VIR / fal4 'ﬂ U)o K = ///"/%/1/#’*’ 6D

P

Plro)=e""Z /f’/

(5)

¥4 +/—~/c:n/4,e.i’+ ¥) f

e :
It 1s seen that 1f /?-4/>/ thenf/i: o/periodioally changes the
(i
sign.
The demsity 1s in this case not too strongly localized

( it was assumed that b is small) and in any case the quantity

AII = —% 1s by no means connected with the Compton wave—lengtht/ -
(2 £ e
C. Negative Values of 4x¢
Now we turn to the one-dimensional case. Eq.(16)’ reads now
. .
ez f‘ 24,1 2 k
= G - A Jon
W A=1
PREALIT o R < @ >y
2
K=o G (- (>0
( the particle mass is taken to be unity). Golng over to the ¢
integration_over ¢’ we get
L [yt s-atfe-@ )%
= fo /7 4
z s/ ”/,“’"2/// wz/ Adw—  (p
(4) $2

L= ]
’ .

.,._’.//‘/_..L /Zf/w__i 7y - /n//g-zﬂ/w R/ﬁ/w

4 cot wt 7 w4 : P23

[ B

It 1s sufficient to consider two first integrals.
Assuning @/ - $2/= ¥ we find that the first integral will
be of the order ¥ and the second one is simply calculated and for

G2 >>/

the third integral is far smaller.
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—_— &
At a<<,—z, bt ~-E B
6 f mict « In the case of

three dimensions, under the normalization ocondition (15) we have
not sucoeeded in finding an example with A X< QO .

APPENDIX 6

Let us consider a relativistic packet desoribed by the field }%(f)

‘//1‘ t) = /l'(/(/ R - ww/ﬁ,,{

(1
PFCE v/ ~ R = %)
( ——I " - ¢
P —/(’*‘/A’/f * o« (@
The density'/.?/}:t)-/ is determined by the expression
_ﬁ[{f/:-—é/ ﬁ}ﬂ“ sﬂ#&fﬂ/ (3)
The localization will be strong if ’ﬂ or __K are strongly
localized, We chocse C%/4/ in the form
- (P-K)*?
(76@/;: N e ‘-iz?ﬁr—' ? 4
where A/ =—L— . Then
/&3
VAZES YALLAZ / “tk=x)t
_ >
36 ‘N € TgT TELX X = (5)

e X2

/ (74
where &"v‘. « At # — © this function is arbitrary strongly

l'ocalized about x=0, The conneoction of such a function with the

J‘ function was considered in Appendix 4.

APPENDIX 7

We oalculate the spreading of a relativistlo packet , starting
from its representation in the form ((I)App.6) and takec(/(’/
in the form((4)App.6).12€ 1s not too large then the field ¥/w/

can be represented in the form

p/%_f/___;_ﬁfef'/kx—w /[/x*/, (1)
where (__ ”/
K=K,
[/i,'f/=/g T gt 1 £=2,F) = (0= /’;/3‘, ‘ @)
For definlteness we put ';::/IX,,O/ 0/.
Then
-t = K2 g /? ? 4./ 7 '(/"’ 9t » @

W, X X

where ;: K-% .+ A simple calculation yields . s
L, (x-ye)t Y2
ol (X — S (4)
Zai0i ~  24L(t)

I/x¢)= A//€
where //f/ is a slowly changing quantity ol 13 a real; nunber and the

quantitiles A:/Z‘/ and ﬂ;/t/ are

z V2
A,,/f/=gﬁ_+.'%{i’— £

)]
&, 0 7 ’f L2 .
A,/¢)=5; +—5 ¢
(% 4 i )
Putting—l-.- A‘-/a/ these formulas can be rewrltten 1in the form
¢4 .y
2 ¢ a8 2.z &
4, [t/ a*le/ ‘/c'/ L_’ z (6)
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20 AR A e
Al/t/’d /o/'/‘Az{o/Vt .

.2
Here X = ‘P" is the particle momentum V=Z£ is its velocity.

From the first formula it is seen that for m=0 the wave packet

does not spread in the longitudinal direction as it must be for
particles without rest mass ( in this case there is no dispersion
of the de Broglie waves)., The formulas for Zﬁi(f) can be also
derived from the diffraction theory. The increase of the beam width
due to the diffraction is determined by the multiplier 3,

2
Ne—ﬂrﬁwzt’?'; (D

where ¢¥ 1is the diameter of the diaphragm orifice X 1is the wave

length, 2’ 1s the angle defining the beam width. The width P =2Rotnd*

where A’=&’2ﬁis the distance to the diaphragm. Therefore

2 p¥ _ “
~ @ /tahﬂdzy—e?%fzti ze ﬁ’ (8>
so that
. 2 Y.
4, il | (o)

Z
according to eq. (6) for tﬂ_L s
This formula can be also represented in the alternative form
/”/ 242
A él‘, (10)
P zﬂ

where./ly= . In this formula the multiplier ~é?L characte-

o A»c
rizing the dalay of the clock 1s clearly seen,
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Fig.l. The wave packets H, and ”2 are formed at the time

Z=-77 moment by means of the diaphragms A and B; 7

f the primary wave packets &,
is the Fig.2, An example of location o P r4 P '

’
same packets at &= 77 , but

/
zone of collision at ¥ O U,  and «! are the

angd . uz for which the macroscopic causality is valid

y light cones.,
somewhat spreaded, -// “, g’ and "/1 % 6;' are the &
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Added in Proof

page 25, formula (14) should read as

RE=[20sm)- %]

page 26, formula (15) should read

2 2 2 W 2
/\) - - _+ d
page 26, Jine seven instead of space region”(~ a"/
read space time region”/" & 7
(4

page 26, line 19,21 instead of [-vﬂ j/read (-vﬂ' ’/

page 27, line 2 instead of space region”

4 K
read space time region; instead of 2’ , read <t
7

page 27, line 4, instead of "is violated" read"is not violated".

page 27, formula (18 ) should read as

RE=[2(s0) = ¢*]



