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I. Introduction 

After great expectations, nowadays the SU(€) symmetrY is regarded 

with a scepsis. because of difficulties in the relativization problem/ l/ . 
Nevertheless for collinear processes there exists the relativistic SU (6) ' 

w 
group, a modified version of SU ( 6 ) 1 which· gives rather ·reasonable pre-

dictions/ 2-
6
/, However, the forward (or backward) scattering can not 

be precisely· measured in experiment; !!'here is an evident need to haw 

an extension to noncollinear. ·processes, 

In this paper groups are found, which are isomorphic to SU ( 6 ) and 

are compatible with the Lorentz invariance· and crossing symmetry, They 

leave invariant ·the ·free equations and· are applicable to binary reactions 

without being confined to collinearity. These groups are called by us the 

SU (6). groupsx/ ~ All groups; we are interested in, reduce to SU (6) for 
% ' w 

collinear configurations, and therefore we obtain an extension of SU (6)w 

to noncollinear processes, This approach is convenient also for treating 

the SU (6)w in an arbitrary frame' of reference. 

As is known, attempts to merge the SU(6) group with the Poin­

care group failed. The introduction· of SU(6) bears no relation to these 
I % 

attempts. It is based only on the spin part of the total angular momentum, . ' ' 

v.hich is singled out in a special Lorentz- covariant manner ensuring the 

invariance of the free. ·equations ( x - spin independence). 

What do we pay for compatibility of SU (E) with the LOrentz inva-
. , X , 

riance? The SU (6)% transformations for each particle are allowed to de-

~/ We have considered a~ example of SU (6) ij ?/ , but the cross-
ing symmetry was violated there. % · · 
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pem~ on the 4- momenta of all particles that participate in the binary 

reaction, Stress that the same situation can be.· seen even in the collinear · 

group SU (6) w /
3

'
8
/. 

Because of this, the SU (6) w and SU (6)x symmetries could be justified 

only as· dynamica1 ones, which approximately describe some features of 

amplitudes, 

Lagrange formalism is here impossible, and one can obtain .the 

invariant amplitudes only in the framework of the S -matrix approach, 

Then the crossing symmetry and unitarily must be imposed from outside, 

The transformations are chosen so that to provide from the very , begin-

ning the crossing symmetry, However here we put aside the unitarily· pro~ 

lem, it should be investigated separately. In any case, unlike SU (6, 6), the 

SU (t:)x theory does not suffer from difficulty with the superfluous momenta 

and it deals with the conventional free equations of motion, 

Some people suggest a hierarchy of symmetries, e.g •. the chain: 

'SU (6) for one-particle states, SU (3}0SU (3) fer collinear configurations 

and SU (3) for coplanar ones/ 6•9/, In this paper it is shown that a 

symmetry of SU (6) type may . be k~pt for all these processes, At 

the same . time this . symmetry. is certainly a broken one what" follows, . at 

least, from the .large mass differences in muitiplets, Only the broken sym­

metry may be compared with the experimental data ( recall that the success 

of the SU (3) symmetry is due to a happy conjecture about the form of 

its violation), In the present paper we deal only "With the exact symmetry, 

An investigation of its reasonable breakdown will be the next step. 

The quark SU (6)x transformations are discussed in Sec, 2, ln Sec,3 

such a family . of groups is singled out, which is compatible with the re­

quirement of total crossing symmetry, In Sec. 4 the 3~ and 56-plets 

. of SU(6)x are discussed.and their SU(3)€)SU(2) content is given. The 

rule for writing down the invariant amplitudes is formulated in Sec, 5, 

Several examples are given and, in particular, · the general amplitude of 

meso0:. baryon binary reactions is written down, It is shown in Sec, 6 

that for colli_near configurations the amplitudes turn out to be 

invariant, 
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2, SU (6)x -'D:ansformations for Quarks 

ln the static SU (6) group the infinitesimal quark transforma 

[j<f>..,-1-lca 0 >. +fa +a
0

A )u lei> '2 a k kat· 

are based on the algebra of the Pauli matrices u t and the G 

matrices >. ( w , a and a a are the . transformation paramE 
a a k k · 

The transformation ( 1) commutes with the Dirac equation only in 

system, For a nonzero spatial momentum the spin matrices are b 

modified, One can take relativistic spin matrices for quarks ( x 

matrices) in the formx/ 

k 
s" "' -·1 e Y" y 5 

k ll r 

-lyp+m 

2m 
<p ""vP 2

+m
2

L 
0 • 

where p and m are the 4- momentum and the quark mass, re 

and e k are three 4-veetors ( threeleg) which are orthogonal 
ll . 

other and to the momentum p 

k 
P e "'0 ll ll -~ 

e 1 e k"" 8 
ll ll J k 

( j, k cl, 2, 3 ). 

~ l ~ : 

/ ";j One can choose the matrices s• , s" , s" also in the 
form -I e 1 y y , - 1 e 2 y y , e 1 u ~ 2 

· 
2 3 

or in the 
JL p. 5 IJ. .JL 5 p. ll v v 

2 3 3 1 I 2 
ellu,.. ev' eiJ.upv ev, ell ull,.. e,... However, .. as apJ= 

sitive energy solutions of the Dl.l'ac equation, ·they reduced to 
( 2) due to the identity { A,6) of Appendix 1; ·The adavntage 
rices ( 2) in their linearity in e ·p 
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participate in the binary 

be· seen even in the collinear · 

symmetries could be justified 

describe some features of 

one can obtain .the 

S -matrix approach. 

imposed from outside. 

from the very , begin­

we put aside the unitarity prob-

any case, unlike SU (6, 6), the 

with the superfluous momenta 

of. motion. 

chain: 

f9r collinear configurations 

shown that a 

processes. At 

follows, at 

• Only the broken sym-

data (recall that lhe success 

about the form of 

the exact symmetry. 

wlll be the next step. 

discussed in Sec. 2. In Sec.3 

is compatible with the re-

the 36-,- and 56-,-·plets 

content is given. The 

formulated in Sec. 5. 

amplitude of 

It is shown in Sec. 6 
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2. SU (6)x Transformations for Quarks 

In the static SU (6) group the infinitesimal quark transformations 

i · a a · I 5 ch = - I (;) '). + ( a + a A ) a ch ' 2 a k k a ·k · ( 1) 

are based on the algebra of the Pauli matrices a k and the Gell- Mann 

matrices >. a ( (;)a , a k and a: are the . transformation parameters). 

The transformation ( 1) commutes with the Dirac equation only in the rest 

system. For a nonzero spatial momentum the spin matrices are to be 

modified. One can take relativistic spin matrices for quarks ( x -spin 

matrices) in the formx/ 

k -iyp+m 
s>t = -· i e y y 

k Jl Jl s 2m 
(\1 =v'P2+m2), 

0 (2) 

where p and m are the 4- momentum and the quark mass, respectively, 

and e k are three 4-vedors ( threeleg) ~hich are orthogonal to each Jl . . . 

other and to the momentum p 

k 
P e = 0 

Jl Jl ' 
e 1 ek=5 

Jl Jl J k 
(j,k.,l,2,3). (3) 

I 3
XJ/ One can choose the matrices s• , s~ , s>< also in the Barnes 

· I 2 3 
form - i e 1 y y , - i e 2 y y , e 1 a e 2 or in the form 

Jl .1' 5 ll .ll 5 p. Jl v v 
2 3 3 I I 2 • 

ella v e, ella ev, eJl aJlv ev ~ However,.as applied.to PC>-:-
sitive energy s&utions Jl6f the Drrac equation, -they reduced to matrices 
( 2) due to the identity ( A.6) of AppendiX L The adavntage of the mat­
rices ( 2) in their linearity in e 

'Jl 
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The spin matrices e 
11 

y fly 
5 

(with P 
11 

e = (\ ) were used earlier in . I 1o/ 11 
the formal theory of reachons and they are connected with the well-

. . . t" . . t I 1l/ ( · f t., ) known relahv1s 1c spm opera or' 1n ac e y y "' e w .lt is easy 
flflS flfl 

to verity that, due to ( 3), the matrices commute with the Dirac equation 

[ s~ , l yp + m] ~ 0 

and satisfy the algebra of Pauli matricesx/ 

Note· also that 

The matrices s .... 
t 

•" 

[s" s"l~2lc s><. 
I ' I Ilk k 

s" s" I = 2 o 
1' I II 

-lyp+ II' 

2rr 

generate x -spin transformations 

I 
ou(p)=-a sl<u(p). 

2 k k 

(4) 

( 4) 

( 5) 

Combining the x -spin group with the SU ( 3) one can construct rela-

tivistic SU(6)x transformations, the SU (6)w ones being a particular case, 

For the positive energy Dirac spinors we have 

I 
ou(p).,-1 ru"A +(a +a" A )sXJu(p) 

2 " k t ". t 
( 6) 

and, as it is easy 

the algebras of the 
to verify, the transformations ( 6) form a group. Since 

matrices s: and O"k are identical, the generators 

xf When checking, the relation 

I I t )'p 
(ye )(ye )(ye )--=c 

I m 1 Jt I I .2 3 p I = ( y Det e e e ~ IJk s (I~ j f k ) 

.1.:'; to be used, 
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A s" -and . A i;X satisfy the . SU (6) algebra. Transformations· for. 
a t l:: , - . a; l:: " , - . • . . 

~ · . multiplets are direct products of the quark ·ones. All conventional 
. - "' ~ 

~;. 

equations (the Dirac, Bargmann- \Vigner, Proca, Rarita- Schwinger/ E 
_... 1- ' ,' ' -. ~ . ~ 

tions) are invariant und!'!r such transformations in 'contrast to the 

tion i~ SU (€,6) and so on (see/ 
5

•
6

/ ) • 
- k . 

The choice of a basis e is the. most important problem in 
'fl ' . . ' -. 

structing the SU(~)x. Let us conside~ an amplitude of some binary re 

·f+2-> 34- 4' (p +P ='P +p:). 
I . ·2 3 , 4 , . 

·For s~plicity: all four particles wili be assumed to be quarks; · 

· ·Fir~t of _all 'we. ,note that··there· are. no amplitudes invariant·· w 

tra~sformations ( 6) with all conceivable. three legs e k simultane 
' . . . fl 

Really, ; such an invariance is equivalent to the invariance under . t 

. group, consid~red id 12•8/ and based on the r~lativistic spin opel 

. w ( or s . • · ) •. Having, inflnite n,)mber. of .parameter~ this gro~p · 
'fl . f111 . ' . . 

an oinfinite numbE!r of limitations, and in this .ca~e noO.: zero amplitt 

• are ab~en/ 8/ • • 

At the ·same time there are always non-vanishing ampiitude~ 

· riant uncle~ ( 6), if vectors eli for each particle are f~ed, In thi 
. . ; . . . fl.· . /' . . ' ' . 

the .transformations ( 6) form a finite parametric group,, which impc 
_.,_ . / 

' ' 
finite ni..unber of restrictions. The group is based also~ on .. the rela 

spin operator, which enters transformations via· its projec~ons on. 

three legs of all particles. ( sx . is, in fact, e k w ) • 
. . . . . k . . fl fl 'k 
An· invariant amplitude depends. on vectors e , unless th• 

' ' . ' ' fl 
coincide for different particles. It is evidently impossible to choos 

mo.n basis for 'an particlesx/, ~s for each particle e k ' are orthc . • fl . 

to its . momentum, . and . the momenta. of various partiCles are ?iffereJ 
..,_ .. . . . - ' ,_ 

the collinear case two vectors ,may "be common for all parti_c;les, 1 

a generaL case ·only one may, the normal to the re~ction 'plane). 
. . ~ ! . . .. .. . ' 

--.----x""'/_P_h-.e-n-~-, m_e_n_o_l_o_g ___ ica--la--nalysis off a!Jlpli;~d~~ often i~wolv'es sc 

, co~structed' out of the momenta (see 13/ ) • We use four bcises si 

, r ne~~sl_y • 
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used earlier in 

with the well­

w ) .It is easy 
f1 
Dirac equation 

( 4) 

( 4) 

( 5) 

rela-

( 6) 

group, Since 

generators 

(ffU k > 

:-; 
" /, e 

,\ s" ·-and >. i;X satisfy the SU (6) algebra. Transformations for. other 
a ' k a' k ., . - , , -- - _· -. '.. ! 

: multiplets are direct prodt'tcts of the quark 'ones. ·Au conventional free 
• • .... f 

equations (the Dirac, Bargmann- \Vigner, Proca; .Rarita- Schwinger/ -~qua-

- llons) ·are in~ariant u~d~r s~ch transfo~ations iri contra~t to the situa::_ 

tion i~ SU (E,6) and so on (see/ 5 •6 / ). 
- k . ' 

The choice of a basis e f1 is the: most important problem in :::on-·"'· 

structing the SU ( 6) x. Let . t;s consideli" an amplitude of some binary rea~tion · 

f+2-.'3+4 ( p '+ p =·p. + p ,'). 
I 2 · 3 , 4 .. 

. ( 7) 

For simpliCity' all four particles wili be assumed to be quarks~ · 
~ - < ._ • ... - • ' ' _, 

First of all 'we .. not~ that there are . no amplitudes invariant under 

transformations. ( 6) with aU conc~ivable. three legs e k ~slmultan~-ously, 
' . . f1 ' . 

Really, i s~ch an invariance is equivalent to the invariance under the 

~rou~, consid~red ij 12
•
8

/ and based on tt;e .relativistic spin oBe~ator 
w ( or· s ·' ) • Having_. infinite . nti'mber. of parameters . this group gives . f1 (111 . . . . ' 

an :infinite t:lumb~r of limitations·, and in. this .case non-. zero amplitude~-
' are ab~(m/ 81 • ' - ' 

At the ·same.· time there are always non-vanishing amplitudes 'inva- < 

riant under ( 6 ), II v,ectors e ~- f~r each. particle are fix'ed, In this c~se. 
the transformations ( 6) form a finite parametric· group,. which. imposes a · 

- I ·. 

finite ni..lrriber of r~strictions. The group is based als~ on. the relativistic .. " 

spin operator, which enters transformations via its 

three legs of all particles ( sll . is, in fact, e k w ) • 

projections on fixed 
f 

. . • k . ' f1 f1 'k 
An invariant amplitude depends on vectors e 

. ' . ' . f1 
coincide for different particles, It is evidently impossible to choose a com-

mon basis f~r .all particlesx/. as for each partible e k ' are orthogonal ' ' ' 
• ' f1 . 

to its . momentum, 'and the momenta. of various partiCles are ?liferent· (in 
... . . ~ - - " ' - - . 

unless they 

the colliriear case two vectors .may 'be common· for a:ii parti_s:les, but in 
' ' 

a general case 'only one rriay, th.e normal to the. reaction 'plane), However, 
. .. . . . I 

.. / .. xf Phenomenological analysis of/. a!1Jpli;~des ·often irwol~s 
, constructed out of the momenta ( see 13/ ) , We use four bcises 

. . • ' ne~~sly, 

--\ 

some basis 
simulta- . 
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an · amplitude .wilL · not· · be 

.·outside . vectors; 

.·_·· 

L<;lrentu- invariant, if 

~ . \ ·~ 

it contains any 

· Therefore for 'noricollinear binary reactions the vectors must be ex· 

pressed in terms of th~. momenta of 'particles thai: participate hl the reaction.' . 
~ . / 

Stress, that SU (ID" ·does not represent the merging of the SU (3) and '' 

Lorentz groups: only the: spin part of the total angular momentum ~nters 
trai-tsfor~ati~ns ( 6) ' arid it. is singled out in some specific relativistic' 

'' '' . ' ' 

' rranner to .ensure commutation with the free equatior{s of motion. There-' 

fore. SU (6)" e~presses the spin-independ~nce; which is· unde;stood in 

a certain relativistic sence. 

Finally let us take into account explicitly that each parti~le in 
. ,. . - I . ' ~ ' ' ·- , 

reaction ( 7) has its own t;>asis and that the basis v:ectors are expres--: 

sed in terms. of the 4-momenta p 
1 

, p
2 

, p ~ and ·p 
4 

• .To this end . 

we dimote three vectors ( 1- " 1,2,3) for n-th particle (' n .. 1,2,3,4) 
nk ( 

byeit P
1

P2 P 3 P4 ). 'I'he·n for quarks in reaction ( 7) the SU (6).,· 

. transformations·· are written down as' ' 

, 

llu(p )=-1-!1rudA +e"k(p p.p p )y y (a +adA )lu(p ). 
• n 2 d · jl , 1 2 3 4 p. , 5 · k. k. d \ n 

. (8) 

Quarks with• different 4-momenta and in various binary reactions trans-· 

form according to different .equiiralent represeri~tions of the SU (6) group~ 
• . . • ' ' . . . ' . . ; X: ' 

. A representation is characterized by the ·set of the 4-.momenta of particles .. ~ . . . . . ' 

that particip~te in the binary reaction~ The same is true for all other 

supermultiplets. In SU( E)" there are upper and lower indic;::es ias' in SU (6). 

By ·definition the. quantity ·u (.p ) which transforms according to. ( 8), has 
, -· ' n , .· ; .. . ·• - .. 

the lower index A, The index A unites the Dirac spinor index· a . · with · . I . 
4-values and the quark. SU ( 3) index a (. a .. 1;2,3), Respectively, the 

. - . . -A , , • 
quantity u ( p ) has the upper index, u ( p ) and the transformation 

n .' · . . n ) 

law for it is . . \.' 

' '· 

llu(p ')>=--1-u(p ){1,,/>. +e"t('p p p ·; >'r y(a +ad>. )I. (g) 
n 2.. n . d .p., 1 2 '3 4 p.. 5 k k d 

8 
..... 

"3. Crossing Syrr 

.2L 

The requirement of the Cl 

essential restrictions on the d 

threelegs for all particles turn < 
. ) 

if the threeleg for one of partie 

other particles, that participate 

It is natural to identify on 

the normal to the binary reactic 

n 1 n 
e (p p p p )=X. 

p. 1 2 3. 4 

where s=-(p
1
+P 

are the Mandelstam variables, 

ses m 
1 

, II' 
2 

, 111; , m 4 of 

defined. For generality all maE 

Second vectors· of each 

12 p 1 
e (p. p p p )= £ , , --

1' 1 2 3 4 /lii"P 1 n 

22 
e (p p p p )"' £ -p. 1 2 3 4 p.vAp j 

32 
e (p p P p )"' £ ' -p. t 2 3 4 jlliAp 1 

42 1 
e (p p p p )"'£ ' -

p. 1 2 s 4 pv"p l 

Here their orthogonality to tl 

vector is expressed in an e:J< 

The third vector for n · 



.,~ ... 

•T .rorPntz- invariant, if it . contains · anY:, . 

reactions the vectors ·must . be ex- · 

.ta of particles that participate in the .. reaCtion.'' 
. I 

represent the merging of the SU (3) and 

total angular momentum enters 

in some specific relatiVistic~ 
. ·"' ' the free equations of motion, There-

·understood in 
' 

~xplicitly that each pa~ticle in 

that the basis vectors are expres-: 

P 
1 

, P 2 , p ~ and · p 
4 

• _To this end 

· ~.2,3) for n-th particle { n = ~.2,3,4) 

quarks in reaction (7) the SU (6) 
., . X 

p2p3 P )y ys( ak+adk~ ) I u (p ) • 
4 ~- · . d · ,n 

(a) 

in various binary reactions( trans­

representations of the SU (6) · group. 
- . ··'"\ ' I. X: ~ 

_the set of the 4- momenta of particles 

Fction, The same is true for all other 

are upper and lower indi~es i as in SU (6). 

which transforms according to ( 8), has 

unites the Dirac spinor ·index· a . with 

( a .. ~.2,3). Respectively, the 
-A ' 
u ( p n)} and the transformation 

dAd+ e ;k (p1 P2P3,P)y~ys(ak+a:x)!. (g) 

·' ,, 

3. Crossing Symnetry and eo-·ordination 

of 'l'hreelegs 

The requirement of the crossing symmetry of amplitudes imposes 

essential restrictions on the choice of threelegs e nk. As a consequence, 
. . ~ . . . . 

three legs for all particles turn out to. be co-ordinated in such a way that 

if the threeleg for one of particles is found, · thEm _it defines threelegs for 

other particles, that participate in the reaction, 

It is natural to identify one of the vectors, say en 
1 

(p p p p )1 with w 1 2 3 4 . 

the normal to the binary reaction plane 

n 1 n . 
e ( p p p p ) = X ( stu 12 3 4 ) t , p p , p , 
~ 1 2 3' 4 ~~~ 1\ p 1 v 21\ 3p (9) 

where s=- (p +p )2 • te-(p -p )2, u=-(p -P )2 
1 2 I 3 1 4 

are the l.Vlandelstam variables, numbers ~.2,3 1 4 stand. instead of the rras-

ses m , II' , 111' , m of particles, and len are the functions to be 
1 2 3 4 ( 

defined, For generality all masses are considered to be different. 

Second vectors· of each partie!~ may be 'IM"itten down as follows 

12 · p 1 V I e ( P P P P ) "" l , • , [ A (stu 12 3 4) p , + B (stu 12 3 4) p J e l ·. 
~ 1 2. 3 4 r""P I 1 2" 1 3" p 

m1 

22 p 2 ' 
e (p p p p )et' A --11 [A (stu1234)p A+B (stu1234)p Al~ 21 

(1Cl) 
~ 1 2 3 4 ~~~ p I m

2 
2 I 2 4 p 

32 p3V ] 3;·~ 
e (p p p p )""l ---[A(stu1234)p A+B (stu1234)p A e 
~ t 2 3 4 ~vAp 1m

3 
· 3 4 · 3 1 p 

42 p 4V ( ] 41 e (p p p p )et -- A (stu 1234)p ~ +B (stu 1234)p ·, e 
~ 1 2 3 4 ~ vAp 1 111 4 · 3" 4 2" p 

• . 4 .· ' ' . . • . '. 
Here their orthogonality to the corresponding mome·nta and to the first 

vector is expressed in ah.'explicit forrri. 

The third vector for n - th particle is 
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n3 P,;y nl n2 
e (p p p p )=( --- e s 

p 1 2 3 4 pv>.p i m A p 
. n ( 11) 

If previous vectors are normalized, this vector will be normalized too. 

Let us require for our invarian~ amplitudes to be -totally crossing 

symmetric.. Recall that the crossing symmetry means the following. Let 

-~· AP., P., ( P 
1 

P 2 P 
3 

P 
4 

) be an amplitude of the reaction ( 7). Representing 

the amplitude according to the t S Z method, we derive.· the identities 

APPPP(plp2p3 p4 )=±A apap(-p3p2-plp4) ( 12) 

A (p .P p p )= ± A (p p p p ) • 
PPPP I 2 3. 4 pppp I 2 3 4 ( 13) 

( The sign is determined by statistics). In the right- hand side of eq. ( 12) 

there arises an amplitude with two antiparticles ·in the nonphysical domain, 

By means of analytical continuation p 3 ••• - p 
1 

· one can pass to. the amp-

litude Aapap(p 1 p
2

p
3

p
4

) for the physical process la+2P->3a+4P 

with two antiparti~les, In the identity ( 13) both amplitudes are in the 

physical domain, '!'he final amplitude is deduced by interchange p 
3
Ar> p 

4 
• 

One always can modify the transformations so that they should 

leave invariant the crossing amplitudes, 'l'hT modified transformations also 

form a representation of SU (6) x , the only difference being in 1he form of 

vectors. e t ( see Table). If the vectors for the original_ reaction are 
ll . . -

chosen (the first row), then the vectors for all crossing reactions are 

defined too ( the subse~ent rows). In this sense the crossing amplitudes · 

remain SU (6 ) in-variant. 
X 

/, 

10 

' \1. Threelegs for Transforr 

Crossing,+-~------~------~~ 

1. 

2.p ~p 
. 3 4 

1st particle 

1k - ) 
e ( P 1 P 2P 3 P J 
en(pppp) 

I 2 4 3 

l e 

e 

3.p1-P 2 
e 2k( p p p ~p ) le 

2 I 3 4 · 

. I nc . > 4.p
2 
.... -P

3 
e, Pj.P;-P2 P 4 

5,p2--P4 
lk ( . e p1-p4p3.-p2 

'3k 
.:.;e (-p p-'p p ) 

3 2 1 4 6.p1--P3 

4k ( . 
7.p--P re . -_P P p-p I· .'4 ·.· _4 2 3 1 

. . 

We · consider all eros~ 

.. U a particle is replaced _b) 

in the table. 

• So, having ·defined. tJ 

formations for_ all crossing 

variant _amplitu-les ·for eacl 

fulfilled up to the form rae 

to choose these form fact< 

However new relatio 

ticipate in the reaction. · F• 

then the crossing P 3- P , 

· case the ·following equalit 

nk( nk( 
ell plp2p3p4)=e~ P1P2l 

_Further if the £->articles 

sing ·- p 
2 
.-..p 

4 
and _ an':'-1)1 

Hence here 



p . 
n"' 

( ---
pv>.p I m n 

n) n2 
e >. e P 

( 11) 

this vector will be nonnalized too. 

amplitudes to be totally crossing 

symmetry means the following. Let . 

of the reaction ( 7). Representing 
,.ii' 

LSZ method, we derive the identities 

±Aapap(-p 3 p 2-pl p 4) ( 12) 

± A ' (p p P p ) • 
PPPP I 2 3 4 ( 13) 

p 3-- P) 

the physical 

( 13) both 

right- hand side of eq. ( 12) 

in the nonphysical domain. 

one can pass to the amp-

p rocess 1 + 2 ... 3 + 4 
a p a p 

amplitudes are in the 

is deduced by interchange P 
3
.._ P 

4 
transformations so that they should 

udes. The modified transformations also 

only difference being in the form of 

vectors for the original reaction are 

for all crossing reactions are 

) • In this sense the crossing amplitudes 

l 
1 I, 

) 

' 
.Table 

'Ihreelegs for. Tra.nsforrr;a:tions which Leave. Invariant the· Crossing 
· • Amplitt:tdes · · · ~ 

' 
) 

.. .·.·, ":·-· 

Crossing: 
· V e c .t o ·r s 

1st particle .2nd particie . 3d particle ·" 
4th particle · 

lk ( . ) 
2k ' . . • • 3k( - ) ~H(plp2p3p) 

1. e PIP 2p3p 4 e ( p I-P2 p3 P) I ~- PIP2Pp4 

lk .. : . . .. 2k < 
e 4k( PIp 2 p 4p 3) e H( p p p p ) 

2.p -.p e (PI p2 p 4p 3) ; SPI.P2:4p3) 
3 - 4 

I 2 · 4 3 

3.pi+>P 2 · e 2k( p'2~1 P3P 4) elk(p.ppp) 'e3~It(p p'p p·) en( PPPP I 
2 I 3 4 _ · 2 I 3 4 . . 2 I 3 .4 • 

4.p2.._._p3 
lk( . ) 1- 3~ . . ) - e2k( ptP ;P 2p) e H( Ptp3-P2 p4) 

e ' Pj.P;-P2 P 4 e PjP;P2 p4 

' - I k . 4k ( . . . .· ) : 3k( .. .• ) 2k . . . 

__ 5.p2 ..... -P 4 e (p .:.p. p .-p -e P-P P-P . e p jP 4p ;P 2 .. -e ( p-p P-P ) 
I 4 3 2 • 'I 4 3 2 · · I 4 3 2 

'3 k 
. J<c-~,P;-P1P) -e~l<(~pp-pp) 

4k.. . 

6.pi" ... -p3 :..e .· (-p p-'p p ) 
e (-p p-pp) 

. 3 2 I 4 
3 2 1 4 · 3 2 I 4 

7·Pr-~4 -eu(-p p p-p e2k(~p p ~ -P.) ea~-p P. 'P.··-P.) -elk(-p p P":Pf . 
4 2 3 I 4 8 I ·. 4 2 8 I . 4 2 3 

We · consider all crossings which reshuffle a given ·set ~of particles. 

lf a particle is replaced by. some ·a.n~particle there arises the. sign minus 

in the table. I 

• so; having defined, transformations for- some reaction we: know trans-

formations for ·all crossing reactions. lf one independently w~ites down: in­

va:riant _amplitu-ies fa~ eac!'1 row. of Table,. the crossing symmetry will be 

fulfilled up to the form factors, attached· to ·invariant· structUres. It is easy 

to choose these form factors in the. crossing symmetrical fo.rm. 

However nevv relations _for three legs' arise_ if identical par:ticles par­

ticipate in the reaction. ·For example, if the particles 3 ~nd 4 are_ identical· 

then the crossing p •
3
- p 

4 
does not change the reaction •. Hence,' in this 

case the following equalities are to be satisfied. 

n k n k ; . 3 k( • ' . 4 k . -
ep (plp2p3p4)=e,;(P~P2P4 p3)(n=·1,2), elL plp2p3p4)=e IL (PIP2Pl3). 

.. . - (14) 

.Further if the particles 2 and _4 are identical arid neutral· then after cros-

sing . p ...:....p and analyticat continuation we obtain the original re~ction. 
2 4 - • 

Hence here 

111 
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nk -,- · 

ell (plp2p3p4)= e;k(pl-p4 p3 -p2)' (I\ -1 J?.) 
( 15) 

etc. · Th have no troubles with such situatio':ls we shall, !'equire for vectors 

in each column of the ·Table to be equal up to the sign. Wei shaH· call 

such a basis the universal one. ·The universal three leg is ·defined only 

... by the momenta. of particles7 participating in· the reacti...,n, . and it is inde-.... ~ ·, . . -

pendent of any . other properties of particles: . 

If after -crossing a given particle does not pass into an· antiparticle, 

the;n·. the corresponding vectors ~ust ·simply remain· unchanged, For . example, 

.we equate the vectors in 1-.5 rows of the first ,column. If a crossing turns 

a particle into some antiparticle, th~n vectors are to be equal only ·up 

to s(gn.' So, after the ~rossing 6 we set for the first particle 

I 

-en(-p \l -p p )=±elk(pp p p,). 
3214 1234 \ 

( 16) 

Therefore, in the framework of the universality there are the. tWo following. 

possibilitiesx/, 

1) All vectors ( k . 1,2,3) in each ··column are equated with 

those signs, as they stand, Then x - spin transformations o( both quark 

and antiquark. tUrn out to .be ;identical'( if the kinematics is the same). 

More difinitely the antiquark transformation law is 11\Titten down as 

• 1 d· T · nk · · . d T 
.Su (p )=-,-[-:-leu A +e (p p p p )y y·(a+a A )]u'(p) 

C n 2 · · · d ll 1 2 3 4 ll 5 · k. k d C n 
( 17) 

!I 

( T markes transposed matrices), In terms of the Dirac equation solu-

tions 
-T 

U 0 (pn)=Cu (-pn), where C 

Note that the quantity 

2) For k = 1,2 

·T · -1 
uc(pn)C Ys 

the vectors in ·each 

is the charge . conjugation matrix, 

transforms like u ( p n ) • 

column are equated, omitting 

x/ We do not consider more cumbersome situations, where basic yectors­
. for antiparticles are linear 'combinations ( rotation) of ones for particles~ This is 
a way to look for further generalizations of SU ( 6 ). • 

12 

~
. 

~ 
:i 
,t-

. ''1 minus if it· stand in the Table, As 

be equated just as in the case 1) 

x -spin transformations for a!1tiqu. 

1 { d T [ nl 8 u (p )=-·-leu A + -e , 
c n 2 d ll 

-en~(p P P P )(a +adA T)+en3( 
""1234 2 2d p. 

differ from those for. quarks ( 8), 

the same as in SU (6) w. However 1 

symmetry, Note that it is difficult 

to transformations due to the mom 

case), Just as in SU(6)w ,u 0 (p) 

indices. However the quantity 

u .. (p )eUT(p )C-
1
e 

C n C n 

transforms like u (p n) i.e. it ha 

the same Dirac equation as ii ( p , 

uc(pn)(ly 

Now we pass to the realization 

interest, We shall ·see that in thE 

tions with. experiment, e.g. the pi 

conservation is forbidden. 

13 



)~e"<(p -p p -p) 
p I 4 3 2 ' (n-1,?.) 

( 15) 

such situations we shall_ !"equire for vectors 

be equal up to the sign. We, shall call 

The universal threeleg is defined only 

in the reacthn, and it is in~¢-

particles. -

pass into an · antiparticle, 

must simply remain unchanged, For . exam pi~, 

rows of the first ,colurrm, If a crossing turns, 

,then vectors are to be equal only up 

we · set for the first particle 

-I} p )=±elk(p p p p ). 
214 1234 

( 16) 

the universality there are the two following 

) . . .. 
in each column are ·equated· with 

x - spin transformations o( both quark 

-.::i<>ntirA 1 '(if the kinematics is the same). 

law is written down as 

k· d T 
(p 1p P P )y y·(a +a >. )]u (p ) 

234p5kkd Cn ( 17) 

~· '~ 

In terms of the Dirac equation solu-

C - is the charge conjugation matrix, 

transforms like u- ( p ) • 
n 

column are. equated, omitting 

cumbersome situations, where basic :Vectors 
pt~ons ( rotation) of ones for particles. This is _ 
~Ions of SU ( 6 ). · · 

·: ~. 
r 
1 minus if it· stand in the .Table, As to the third vectors ( k • 3) they must 

be equated just as in the. case 1) due to group considerations, Now the 

x -spin transformations for antiquarks 

1' d T nl. d T 
8 u (p )=-1-ico >. +[-e \P P p P )(a +a A) 

C n - 2 d ·p 1 2 3 4 I I d 

( 18) 

-e"2(p p p p )(a +ad>.T)+en3(p p P P )(a +ad>.T)]y y lu (p) 
p."1234 2 2d p1234 3 3d p5 Cn 

differ from those for quarks ( 8),. Here we see a play of signs that is 

the same as in SU (€) w. However now it is a consequence of the crossing 

symmetry, Note that it is difficult to apply directly the charge conjugation 

to transformations due to the momenta involved ( even in the collinear 

case), Just as in SU ( 6 ) w • u c< p ) 

indices, However the quantity 

is not a quantity with upper or lower 

T -1 n3 -T 
u .. (p )=U (p )C e y (u (p )=Co (-p )) 
Cn Cn pp Cn n 

( 19) 

transforms like u (p ) i,e, it has the upper index: 
n 

the same Dirac equation as ii ( p ) does n 

U C ( p n) (i y p n + m )= 0. 

A 
u .,(p ) • It satisfies 

C n 

Now we pass to the realization of an universal basis in the case 2) of 

interest. We shall -see that in the case 1) there are severe co~tradic­
tions with experiment, e,g, the pion-nucleon scattering with the parity 

conservation is forbidden. 

13
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Restrictions on . the Basis in the SU ( 6 ), ( case 2) 

In the case 2) the total crossing symmetry give_s the following 

restrictions on the threelegs. A vector associated with the normal to the 

reaction plane is the same for all particles; It is written down as 

·"" 
n =e (p p p p )=N (s-t)(t-u)(u-s)£ , p p ,p , 

JL JL I 2 3 4 I • . IL'"'P IV 2/\ 3p( 2 0) 

where N 1 
is a positive normalization factor. 

For the second vector of the first particle we obtain 

12 P1v e (p p p p ) -=£ >. --[ A(stu 1234)p >.-A(tsu1324)p >.1 n , 
1L I 2 3 4 JLV p i m I · 2 3 1L 

(21) 

where A(stu1234) = A1 (stu1234). 
'The function B 1 

in ( 10) turned 

out to be expressed in terms of A. Transformations for the first particle 

are determined by one function A ( stu 1234) with the properties 

A(uts1432)"'- A(stu1234) 
(22) 

( an antisymmetry under permutation of pairs of arguments 1,5. and 3, 7) 

and 
A ( stu 12 34) + A (ust 142 3) + A ( tus 1342 ) "'0 ( 23) 

(cyclic permutations of pairs of arguments 1,5;.2,6 and 3,7). One can 

represent a function which satisfies ( 22) and ( 23) in the form 

A (stu 12 34 )= f (stu 1234)- f(uts 1432 )+ f ( sut 124 3)-fCust142 3 ), ( 
24

) 

14 

l\ 
li 
1\ 
" \ 

I 
I 

\ 

' 'l 

\ 
i 

J 
\ 

/ 

where f is a completely arbitral') 

function A is 
_ A(stu1234)=(s 

·where cp (stu) is an arbitrary lata: 

For particles 2,3 and 4 the 

vector ( 21) by means of pennuta 

-{12)(34), -(13' 

respectively.' 'These permutations 

representation of the ,Klein {our­

that one must mutually transpose 

p 4 . ( and correspoding masses) 

going refers to the first vector I 

it is inVariant under permutation: 

structed according to {.u). Fa~ 

e b ( p p p p ) = A (stu 12 3 4 )( p + · 
1L I 2 3 4 _ . 2JL 

'The third · vectors for the 

applying to (27) the permutatic 

(12) (34), ( 1 

of the J<lein ·,four- group. 

For the second and thir< 

tion condition is . 

. ·.n·.· ·2 .· '(pi· 
(e )2 "'A·(stu1234)[-

·- 2.A (stu 1234) A (tsl 



symmetry give.s the following 

vector associated with the normal to the 

all particles, It is written down as 

I -(s-t.)(t-u){u-shllv>.p PIVP2.\P3p(2o) -<'. 

first particle we obtain 

[ A (stu 12 3 4) p , -A ( tsu 1 3 2 4) p , 1 n 
. 21\ 31\ ll (21) 

The function B 
1 in ( 10) turned 

A. Transformations for the first particle 

A ( stu 1234) with the properties 

A (stu 1234) 

(22) 

of pairs of arguments 1,5 and 3, 7) 

142 3) +A ( tus 13 42 ) "'0 

(23) 

arguments 1,5; 2, 6 and 3, 7). One can 

( 22) and ( 23) in the ·form 

(uts 1432)+ f(sut 1243)-f(nstl423), ( 24 ) 

1 

. where f is a _completely arbitrary · fu~ction, .. The simplest example of 

function A is ..... 
A (stu 1234) ;,( s _:u )</> (stu), -( 25) 

'where 4> (stu) is an arbitr~ry t~tally symmetric 'function. 

For partiCles 2,3 and 4 the second vector is .. obtained from the­

vector ( 21) by means of permutations 

_-(12)(34), -{13)(24), (14)(23), (26) 

respectively,- These. permutations and· the identity one form an alternating 

representation of the ,Klein four- group, The operation •-: ( 13) ( 24) means. 

that one must mutually transpose the momenta. p: with p. .and p ·with 
. . . 1 3 . 2 /" 

p
4 

· (and correspoding masses) and change .the common sign. The fore-

going refers 'to the first _vector too;. but being. chosen in· the· form.( 20) 

it is, inVariant under permuW:tions. ( 26). The third basic vectors are con­

s~cted accord~g to (.1;). B'o~ .th~ particle -I we have 

, . P <P P > . P <P P X27) 
e 13 (p p p p )= A(stu1234)[p + Ill 1 2 l-A(tsn13?4)(o + 1fl 1 3 

] 
ll ·1. 2· 3 ·4~ · . 2/l. IT'2 3/l m2. 

I I 

. The third' vectors for the particles 2,3 and 4 can be obtained by 

applying to ( 27) the· perm~tations 
(12) (34), (13) (24), (14) (23) (28)' 

of the Klein Jour- group, 

For the second and third vectors of the ·particle 1 the normaliza:_ 

tion condition is: · 
2 

· n. · -2 -·' ·(plp2): · 2 -' 
(e ) 2 =A·(stul234)[ 

2 
-n>~l+A (tsu1324)[ 

IT' I 

2 
(p lp 3) 

. m 2 
t 

. (p p )(p p ) 
-2_A(stu1234)A(tsu1324)[ 1 2 1 3 +p p ]=1 

. ' . . 2 2 3 
m 
'I 

15 

-m2]-· 
3 

(29) 

(k=2,3). 
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Due to ( 22) and (23) this expression is symmetric under any' permuta-

tion of pairs s , m 
2 

; t , m 
3 and u, m

4 wth each other. 'Thus, 

the total crossing symmetry makes the threelegs of ·ali particles in the 

binary reaction be defined in terms of one function A ( stu 1234) willi 

the properties ( 22) and ( 23). 

,~ Restrictions· on the Basis in the Case 1) 

· In the case 1) the· particle 1 three leg is given again by the formu­

lae ( 2 0 )- ( 23) and ( 2 7). However m this case transitions to the particles, 

2,3 and 4 are performed by the permutations ( 28) of the Klein four- group 

for all three vectors ( k • 1,2,3). This makes the particle and antiparticle 

x -spin ·transformations be the same. But here the common direction 

of the first vectors for both initial· particles is opposite to that for final 

ones, unlike the case 2) where the first vector is the same for all par­

ticles. Because of this in the case '-1) there are no invariant parity con- . 

serving amplitudes for binary meson- baryon reactions •. 

4. Classification of SU (6) Multiplets 
X 

Above we confined ourselves mainly to the quarks. 'The mesons 

and baryo~s are- described by the higher representations· of SU ( 6 ) which 
)( 

are the direct products of the quark ones. 

Mesons. The mesons can be described by tensor 

transforms like 
-s 

u (p)®u (p): 
A • 

SM 
8
(p) ... .!....[tc/>. + e•ky y (a +czd,\ )

1
M(p)]

8
• 

A 2 d jljlS·k kd A 

B 
The quantity M (p) satisfies the equations 

A 

16 

B • 
M (p) wh1ch A . 

(30) 

--

l 
I 
:'~-~- '.· ~~ -

' Jj 

~~~ 

!I 
·i 

~ 

t . . < 
'.,. J ~ ..:.: ~ ' 

- . . B 

(iyp +p.) ,M, (p)=O; 
." aa ,....a a 

·which are in..;.ariant under ( 30). 

"\, · • The supermultiplet of 0- a 
. . . . ) 

";· ;· 

'-

respect to SU ( 2) x SU ( 3) as follo 

B 1 b 
M (p)'=-1 [-<f, (p)+ iy y 

A _ .)2 · a I' ~ 

• :a 
where e 

b v 
and b (p) 

. _p." 

is the third· basis VE 

are the wave functic 

(p2+p.2)4>b=0, (p2+jl: 
, a ... 

_The last equations are invariant 1 

, which follow from ( 30) and ( 31). 

In splte of the pre~ence of 

fact defined without any reference 

'the 'meson wave functions transfol 

.. were composed of quarks and ar 

multiplet 

. ' b 1 I - q, (p) + 1 yy 
.)2 . a p. . 

.. This quantity tr~nsforms from the 

quark law ( 8) and the transposE 
. . . ._ -.I~ •. 
Multiplying by C- e" 1 y . (see . p. p. • 
convenient quantity~ ( 31) with on 

,-

.- 1. 7 



symmetric under aey 'perinuta­

u I m 
4 

wth each Other, Thus, 

threelegs of · ali particles in the 

of one function A (stu 1234) willi 

again by the formu-

makes the particle and antiparticle 

same, But here the common direction 

particles is opposite to that for final 

first vector is the same for all par-

1) there are no invariant parity con­

baryon reactions •. 

mainly to the quarks. The mesons 

higher representations· of SU ( 6 ) which 

" 
described by tensor 

8 
M A (p) which 

d B 
(a +tz ),. )

1
M(p)]A. 

5 k k d . 
(30) 

,cl 

t 
~·-
' t r­l :\ 
' .• I 
;I 

I I, 

·1· 

: I.> 

r 

\' ,, ..... 

' < - -~ 
I,-

,·....::.· 

'. 
~-

· . . s· ·, . {3'b. · ·: ·. 
'(ljp +fL)aa'M'a'~(p)= 0; 'M A (p)_(iyp~fL)f31i =0 

\ 

•. I 

\ 
·which are in.,_;.::tri~mt ·under ( 30). 

._.,. ·-·/:-

.,, • The supermultiplet of 
0 and_ 1- mesons 'is decomposed willi 

respect to SU ( 2 ) x SU ( 3). as follows 

'/ 

B 1 · b • •· b -iyp+fL o3 
M (p)'=-· 1(-cf, (p)+ ly y b (p)l leY y la(3 

·A : .,j''i . a · . fL 5 fLa · 2 fL V V 5 ·_ 

(31) 

'. 

.. :3 
where e 

. b . 

is the third basis vector for a given particle, .and ¢ (p) • a-:. 

b v 
and b (p) 

, _fL a 

are the wave functions of the 0- and 1""' nonets 

'2 2 • b 2 2 . b b 
(p +Jl )¢ =0, (p+fL )b =0, p b =0 

· a · · fL" • ll fL<t 

1 

The last equations are. invariant under transformations ¢ and b 

. which foUow from (30) and (31). '. 

In spite of the presence of vector 
e. a in ( 31), the' multiplet is in 

ll 
defined without any reference to the basis. 

1 
Really, ;.Ne . suppose that 

-. llie. meson wave f~nction~ transform llke . u ( p )@u e:.< p) as if the. mesons-

.. were composed of quark~ ·and antiqu"':rks·~- He~ce we find for the meson 

·ract 

"-. 

- - . . ' 

multiplet 

l . ::- b : .. . ' b . -! y p + Jl . 
-=I-¢ (p)+ly·y b _(p)l . !y 5 C 

. ,j2 . ' a fL _s ll a . 2 /l . 

_(32) 

This ·quantity transforms· from the· -left 6rid from the right' ac:cording to the 

quark law ( 8) and _the' transposed antiquark law ( 18), respectively; 
. . ·. . 1 • . . . ' . 

_Multiplying by c- e';r /l . , {see (_19)) from llie r~ght, -..ve obtain more. 

convenient' quantity-( 31) with one upper and one lmver indices • 

. -
17 
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~> 

I, 

.;.. 

'Taking into '<;tccount the Lorentz :conditio~ we can expand 

· - in the basis ·vectors.· 

. .. 
so that 

b • k' b 
·. b = e V 

p.a p. k a 

b • k' 'b 
vk =e b (k=l;2,3) 

a , p. p.a 

B - - 1 • b b 

M (p)=-(¢ +s~ V. )sx = 
A vT . a k k a 3 

1 -I yp+ p. b ')l b b b ' 
=-:=-( V +Is V -!sXV _ '+ sX¢ .) , 

y2 2p. 3 a 1 2 a 2 I a 3 a 

_! ' 

b· 
b- ' 

p.a 

(33) 

(34) 

wh"ere s ~ are spin matr-ices ( 2). for a given particle, -Let us ·introduce 

· components 

.v 
+I 

v -i v 
I 2 

,;T 

v +i v 
,V 

0 
c V

3
-, V-I 

l2 
1 2 

instead- of V • ''They correspond to the projections 1, 0 ,-1 of the 
k -

usual spin provided :a quantiz~tion axis is directed along e • 3 
1 'Then it ' . . . .. . . . p. (-

is'seen fro'm (34), tha~--V+ ,¢,V form'the x-spin tripiet with the 
_ . . , . 1- -1 · 

projections.+1, 0, .:.1 , and V ·-turns .out·to .be the singlet, Here we_ deal 
- . 0 ' • 

with- the spin re~rangement which is the same as~ in ihe SU(6) • In the 
.. . I W 

latter group -the 36 sometimes is represented arial~g~usly· as/14/ 
. B - . ' • 

M A= ( P +a V )o- · if all momenta are in the 
. k k 3 , B 

A! has the non- zero trace· A . 

Z -direction in some-

- coordinate system. Stress that 

A •- a· · .-· •3 
M =y2V =y6e b 1 

k . · _3 a _ IL P. 
( 35) 

.18 

. ,. ~ 

-,_ 

_I 

-1 

' . ~ .! 

- I 

'~ 

: ~' 
1_, 

-1' 
1·-

'1 

··f_· 
t 
J 

-' 

·~ 

L 
t· 

. ~ 
'( 

I 

-

-, 

.­,. 

--

_/ 

,where bll 

part of the 

.-

is the 1- single( of s 
B , . '-'A-, in the, SU(6)x "" 

the su ( 6)w )~ 

Note also that 3&-plet for 0+ 
1: 

B - 1 - ) b 

M.(p)=-[-¢ + iy 
A y'l a • I' 

It splits into 35 and 1 _unlike 

Baryons;'· 'I'he baryon 56-ple 

product of three· quark representatic 

'ces A~(a, ~), B,(fl,b)~d C=(y, c) 

;tisfied 

- . . 

(lyp+m). ,B ,:: =(iyp-+11') 
. _ · · a a a a B G, · . , 

' ·" 

· (the Bargmann- Wigner equation). 
• • ~ .< • 

'I'he ·56' (}f the four- momentum 

_to SU(2)€)SU (3) ·in a manifestly re 

:. < 1 • · • -- - I y p 
[l (p) .. -t/1 .(p)(y --

ABC y"f, p.aabc: p. : 

-where C 

and t/1 
ll 

-d +c .t/1 ( ly'p+m· 
cad fh Y 5 C 2m 

is the charge conjugat 

is the spin 3/ 2 ~ave f 

19 



Lorentz .condition: we can· expand 

b •k 'b 

b· 
b. ' 

pa 

--, ... -

V k a = e f1 b pa ( k = 1; 2, 3) (33) 

_., 

b b J( 
(¢ +sxv )s = 

·a · k k a. 3 -

{-34) 

-.iyp+p' b ·.,.. b b b 
• V +Is V. -lsl(V '+sX¢ .. ), 

2p 3 a 1 2 a 2 I a 3 a 

" 
for a given particle, Let us introduce 

/" 

V +IV 
I 2 V =V , V 

0 . 3 ·-1 ;./2 

projections 1, 0 1 -1 of the 

axis is directed -along e ~ il t 'Then it' 
. f1 

r'orm' the ~ -spin tripiet with . the 

. out ·to be the singlet, Here we.· deal 

which is· the same as' in fue SU(6) , In the 
w 

is represented ari~log~usly· as/14/ 

momenta are in the z -direction in some 
B 

M 
A 

has the norr zero trace 

a -- •3 =v 6 e b • 
3a f1 fl. 

(35) 

I. 

-

.--rs. 

· .. ·. ·_.· ·.· .. ~_.·_-·._-:_.··._· .. ; '. '/ . ' 

"·,' '. . ~ ' ;- ·- -~ ' 

·. . . ' '' " ,. ·, . . . 
. - . . 

' ' 
.· 

t 
I "-

~ 

l 

;where bfl is .the 1- singlet of SU(3)~ As b~ enter';; ·the remaining 
B . . . .. ' 

part of the '!A ' in the. SU(6)x -we deal with _the 36-plet (just as in 

the 

' 
' 

su ( 6) ). . . w . 
Note also· that 3G-plet for 0+ and· 1+ particles has· the form 

,-

a· 1 h b -iyp+IL 
M. (p) =- [- ¢ + i y y' b 1 ---'--'-
• A ·;,; 2 a. • f1 5 f1a . 2p

1 

(36) 

It splits into 35 and 1 ufl!ike the mt,tltiplet ( 31) ~f interest •. 

Baryons.·. Th~ baryon 56- plet B ABc tr'ansforins like the direct: 
l _,.. . . ' ' 

produ'ct of three quark representatio-ns, being totally symmetric. in · indi-

ces Ada, a), B=(f3,b)and C"'(y, c).'The'thre~ Dirac equations are sa-
. -- ' . 

.tisfied 
. . ~ 

. . ' 
(lyp +m ). ,B ,:. ,'(lyp+_lll')t~t~'B t~' ;,;(_1_ y_p+m). ,B . , = 0 

·aa aaBG,. · .. _.,...,,_,. A,_,hC... yy AByc . 
•. A • ' , • 

"· 
(the Bargmanrr Wigner ·equation).·· 

,. :' 

'The 156· o'r the foul'-mo~entuin ·. p. is decomposed with respect 
• f1 . . . . 

. to 
1
SU(2)€)SU (3) ·in a manifestly relativistic manner as follows 

·I 

·n (p);;,'"2_ ~ •.. (p)(y iyp+'m C)~~lc ~d (p)(y l_yp+m C>~:a+ 
ABC. .,;"'f .. f!Uabc . f1 211! ,...,y V18 abd yc 5 2m "'+-'. 

··where 

and 

"'"I,' 

c 

t/Jp. 

I y ·p + m· C ) + c . t/1 d ( y 
ya . bed aa 

: d 
+c . ·.,. ( y 

_cad '~'[Jb ·s 2111 

is th~ .charge conjugation matrix, 

is the spin 3/2 ;;ave function: · 
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·' 
lk 

(37) 

lyp+m 

2 
C)t~ I, 

m PY 

is the Dirac spin'?r• 

-..-_/ -



-. 

/ 

I 

··: ""'~. 
I 

' ~-· 
-·-."' 

. ; 

., 
...... : 

(iyp+·~·)t/J(p)=O,-(Iyp+m);,t;. (p)=O, p t/1 =0, y.t/1 .=0~ 
' - ' ' ' . . ll . . ' ll ll . ll ll 

. ·· iyp+lll ··· .. lyp+m 
The expressions ( y . C )R and ( y C )13·. are symmetric 
. ll 2 m PY · '· 5 · 2m y . 
and. antisymmetric in' f:y. respectively. This provides the symmetry 

.; . properties .of B ;Be . In. parti_s:ular, the first ter:m is totapy · symm'etric in 

~- af3y · (and, therefore, in abc). Such a represent~tio;. of 56 was used 

.. in th~ coll~near case/ 4 / • ' It follows from' ( 3 7) that B ABC is. written 

' 

down·as 

BAec,.,::.!_;;.;bc(C..:i_ .lyp+my) _ 1 };(t~bdJ."<c-tlyp+my(?8) 
..[2 lla 2tr ll f3y \1'18 Yd · 2m 5 af3 

l '1, 

~ith summation over three cyclic. per~utations of A,B,C. Further, for 

the antibaryon 56-plet we find (in _accordance with. ( 19)) · 

-> /t' 
I 

. ABC ' 1- abc· iyp+,m :· •3 •3 1 
·B~ (p)=--r/1. (c-1 --.--(e y)y (e y))• + 

.. , c . ' •, ·'2- (! 211' fl' . yf3. 
V fla · 

' ( 39) 

/ 

+__!_ Y.·£abd t/1 c 

vn eyd 

< c-~-"'-- r ' 2m 5 f3a ,_·. 

where 

' T -1 •3 I . . - T. I 

t/J,.(p)"" t/1 (p)C (e y. ); r/1 (p) cC'l/• 1{-p) 
c c. . v v c ' ' 

( 40)_ 

t/1., { p).;:, "' : ( p) c -I(; 3 y ) 
. c ll, c fl· ' v v 

_T 
t/J (p)cCt/J (-p). 

Cf.! • fL 
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: 

Here the unitary indices are 

notation is used • 

Note, that the original 
•3 

e and transforms like u 
ll c 

amplitudes it is expedient to 

indices. This leads us to ( 3 

In conclusion of this s 

tions may be treated quite a: 

5. Constn 

Possessing its own ba 

forr:ns according to . its own l 

general rule for writing dow1 

tions with arbitrary number < 

by contracting the upper ind 

rix" being inserted to transf 

another. For example, the c< 
B D 

product MA(p 1 )M~(p 2 )' 

J~~b(pi)S 

where S ( 1, 2) is the matrix 

into that of particle 1. Due 

if there were only indices 

over f3 b and M (p ) ov 
2 . 

• obtained by contracting in s 

some examples. The . amplitu• 

F ua'a (3) S 
a 



•, ,'-

+ m ) r/; ( p ) ,. 0, p 1/J = 0, y .!} = 0. 
!1 I' I' I' I' ' 

!y p + m c ) and ( y C )f3y are symmetric 
'{3y _·. 5 • 2m . . 
ctively. Tius provides the symmetry 

I 

the first term is totapy symmetric in 

,-

Such a representatio~ of 56 was us~d 
-ABC . . 

from ( 3 7) that B · is. wr~tten 

) _ 1 ~ c'~bd J. c (C~~y()38) 
f3y J 18 Yd / 2m _ 5 af3 · 

permutations of A,B,C. FUrther, for 

(in accordance with_ ( 19)) 

' ly p+ m _ • 3 • 3 · · · 1 
( c-1 --'--- ( e y) y ( e y.) ) ' + 

2m · I' . y(3. · 

( 39) 

/ ~ ( c -I I>: P + m 

e-yd 2m 
y5)(3a'·· 

:..•) 

-1 •3. ._ -"I'' . 
(e y ) : .p ( p) c C'l/' 1 (- p) v v c . 

( 40)_ 

-1( ;a Y 
v v 

-T 
1/J (p)cCI/Ju.(-p). 

CJL - r . 

I 

Here the unitary indices are omitted and for . the spinor irtdiees- the matrix 
notation is used. 

Note, that the original antibaryon wave function does not contain 

e" 
3 

and transforms like n @ n 0 u • 'When writing down the invariant 
!1 ' c c ' c ' ' 

amplitudes it is expedient to use the quantities with the lmver 'or upper 

indices. This leads us to ( 39 ). _ 

In conclusion of this section we note, that other SU ( E ) representa-
x 

tions may be treated quite analogously. 

5. Construction of Invariant Amplitudes 

Possessing its own basis, each particle in, a given reaction trans­

forrps according to· its own law. Nevertheless we can easy formulate a 

general rule for writing down the . SU ( 6) x in·.rariant c.mplitudes for any reac­

tions with arbitrary number of particles. An invariant amplitude is obtained 

by contracting the upper indices with the lower ones, some "metric, mat­

rix~~ being inserted to transform the corresponding threelegs into one 

another. For example, the contraction of !he indices B and C in the 
B D 

product M ( p ) M (p ) ' is written· down as 
A I C 2 

{3b , D. 
!~A (pI) S {3,8'(12H! {3'b (p 2)' 

( 41) 

where S ( 1, 2) is !he matrix which transforms the threeleg of particle 2 

into that of particle 1. Due _.to S( 1,2) the product ( 41) tran~forms a9 

if there were only indices A and D, since the variations M (p ) 
1 over {3b and M (p 2 ) • over\ f3 'b cancel. An invariant amplitude is 

obtained by contracting_ in such manner all quark indices. Let us give 

some examples. The am~litude of the singlet- quark scattering is 

Fn-z'a(3)S (3,I)u (1) ¢C4)<f>(2). 
a'a a a ( 42) 
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~,,_..,_ --" -~ .... ;;,~.;:_- -: ._---"*'7?_:_ . ._.::.., 

y 

For the quark- quark scattering we have 

F iif3'b (4)Se~•e~(4,2) uf3_ (2)u·a'a(3)S , (3,1) u- (1) + 
pp b- aa aa 

-{3~ -a~ 
+F u (4)Sf3'l4,l)nf3b(l)u (3)Sa'a(3,2)ua~(2). 

Th.~· general .amplitude of the binary. meson- baryon reaction 

B (1) + M ( 2) ._. B ( 3) + ~· ( 4) is written down as 

-aa,fJb, yc · B (3)S ,(3,l)St~t~'(3,l)S ,(3,l)B, {3' , (1)• 
. aa ~-'~-' yy a a, b, y c: 

.fF 
-l> 

. 
-(e . o'd . . -D E } 
M" (4)S ,(4,2) M , (2)S "'"(2,4) + G M (4 )M (2) + 

ud H £ e u u . 1 D - E 

+ Baa,f3b,yc: (3)Saa,(3,l)Sf3f3'(3,1 )Ba'a~f3'b,o/~) • 

. ( 43) 

• F S ,(3,4)M, (4)S ,(4,2)h', (2)S.,," (2,l)+F S ,(3,2)M , (2)S ,(2,4) • (44) 
{ 

. ' -E e . S' d ;, £ e 

2_yy y_c: EE Ee· uu 2_yy yc: Ef ' 

·-._a' d 
• M , (4)S

8
,
8 

(4,1) + 
f e.· 

+ G s , (3,4)Ma:.i(4)S .. ,.; (4,1ni. E(2) + G s ,(3,2;Ma:d·(2) s .. ·, .. <;,1,ii E (4)}+ 
2 yy y c . u D E 2 yy . y c: u u '] E -

-aa,pb, yc 
+ F B · · (3) S ,(3,1) B , " . (1) Sf3t1,(3,_4). 

3 aa a a,ud,E'e p . 

-O"d · ("e 
.:M (4)S ..... (4,1)S ,(3,2)M, S ,· (2,1). 

f3'b u u _ yy y c: E E 
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1n eqs. _ { 42 )- ( 44) F and G 

on the !VIandelstam variables s 

we keep all ·indices. We can an 

baryon- baryon processes, for 2-

also the amplitudes of processe: 

is produced. The metric J m_atrix 

amplitudes will be LOrentz- invar. 

ed out of the momenta of particl 

For binary reactions such 

in Sec. 3,· one· vector in all thr• 

plane. In this case it is easy tc 

forms the first particle vectors 
32 33 34 p3ll vectors e , e , e ~ __ .r;._ 

P. fl fl I m
3 3 

change the normal n = ell = e 
fl P. I 

1 r 
S(3,1) =-< y e 

2 ' 

mere summation over p, a= 1,: 

S (3; 1) depends on the marne 

we may· replace the numbers 3 

S ( 3,1) turns out basis into ott 

. lp 3p 
S ( 3,1) y e = y e, 

p. fl fl ... 

In particular, for p = 1 and 

x/ For derivation see App 
ral matrix S ( 3, 1) which transJ 
another. 

2"' 



we have 

a'"(3)S ,(3,1)u (1)+ aa aa ~ 

( 43) 

1) ua'"(3) S , (3,2) u · (2). 
. a a aa 

meson- baryon reaction 
-"' 

down as 

S ,( 3, 1 ) B , ~, , (1 ) • 
yy a a,,.- b,y c 

.. } -D E 
,.,(2,4)+G M (4)M (2) + 
u 1 D - E 

3,1)B, {3' ., (1) • a a., b,ud 

\2)S (2,1)+F s ,(3,2)Mce,(2)S ,(2,4) • f44) 
'e 8'8 2 ')IY y c H ' 

·._ -8' d 
• M , (4)S

8
,
8 

(4,1) + 
l e.· . 

E . "' . ; . 8-~ d . • - E } 
" (2) + G S ,(3,2)M , (2) S.,,.,(2,1)M (4) + 

E- 2 yy . - y c u u E · 

,l)B , ., . (l)Sf3{3,(3,4). 
a a,ud,(e .. 

, 
f e 

,2)M, S, (2,1). 
y c f ( 

22 

1n eqs. ( 42)-( 44) F ·and G 

on the l\1andelstam variables s 

are arbitrary form fac~ors, which depend_ 

and u • To illustrate the procedure 

we keep all ·indices. We can analogously write down amplitudes for the _ 

baryon- baryon processes, for 2- meson annihilation. It is easy to construct 

also the amplitUdes of processes,. in which an arbitrary number of particles 

is produced. '!'he metric matrix S , however, depends on threelegs, and 

amplitudes will be Lorentz- invariant if and only if threelegs are construc-t­

ed out of the momenta of particles in the reaction. 

For binary reactions such a realization of threelegs was obtained 

in Sec. ·3, · one- vector in all three legs being the normal to the ·reaction 

plane. In this case. it is easy to deriv:) the matrix S ( 3, 1) which trans­

forms the first particle vectors e 12 , e 13 , e 
14 

= ~ into the third particle 
32 33 34 ll 3 P- P- 1'- l m 3 

vectors e , e , e "" __ £._ , , respectively, and which does not 
P- p P- l m 31 

change the normal n =ell J e • It may be represented in the form 
P- P- P-

S(3,1) =-1-( j e3p 
2 P-

e lp+ 
P-

3a I a 
e a e 

v v>. >. 

( 45) j 3p lp 
e e 

P- P-

mere summation over p, a = i,2,3,4, is implied, Via threelegs the matrix 

S (3; 1) depends on the momenta of all particles in reaction. Of course, 

we may· replace the numbers 3 and 1 by any others. When we say that 

S ( 3,1) turns out basis into other, we imply its property 

: lp 3p 
S ( 3,1) y e = y e S ( 3, 1) 

P- P- P- P-
( p = 1, 2, 3, 4 ). 

( 46) 

In particular, for p _ = 1 and p = 4 

x/ For derivation see Appendix 2. '!'here one can find also the gene­
ral matrix S ( 3, 1 ) which transforms two arbitrary fourlegs into one 

another. 
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,.,;! 

y pI 
[S(3,1),y 11 }=0,S(3,1)--

p p lm 
I 

Further, note the relation 

~ S(3,1). 
1m

3 

+ -1 
y S (3,l)y =S (3,1)=S(1,3) 

4 4 

and the group property 

s ( 3, 2) s (2, 1 ) = s (3, 1 ) • 

( 46) 

( 47) 

( 48) 

each 

( 44) 

Due to these properties we can essentially simplify amplitude in 

particular case. For example, after putting { 31) and ( 37) into 

we obtain the amplitude for all 0 + -1- ... 0 + _)_ reactions in the 
~ 2 2 

form 

__!_F ~abc(3)e33S( 3;l)ie13 y y t/ld:(l)f, ,(¢,"'( 4)cf>b'( 2)+ ;j;b'(4)cf>.,•(2)). 
6 3 p p V v 5 b a cd a b a b ( 49) 

~Hence, the well-known SU (6) relation for collinear events/ 
5

/ w . 

u : u 0: u = 2 : 9: 24 
17-p->17- ~+ 17-p-+170~ 17-p .. 17+~+ 

(50) 

is valid for all angles in the exact SU (6)" symmetry. 

Sometimes it is useful to bear in ~ind, that the S (3,1) between 

spinors with the momenta p 
1 

and p 3 ( for example, between u ( 1) 

and ; ( 3) ) may be reduced to 

S (3, 1) .. .{ + If y ( p + p ) 
I 2 p 2 4 p 

(51) 

24 

.... 

. where f 
1 

. and f 
2 

are s'o 

their ratio f I ! f Z is esse 

tity 

m m IC2s-m2 .f.2m 2 -m 2 )A 
I 3 , I 2 3 

' . . 2 2 
-2 ( s - u + m 2 - m 

4
) A ( tsu 

to the quantity 
. I 

m (s-m 2 +m m )A(stu1234) 
. 3 ,2 1 3 ~ .. 

. 2 
+[t-'(m +m) ][m 

. I 3 I 

Th~ ratio· f
1

: f
2 

may be al 

pendix 3) ~ Stress, that up to 

directly in terms of the functi 

the metric matrix S is alw 

_<;~;re able· to replace all S 

possess'simple . propertie~, wl 

repi~cements are, expedient 

Note that using some m 

transform the wave functions 
st.p ( ·· ) ( J e. p • 1,2,3,4 cf. 
p 

The standard· basis may be < 

and enk Y y for k •1,2,: 
. 'p p 5 

vely. The "primed" w:tve fun< 

·" ·I d 
Bu'(pn)=-

2
-lc.> >.d+y 4 u 1 (a·1 ~ 



) 
y p 1 

,1-
1m 

1 

y p 3 
.-S(3,1). 

1m
3 

-1 .. s (3,1)"" s (1,3) 

( 46) 

( 47) .... 

( 48) 

can essentially simplify amplitude in 

after putting (31) and (37) into 

for all 0 +.!... .. 0 + _l_ reactions in the 
2 2 

Y Y t/Jd:(l)€, ,<¢a'(4)</>b'(2)+ ¢b'(4)</>a'(2)). 
11 5 b a cd a b a b 

( 49) . 

relation for collin~ar events/ 
5

/ 

0: CJ "'2 : 9 : 24 
rrOt.. 11-p ... rr+t..+ 

(50) 

SU (6)" symmetry. 

bear in mind, that the S (3, 1) between 

and P 
3

_ (for example, between u ( 1) 

to 

(51) 
->f +If y (p +P.>, I 

1 2 p. 2 .... 

24 

' '· 

. where f 
1 

·and £
2 

f : f 

are· ~·aile func.tions of s. and· . In. practice only 
. . . 

their ratio 
1 z 

is essential which is equal to· the ratio of the . quan-

tity 

m 1 ~ l<2s-m 2 +2m 2 --m 2 fA(stu1234)+(2s-m 2 +2m
2
-m

2
)A(stu3412)-

3- ' 1. 2 3 . . 1 ·4 '3 

. ( 52a) 
. 2'2 2 2 - · 

-2(s-U+m -m-)A(tsul324)-2(s-u.-<m +m )A(tsu3142)1 
2 _4 . . . . 2 4 

to the quantity 
i 

m (s-m 2 +m m )A(stu1234)-i-ll' (s-m 2
+ni m )A(stu3412)+ 

3 213- 1 4 13 

(52b) 

+[t-'(m +m )
2

l[m A(tsu3142)+m A(tsul342)]. 
· 1 3 I 3 -

'!he ratio · f : f 
I 2 

may be also 1 written ih other forms (see_ AP-

pendix. 3). Stress, that up to the • common multiplier eq~ (51)· is expr'essed 

directly in terms of the function A( stu 1234). Such a reduction of 

the metric matrix s . is always possible. For example, in eq: ( 44) we 

a:re able· to replace all S However; the expression (51)· does not 

pos_sess simple properties, whkh are inherent 'to S(3,1). Therefore,' such 

replacements are. expedient only on the final· steps of ·calculations. 

Note that using some matrkes S ( see Appendix 2) we may 

transform the wave functions of all particles to a some standard basis 
B I. p ( . . \ ·). ( I 7/ ) . , ( . ) ' ( . ) ( ) e. p • 1,2,3,4 cf. , e.g. for quark u P,. = S st.,n u p, • 
/L I . ~ 

'!he standard basis may be chosen in such a manner that e ·~· 4 "'(0,0, 0, i ). 
/l . 

and enk Y Y for It •1,2,3 turn into a y , o· ·y , a . ~especti-
.pPS · 14 24 3 • · 

vely. The "primed" w:tve functions transform as 

8 
'( ·1 . d. .. • d - . . d - d , 

u pn)=--21c.> Ad+y4al(a,+a1>.d)+y4o2(a2+a2>.d)+u3(a3+a3>.d) lu (pn) 
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"-~ -

over each quark index. In .these terms the transfonriations coincide for-' 
' .• I • ' .~ .._ - • ' 

ma.lly with the Lipkiri- Meshkov ones; arid amplitudes are constructed out 

by. th~ ~irect co~h-a~tion of iridicesx/. 

· · Inconsi;,te~cy of case 1). . Stress· that the metric matrix ( 45) con-

nects the !Xtses, · which differ ·from each other. only in a rotation without 
e • 1 for the ini-

11 ' ' 
to ·.that for the final particles. --Therefore the 

reflection. In the case 1) U1e direction of the vectors 

tWJ par:ticles is opposite 
serves as the metric matrix between the ini-matrix-.ts (3, 1) e 13 y y .. . p. p 5 ' . 

tial and final particles. It includes the reflection. Hence, in the case 1) 

the parity is 'violated in the ~eson- baryon reactions. So, in the simplest 

example of the singlet- quark scattering the invariant amplitude. is pseudO-' 

. scalar: u(3) s (3,1) e13 y y u ( 1 ) • Thus, the requirement of the parity 
' I' I' 5 

conservation excludes the case 1). 

6. The Collinear Case 

Even -after imposing the total crossing symmetry there remains a 
. - ,.-.-·. ·. ' . . . 

family of the SU(€)~ groups. Eac~ of them is' characterized.byits own 

· A (stu 1234). It is. remarkable th~t for the. collinea~ configurations all 

these groups give the same amplitudes as in the' SU(€) symmetrY. This ' . . ' ' . . w . 
can be seen. from the following considerations. 

reduces to the unit matrix 
a) In the collinear case each mah-i.X S 

since now only 2 four momenta are independent; .Really .if we replace all 

s . 'according to (51), then the matrix (y' p 2 + p 4) reduces to the u~it 
I • . · D • 

matrix due to the''Dirac equation and.the identity u(p)y u(p)=+u(p)u(p). .. ·P II!' . 

b) Fu~thermore, for the collinear configurations the . vectors ( 23) ' 

are the linear combinations of two independent momenta p and· q • There-

fore putting the wave function of the 36- plet ( 31) into ·the amplitude ~e 
,·have the possibilities: either the matrix e 3 

y' .l"educes to . the unit matri::c, 

·and th_e 36 can be represented by the quantity -

x/ Since 'S(3,l)=S(3,st. )S(st,1). these amplibides,are, of course, 

identical to the~ abov~ ones. 
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• 3 

or e y 

8 1 b 
¢ (p) = -I - ["" + i v y 

A .;2 'f' a 'p 5 

turns into y CJ • Let us 

meson- baryon processes there are · ; 

We can replace 
• 3 

e y by the unit 

and these amf: form. factors Ft 

amplitudes with the form factors G 
1 

A pa a 
the traces MA(p) .. lflaa (p)(yq)/3 Her 

amplitudes arise because in SU (li) 
w 

Among them only the amplitude with 

the neutral vector meson production •. 

Therefore, for all bases the. co. 

des, Wich are the same as in the 

Let us discuss briefly the tram 

In this case the third vectors turn. Ot 

two independent momenta. So, for a 1 

• 3 .. 
e I' == N 3 ( p - C!l' p I'-pq 

At the same time· an indeterminacy a: 

when passing to the collinear case. 

lk 2k 3k H 
e -=e ~e =e 

I' I' I' I' 

1 
• p e 

i. e. these vectors beco.me identic<;ll 

Threefolds (vertices) correspor 

treated according to · · SU { € ) w • 

As to twofolds, none of three " 

pressed in terms of the momt:nta, an< 
' . 

same for both wave functions. 

Thus , being identical with the : 
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In these terms the transformations coincide for-"· 

shkOV ones~ ·and a~plitudes are constructed. oi:xt 

.. d. x/ tn tees • 
Stress that the metric ~atrix ( 45) con-

. . . ~ 

from each other only in a rotation . without 

the direction of the vectors e"
1 

. IL 
for the ini-

the to ·that for the. final particles, •Therefore 

serves as the metric matrix between the ini­

includes the reflection. Hence, in tJ:e case ·1) 

in the meson- baryon rea~tions. So, in the simplest 

quark scattering the invariant' amplih.lde is pseudo,. 

Thus, the requirement of the parity 

6, The Collinear Case 

the total .crossing symmetry there rerri'a.ins a._ 

Each of ·them is· characterized. by its own 
! '. -' • .••. 

thc;tt for the collinear configurations all 

amplitudes as in the' SU(E) symmetry. This w . . . . . . 
following considerations. 

case each matriX. S reduces ,to the unit matrix 

momenta. are indep~ndent; -Really .if we replace. all' 

(y, p + p ) reduces t6 the unit 
2 4 • 0 .. < 

identity u (p)y u (p)=__:.e_ u (p)u(p). 
p. .• ill' and the 

the collinear configurations the vectors ( 23.) ' 

of two independent momenta !l. and q • There-

the 36-plet ( 31) into the amplitude we_ 

matrix 
•3 

e y reduces to the unit matrix, 

quantity 

these amplitUdes. are, of course, 

26 

., 

a 1 b . b -lyp+m . 
¢A (p) = -=-' -[ ¢ + I y y b ] . I y I {3 V2 ·a p. 5 p.a 2p. 5 a 

•3 
or e y turns into y q • Let us give one example, For the collinear 

meson- baryon processes there are 7 amplitudes which correspond to ( 44). 

We can replace e' 3 
y by the unit matrix in the four amplitudes with the 

form factors F 
1 

, and these amplitudes a.r~ the same as in/ 
4

/ ·• 'I'hree 

amplitudes with the form factors G ~ ( which is ab~ent in / 
4

/ ) contain 
A {3a a • 3 

the traces MA(p)= <flaa (p)(yq)f3 Here e y turns into yq • These 

amplitudes arise because in SU (6) w we deal with 36 instead of 35._ 

Among them only the amplitude with 

the neutral vector meson production •. 

G is of interest, It describes 
2 

Therefore, for all bases the. collinear SU (6) x leads to the amplitu­

des, Wich are the same as in the SU ( 6) w • 

Let us discuss briefly the transformations ·of the collinear SU (6),.. 

In this case the third vectors turn .. out to be the definite combinations of 

two independent momenta. So, -for a particle of the momentum p 

• 3 q p2 
e =N (ll __ IL_). 

IL • 3 . 1L !l q 

At the same time· an indeterminacy arises for- the vecto~s e n I. and en 2 

IL 1L 
when passing to the collinear case, It should be evaluated, provided that 

1k 2k 3lt 4k 
e c e .=: e ll!: e 

1lt lk 
, p e ·= q e = 0 (k=l,2),. 

1L IL IL IL 

i, e, these veCtors beco_me identic<;ll for all particles / 
3

/ , 

Three folds (vertices) correspond to the collinear case, and are 

treated according to SU(6)w. 

As to twofolds, none of three Vectors 
•I: 

( k • 1,~,3) e can be ex-
IL 

pressed in terms of the . mom~nta, and therefore the bases must be the 

same for both ·wave functions, 

Thus , being identical with the SU (6) w for the· collinear configura-

' 
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' '•! 

!:, 
·j; 

I" 

tions, the SU ( 6} " is the generalization of the former to the non- colli-

near case. It is of" interest, that the requirement of the total crossing sym­

metry selects only those groups, which coincide. with SU (6)w" in the col-

linear limit. 

_ ... 7. Conclusion 

Thus,. for the general binary reactions we can construct the fami-

ly of the symmetry groups SU (6) , which leave invariant the free 
' X 

equations and pass into SU (6) w in the collinear case. A lot of conse-

quences ( -e. g. (50)) do not depend on the choice of the group within 

the family. These consequences would be verified first of all. Afterwards 

to fix the threeleg one could use the predictions, which depend on the ba-

sis, e. g. those concerning the polarization" phenomena. In spite of "an 

agreement-in some cases ( e. g.; the Johnson-'I'reiman relations), it 

l.tould be naive to expect.agreement of the exact SU (6)x symmetry with 

experiment. Really, the SU (E)" contains the strongly violated SU (3) • 
' / 

Moreover, the nucleon- isobar mass difference manifests additional viola-

tions. The success of the SU (3) is "due to the lucky conjectured form -of 

its violations. Only after an examination of the structure of the SU (6) x 

violations one will '·be able to give reasonable predictions. 

The authors would like to thank _M.A. Markov, Nguyen Van Hieu, 

I. T. Todorov, B.N." Valuev, and especially v. Tybor and A.N. Zaslavsky 

for helpful discussion. They are deeply indebted to M.S. Marinov for the 

valuable criticism. 

APPENDIX 1 

F:'or bilinear combinations of the spinors which -satisfy the DJrac 

equations (i y p + _m ) u ( p ) ~ 0 
, 1 

and u( q )( 1 y q + m >~ () the foilowing 
. 2 

identities are valid 

28 

/ /' 

/" 

'" 

.,; 

/ 

' ' 
(m 111 -qp);!(lj)y u(p)~-i(m q +11' p J 

- _1 · 2 /1 ' I /1 2, /1 

(m m +qp);(q}y y u(p)=-l(m ~ ·-rr f 
1 2 /1 s". 1 .,, . 2 -

I ~ 

(ll' m -qp);!(q)a u (p)~i. ' P, q u(q)y Ul 
1 2 pv · /1 ""P " p 5 

+£', (l!lq,+ll' p)ii 
/lV"P I " 2 A ·' 

.(rr 111 +qp)~(q}a u(p)~-1• , p,q ii(q) 
· 1 2 · • . pv . /IV"P " p 

-(m q -ll' p )u(q)y .. u(p)+(m.q 
. 1 /1" '.! /1 :" · I V 

am2pu+f311'1Clu-· · -
u(q)u(p)=-i " u(q)y u(p); u(t 

m m u 
-·1 2 

•' 
where a + {3 ~ 1 ,To derive (A.l)-(A, 

and decoinpos.e y q r y ll ' in the coinp: 

idef'!-tities ( A.5) follow" from the relation 

; -r -· r Y P f3 u u = u (a ,-c--'- + 
1m " . I 

It is_ otter~ convenient to choose arbitral 

th . ' " '{3 1 e · •orms a = = -
2 " 

or a= I!' + m2 
I 

Note also" the linear identity 
. P>. , 

• ·--yy u(p)=(S ,+1!'-2
' 

pv>.p m P 5 " /1/1 
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of the former to the non- colli­

requirement of the total crossing sym­

coincide. with SU (6)w in the col-

_ ... 

reactions we can construct the f-ami­

' which leave invariant the free 

·in the collinear case, A lot of conse­

on the choice of the group within 

be verified first of all. Afterwards 

which depend on the ba-

polarization phenomena. In ·spite of .an 

the Johnson- Treiman relations), it 

of the exact SU (6)x symmetry with 

contains the strongly violated SU (3) • 

mass difference manifests additional viola­

is -due to the lucky conjectured form of 

of the structure of the SU (6) x 

give reasonable predictions. 

to thank __ M.A. Markov, Nguyen Van Hieu, 

_especially V. Tybor and A.N. Zaslavsky 

are deeply indebted to M,S, Marinov for the 

spinors which satisfy the D;rac 

and u(q) { l y q + m )~0 the foi.lowing 
. 2 

.. 
'· 

·' 

~-" 

'\ -/ 

(m
1

111 
2

- qp) ;;- ( q >< ti ~ p)= .::..1( m
1 

q IL + 111 2 ? fl).u (~) ~(p)H p.v>.p P1}!,\ ;;-(q)yp~~ u_(p >-:-( A~1). 

/ 

( m m + q p ) ;;- ( q ) y y it ( p ) =- I (m q ·- rr D ) ;; ( q ) y u ( p) ...:. l . , . p q, ~ ( q )y u ( p) · 
I 2 fl 5 . · ·. I 11. 2 . fl 5 lll'"P • V " p · · 

{A;2) 

(!!! m -qp);;(q)a u (p)=i l \ P, q u(q)y u(p)-i(p q -P q )u(q)u(p) + 
1 2 1£11 · · p.v"p " p 5 · : fl v · v fl . · . 

., 

(A3) 

:t 
+E .. , (Ill q, + I!' P, ) u ( q) y y u ( p ) 

flV"P I " 2 "· . p 5 .. 

(rr. m + q p )'i (q )'a u(p)= -I£ , p,q ii (q)y u(p) +-I (p q -p q )u( q) u_ (p)-
("A;4) 

• I 2 flV . . p.v"p . " p 5 fl V V fl. . 

-I 
-(1!' q -t+ p )u(q)y u(p)+(ll1 q -m p ,;(q)y u(p) 

. lfl -2/l V lV-2V •· fl· · (A.5) 

., ' 
- ' am 2 P a+ ,B !!' 1 q a . - · . "IT' 2p a- ,B m 1 q a -
u(q)u(p)=-1 · u(q)y u(p); u(q)y u(p)=! .. u(q)y y u(p). 

· -a 5 m m -.a 5 
I 2 mll!'2 

{A.6) 

. ' 
where ' a + ,B = 1 d . (A ) (A ) ' -r , . - yq yp , To enve ,1- ,4 we .wnte U U= U -- r --· U 

. ,. . . . . . . !m ! ~~':.J.;. . . . 

and decompose yq ryo 'in, the complete_ set 'of ,the· Dirac inalrices •. ·.Lne 

. identitie~ ( A,5) follow· from the relation 

If is often 

the' forms 

. iir u = ii (czr,_r.L + {3 ..2L n u. 
! m 

1 
- I m2 . 

convenient to choose arbitrary parameter's 
. fl 1 . . ' . 

a=p=-1 
2 . 

1!1 I· . II' 2 
or a = . , ,B = _;;__..:_ _ 

_ 1!'
1 

+ m
2 

-m
1
+m

2 

Note also . the iinear identity 

a and ,B )n 

/: 

. P>. - "· . . .. -2 . - -
l ·-y y u(p)=(B ,+IT' p p,)(B ;+-m )I p ,)a,, u(p). (A.6) 
1£v,\p m P · 5 · llfl 1L fl . vv v v 1L v 

\ 
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'·-
,t·, l 

For·~other identities, in partic~I'ar, for spin 
3 

2 
8 

-see: .• 

APPENDIX 2 •. Derivation of the Metric l'vlatrix' S( 31) 
I -

I;or vectors it is . easy . to write do\vn ·a . Lorentz· transformation 

t;_;rns',.,~e four orthonormal -~ctors e1 A into any other- ones e 
3
A 

/1 ', /1 

. c(fi: 1,2, 3,4 ): ' \ 3A lA 
·( e· · ~.a · e 
. /1 yv 

3A · lA 
a = e e 

p.v /1 " I., 

·.::> 

which: 

(A.7) 

This form of, a ~v remains valid in the ·-presence of reflections. In deriva­

tlon of matri~·s we suppose that the. t\vo base;,. differ from ~ach other 

iri a roiation 'without reflections. L€t us start with the' threedimensional 
' . . . . ' ..Lil<it 

rotations. One can• find the matriX ·s ~ e 2 in terms of matrix II a · 11 
mn, 

with the help of· the. condition 
! ' 

..... ..,. 1 ...... ~ 
' T acu' ' -2 a"' • sY I r ' ' ' 

-::-

;/ 

e · o e . ; a a , ·a ... ; e e ( V, II'., n = 1, 2, 3 ) • ( A.B ) 
m n nrn nm n rn · · · / 

\.._ 

Decomposing the left· hand side in matrices , an we 'find· 

·contracting 

...... -CtJnCU~ ~ ~ (t} 

a ... 2cos!C... !(ll -----' +--n-~+ 
nm · nm ,..2 -t2 

sin 1 ~ I . l . cu • 
nm k , ~ 

1~1 

nm 
! 

' "' "' 

and multiplying ( A. 9 ) by 

1~1 

E 
kmn 

we obtain 

a - ~ 2 ros l C: l + 1 , 
:mm ' . ~ "' k 

... l a 
2 sin I cu 1 kmn nm 

· Hence we find .;_ · in terms· of · a and finally 
ron· ' 

(A.9) 

(A.10). 

. ,· .. .., . I , 
· 2a"' .. - 1~1- ;c: 1~1- 1· ·---· ·'_7-,c,Jk aJk · 

S (3,1) .. e .. cos -- + i --- sin ~ .. - ( ,/ 1-+ a + ) . 
: ·2 ' ·· ~~ 1 2 · 2 · · mm ---

,/l+a,m . (A;ll) 

30, 

·. 

'\ 

,/ 

Wheri verifying the property a~ f!3 k 

same, ( A.a) the following identity 

(1+a )( 
9 mn t 9 nm 

-a ) rr 2 mn 

In our 4 -dimensional case the nor 

is in fact a 3- dimensional one. It 0 
1 

S .. e Tap.v cup.v 

where matrices 

I 
T "'1 a1 

= e 

1 1k 
a ""-£ 

lj 
e e o 

)I 1 2 1j k /l 

satisfy the algebra of the Pauli mat 
' -1 

the equality SoiL" S "'ap.'v' ap.'p.av'Y wil 

reduced to ( ~.8) with. anm = e ~n e ;• 

The same considerations as in the 

which is identic-al to eq. ( 4S). 1n v 

identity for rotations about the nor~ 

.a 
pp 

aiL 11 + a"P. 

2 
-a 

IL" 

It folloy.rs from ( A.12). For ar 

can be proved 

1 
-;-a cu 

S .. e ILII IL" 

where r± 

"" 
1 

+ y 5 /cos r +_.!._a 
2 ' - 4 

v 
CU/lll (CUlLY± cujtiJ) 

8 
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·-: 
I. 

spin 
3 

2 
8 

see .• 

'' ~t ,. 

.. 
of the Metric Matrix' s( 31) 

I • 

dm,vn ·a Lorentz·· transformation which. 

into any other- ones e 
3

,\ '? 
Ji 

_a t>. 
- ,Jlv e ) 

(A.7) 

the ·presence of reflections. In deriva­

the two ba~e~ differ from ~ach -other 

sY 
, a = e 

nm n 
·I r 

e 
m 

with the' threedirriensional 

in terms or matrix II a II 
mn, J . 

(V, rr-, n,;, 1,2,3): (A!8) 

\_ 

matrices ; an we 'find 

CUntl>m 

.. 2 

"' 
) + 

(,) (,) 

~+ 
... 2 
w 

sin l ru l 
1 CJ 1 

l' w nm k ~ k. 

(A.9) by • kmn 
we obtain 

(A,9) 

/ 

, "' = _ l ~I (A.10), ,· 
· " ... r a 2s!nlcoj kmn nm 

/ 

·a and finally 
mn 

·la-1 r!Jk a.!.!._). 
lrul· __ t_(,/~-+ ·- (A;n) 

sin -2- - 2 m m v' 1 + a m m . 

· .. 

Wheri verifying the property a .. it k s ( 3, 1 ) = s ( 3, 1 ) ; e1 
k 

same, ( A,8) the following identity is useful 

, or what is the 

(1 +a )(~anm 
rr 2 

-8 )e-
1
-(a -a. )(a -a ). 

m n 2 m r rm rn n r (A.12) 

In our 4 -dimensional case the normal remains unchanged, i,e, a rotation 

is in fact a 3- dimensional one, It can be represented in the form 
! ! 
4 a Ji v (,)IL v 2 (<) 1 a 1 

S = e = e 

where matrices 

1 
a =-£ 

1 2 !J k 
e 11 elk a (l,j,l-=2,3,4) 

J1 V JlV 

satisfy the algebra of the Pauli matrices. 'The matrix S is determined by 

the equality Sa
1111 

S-
1
=all'v' a

11
,1La 11 ,11 with a

1111 
(A,7). 'This equalit.)' can be 

reduced to ( A.8) with a = e 1 
n e 3

m (note the property e 3
m= e 1 

n a ) • 
• nm Ji IL IL 1L nm 

'The same considerations as in the euclidian case lead us to eq, ( A,11) 

which is identical to eq. ( 45). In verification of ( 46) the· following . 

identity for rotations about the normal is useful 

allll + a"IL 
app ( 2 

• I •1 1 
-8 +e e )=-

2 
(a ,-a, )(a, -a , ). 

j.IV IL II Ji" "IL 1\ v VI\ 
(A,13) 

It follo:ws from ( A.12). For arbitrary 4- rotaiions the following relation 

can be proved 

-Ta v"'llv l+,y5 ~ 1 slnr' l-y5 1 sinr+fA 
S = e IL = --·- cos r +-a c.. -- +--(cos r +-a "' --!l'{'""•14) 

2 - 4 j.IV j.!V r 2 + 4 j.IV Jill r ) 

where r± 

v 
"'ILV ( wj.lv±"'llv) 

I! 
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'!his relation is deduced by the decompositio~ of exp (...!... a cu ) 4 p.v p.v 
into 

the product _of two 3- rotations, 

1 
Tap.v cup.v I I 

e ., exp [ T cu p.v a p. v (1 + y 5 ) ] exp [ T culL vaIL v ( 1 - y s) 1 . 

Further, it follows from condition S y S -I ., y a p. v vp. 
that 

,, 
sin r_ sin r+ sin r +sin r 

a ., ( cos r cos r + cu cu ) o + - cu - cu + 
p.v - + >..p >..p s· r r IL v 2 r r p.>.. AV 

- + + -
(A.15) 

sinr_ cosr+ v sln r + cos r _ v 
+ (w -Ill ) + ( C<l +cu ) 

2r p.v p.v 2r+ 
p.v p.v 

and, finally, that 

1 1 + Ys . 1 - Y s . 
S ., - ( -- cos r + --· - cos r ) ( a + I a a ) a 2 - 2 + P.IL p.v p.v A>. .. 

(A,16) 

2 2 v 
16 cos r ± ., (a ILIL ) + )!v (a p.v -~avp.) + 2 a 111, a p.v (A.17) 

4 cos r _ cos r + "' a p.p. 

'!he expression ( A.16) repr7sents a. general rotation (without reflection) 

of spinors in t~rms of the rotation matrix for vector II a 11· • With the p.v 

help of ( A,17) one can obtain the identity 

2 2 2 v 2 
16(a ) .. [(a ) +a (a -a )] -4(a a· ) 

ILIL p.p. p.v p.v vp. p.v p.v 
(A.17) 

Note the useful identity which expresses the symmetric pttrt of ':i-n arbitra­

ry orthogonal matrix in terms of its antisymmetric part and its trace 

1 1 a"(a +a --
2

o a ) .. (a,,-a. )(o,-a ,)+-2 o. a, (a, -a,). 
"" p.v vp. p.v pp r" -Ap. "v v" p.v "P "P P" ( ) 

/15/ A.18 
'!his identity was used also in • 
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'Ihe matrix S ( A,16) cc: 

ticle amplitudes when bases c 

and_ we can not confine ours• 

Appen 

Invariant amplitude· can 

invariance (without u~e of ·th 

the singlet- quark scattering. 

quarks and_ singlet are suppc 

written down as 

M.,u<p Hf + 
3 I 

After t;ansformations ( 8) we 

oMcu(p )[(af +{31 
3 · I 

where a , f3 , r and P 

ma.sses, Tvvo homogeneous e 

turn out to be compatible: va 

the equality of the norms ( 1~ 

we obtain the ratio f : f 
I 2 

( 52a) to ( 52b) and the sec• 

2 m
3
(s-m -m m )A(stu12 

· 2 I 3 

+[ t -(1" -m )
2
1[ 

I 3 

to the quantity 



decomposition of exp ( ..!... a "' ) 4 /LV /LV 
into 

l 
aiLv (l+ys)] exp[S "'ILvaiLV( 1-ys)]. 

s y s-1
., y a 

IL v VIL 
that 

,-" 

sin r sin r 
+ -

2r r 
+ -

"'IL>. "'>.v + 

(A.15) 

sin r + cos r _ · . v 
. ( Ctl + Ctl ) 

.2r+ /LV /LV 
-. 

1-ys 
+ -·- cos r )( a + I a a ) 

.2, .. . ,-1- 'ILl:' /LV IL.II 

(A.16) 

. . v 
+ ~V (a /LV --aVIL) + 2 a /LV a /LV (A.17) 

~ ·,. 

a general r;otation (without reflection) 

matrix for vector II a /LV II • With the. 

the identity 

2 • v 2 
(a· -a )] ...:4(a a· ) 

/LV VIL . /LV /LV (A.17) 

sses the symmetric p:oirt of ~n arbitra­

its antisymmetric part and its trace 

)(a>.vav>. )+i- o v a>. (a>. -a >.). 
15/ IL p p p (A.18) 

'lhe matrix S ( A.16) can serve as a. "metric matrix" for many par­

ticle amplitudes when bases of particles do not have any common vector, 

and we can not confine ourselves to the 3- dimensional ·rotations. 

Appendix 3 Other Forms for the Ratio f : f 
1 

Invariant amplitude can be derived directly from. the requirement. of the 

invariance (without u~e of the metric matrix). As an example we consider 

the singlet- quark scattering. For generality the masses of initial and final 

quarks and. singlet are supposed to be different. The general cimplitude is 

written down as 

M "" u ( p 
3 

) [ f 
1 
+ I f 

2 
( y , p 

2 
+ fl. 

4
) ] u ( P 

1 
) • (A.19) 

After ~ansformations -( 8) we have 

oM"' u ( fl )[ (a f + f3 f ) y + (rf + p f )( y ,fl + p ) y l u ( p ) , 
3 I 25 I 2 2 45 I 

where a, f3, r and P are definite functions of A ( stu 1234) and · 

masses. Two homogeneous equations a f 
1 

+ f3 f 
2 

., 0 and r f·
1 
+ p f 

2
, 0 

turn out to be compatible: vanishing of the determinant is equivalent to 

the equality of the norms ( 19) of vectors e 33 and e If • In this way 
IL 1L · 

l.\e obtain the ratio f : f 
1 2 

in two ·forms: one of them is the ratio of 

( 52a) to ( 52b) and the_ second one is the ratio of the quantity 

2 ! 2 
m (s-m -m m )A(stu1234)-m

1
(s-m -m m )A(stu3412)+ 

3 ·2 I 3 4 13 . 

. 2 
+ [ t - ( !" - m ) ][ m A ( tsu 13 2 4)- m 

1 
A ( tsu 314 2)] 

I 3 3 

to the quantity 
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m m [A.(stu1234)-A(stu3412)l, 
- 1 3 

The latter form of the ratio is inconvenient as it contains an indeterminacy 

men passing _to the equal masses. We can receive third form for this ratio 

if we evaluate u ( p 
3

) S ( 3, 1 ) u ( p 
1 

) with the use of the explicit form of basic 

ve~tors and the identity ( A,4). In this way the ratio f 1 : f 2 turns out to be 

the ratio of the quantity 

·2'2 2 2 2 
A (stu 12 34) A (stu 3412 ) [ s - s ( m - 2 II' m + m ) - m m ( m - m + 

2 13 4 131 2 

2 2 22,22 . 2, 
+II' -m )-m m +m m ]+A(stu1234)A(tsu:l142)[t-(m 1 +m) ]., 

3 4 13 24 3 

•(s-tr2
-ll' II' )+A(tsul324)A(stu3412)[t-(m +m )

2
)(s-m2 -m m )+ 

2 13 I 3 413 

2 2 2 2 2 
+ A ( tsu 13 2 4) A ( tsu 3 14 2 )[ ( t - m 

1 
- m 

3 
) - 4 m 

1 
m 

3 
I - 4 m 

1 
m 

3 

to th~ quantity 

( (s '- m: + m 
1

m
3

) 111
3 

+ (s-"': + m 
1 

m 
3

) m 
1 
l A (stu 12 34) A (stu 3 412 ) + 

2 + ( t- ( m
1 

+ m
3 

) ]( m 
3 

A (stu 3412 )A (tsu 13 2 4) + 111
1 
A (stu 12 34) A ( tsu 314 2)] • 

One can dhoectly verify the equivalence of this ratio with the ratio ( 52a) 

_to (52 b), The verification is rather tedious and uses essentially the equa-
• ( ) 13 33 llty. of norms 29 of vectors e and e 
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