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1, Introduction

After great expectatxons, nowadays the SU(E)symmetry is regarded
with a scepsis because of difficulties "in the relatxwzatxon problem/ 1/
Nevertheless for collmear processes there exlsts the relativistic SU (6)
group, a modified version of SU(6) 3 which-gives rather ‘reasonable pre—-

6/

be precisely measured in experiment: «There is ‘an evident need to have

d1ct10ns/ . However,  the fomard (or backwarjd) -scattering can not
an extension to noncollinear processes, )

In - this paper groups are found, which are lsomorphxc to -SU(6) and :
are compatxble with the Lorentz invariance’ and crossmg symmetry They
‘leave invariant the free equat1ons and are apphcable to b1nary reactions
) w1thout being conﬁned to colhneanty These groups’ are- called by us the -’
. SU(6), groups™ . All groups, we are interested in, reduce ‘to SU (6) or
collinear - configurations, and therefore we obtain ‘an  extension of - SU (6)w
to noncollinear processes, This approach is conveniént also for: treating
the SU(6) - in an ar’-bitrary frame of refei‘ence. : : -

As is. known, attempts to ‘merge the " §U (6) group- with the Poin-'
caré group failed. ’Ihe 1ntroductxon of SU(6) ‘bears no relation to these'
attempts. It 'is based only on the spm part of the-total angular momentum,'
which is singled out in a special" Lorentz- covariant manner ensurmg the
- invariance of the free. \equations‘( x - spin independence).

» What ‘do we pay “for compatxbxhty of SU(E) with the Ldrentz inva~
riance? The SU(6), transformatlono for each partxcle are- auowed to de- :

x/ We have considered an example of Su (6) / /
‘ mg symmetry was violated there. -

but the cross-



pend on the 4-momenta of all part.xcles that partxcxpate in the bmary
reaction, Stress that the same sxtuatxon can be seen even in the co].lmear'
groupsu 6y, |38,

Because of this, the SU (6)w and SU(6)x symmetries could ‘be justﬁied
only as dynamical ones, which approximately describe some features of
ampiitudes. . .

. Lagrange formalism is here impossible, and one can obtain the
.'inw;:ri'ant amplitudes only in the framework of the  § -matrix approach;
Then the cArossing. symmetry and. unitarity must be imposed from outside.

) ’I‘he transformatlons are chosen so that to provide from the very begin-
ning the crossmg symmetry ‘However here we put a51de the umtarlty prob—
lem, it should be investigated separately. In any case, unlike SU(5,6), the
'SuU (€6), theory does not suffer from .- difficulty 'with  the superfluous momenta
) etnd“it deals ‘with: the . conventional free equat.ions of motion,

.'Some people suggest a hxerarchy of . symmetnes, e. g, .the chain:

‘SU (6) for one—partlcle states, SU (3)QSU (3) : fcr collinear configurations

and " SU (3) for coplanar ones' 6,9

.. In this paper . it is shown that.a
symmetry of .SU(6) - type may .. ‘be kept for.all these processes, At
the same.time this symmetry. is certamly a broken one what fol.lows, at
least, from the large mass differences. in multxplets On.ly the broken sym-
metry. may ‘be compared with the experimental data (recall that the success
: of ‘the SU(35 symmetry is due to a. happy conjecture. about the fonﬁ of
Cits violatioh) ln,the present paper we deal oh.ly with the exact symmetry,
An investigation . of its reasonable breakdown will. be the next step.
The quark SU(6) transformations are discussed:in Sec. 2, 1n Sec,3
such a famxly .of groups is singled out, which is compatible with the re-
bquir"ement of . total cx;ossing symmetry, .In Sec. 4 the 36—_7and 56—'p1ets
of 'SU(6) , are-discussed .and their SU (3)®SU(2) content is given., ’I’he
‘ru.le for writing. down the invariant amplitudes . is formulated . in Sec, 5.
Several examples are g1ven and, in particular,: the general amplitude of
meson-baryon binary reactions is written down, It is shown in Sec, 6

that for co].h'near-connguratxorts the a:npl;tl;des turn out to be SU(6)w

invariant,



-2, SU (6), Transformations for Quarks

In the static SU(6) group the infinitesimal quark transformations

iy e e :
5¢=T§w )\°+(ak+ak)\c\a_kl¢> (1)

are based on the algebra of the Pauli matrices

o, and the Ge_ll—Mann
matrices A, ( o_

a : .
» @ and a are the transformation parameters).

The transformation (1) commutes with the Dirac equation only in the rest
system, For a nonzero spatial momentum the spin matrices are to be

modified, One can take relativistic spin matrices for quarks (-

x  ~spin
matrices) in the form™

~lyp+m a2 2
s =..1e et (p = +m , -
" w¥u?s o P,=VP ) (2)

where p and ® are the 4-momentum and the quark mass, respectively,

and e* are three 4-vectors ( threeleg) w}vhich_qre orthogonal to each

other and to the momentum ¢

- - Jk=1,2,3)
Paem0r eye,m8, O3 (3)

x|

| 3f One can choose the matnces sl
form ~le -fe o el

#y_ﬂy s uy_ Vs? Cuu Sy
eza e3 ,elo eL , € 1o : . However,. as. applied to po-
smve energy solutlons of the Dirac equatlon, “they reduced to matrices

(2) due to the identity (A. 6) of Appendlx 1;-The adavntage of the mat-
rices (2) in their linearity in e .

’ s“2 , s* also in the Barnes
or in the form °



(with Pye,= 0 - ) were used earlier in

The spin mafrices e y Y
Hop 10/

and they are connected with the well-

the formal theory of reactions
U (in fact, e Wt -euw ).t is easy

known - relativistic spin Operatoxj
to verity that, due to (3), the matrices commute thh the Dirac equat1on

( s’: s iypdim]l =
and ‘satisfy the algebra of Pauli matrigesx/

X X7 )
[51'51]_2“m: s - -

' Note also that

Zlyer e (4)
Y 2m )

' !s':,s’;¥=28

The matrices -s: generate ¥ -spin transformations

(s)

Su (p)=—2’. a, s%u(p).

¥ -spin group with the SU(3) one can construct rela-
ones being a particular case.

,Cémbining the
tivistic SU(G)x transformations, the SU (6)w

For the positive energy Dirac spinors we have
= a | a x :
51!(p)—-2 f o Au+(ak+akA°)sk!u(p) (6)

and as it is easy to veufy, the transformations (6) form a group. Since

the a.lgebras of .the matrices s: and o, are identicai, the generators

x/ . When checking, the relation

=« De‘le’ezesﬁF oY Uff£%)

1
(ye )(ye’)(yek) ye
im ik
is to be qsed. ‘

-



‘;. group, consxdered m

E

T

Llan: 1nfm1te number of llmltatlons, and in" thls case non—zero amphtudes

»areabsentjs/.f SR S N

,\u’ 5: wand )\ s’i ’satlsfy the SU (6) algebra ’D‘anst‘ormatlons for other

/ﬁ multlplets are d1rect products of the quark ones. Al conventlonal free S

equanons (the D1rac, Bargmann—\«‘\hgner, Proca Ramta— Schwmger, equa—

nons) are invariant under such transformatlons m contrast to the s1tua—

tlon in SU(E 6) and so. on (seels 6/) ,}

Cx

2’

-

ko ‘ S
’Ihe choxce ot‘ a ba515 '-e# is the most 1mportant problem ln con ——

‘structmg the SU(6) Let us con51der an" amphtude of some bmary reactlon ‘

T e2a3% 4 (p + nfz=*p,;fp;)-.7

- . . . \[- el .,/‘, S . N
¢ . i . Pl

F‘or slmphc1ty a.ll four partlcles w1ll be assumed to be quarks. .
' E‘xrst ot‘ all” we note that " there are no amphtudes mvarlant under ‘
transformatlons (6) w1th au concelvable threelegs gk.~ i -slmultaneously.u ‘
: Really, &SUCh an 1nva/r1anc/e is- equlvalent to the 1nvar1ance under the
12,8

and based on the relatlvxstxc spm operator :

(or sy ) Havmg 1nf1mte number of parameters thlS group glves s

P

At the same t1me there are always non—vamshmg amplltudes mva-

_the transformatlons (6) t‘orm a t‘1n1te parametrlc group, Wthh 1mposes a:

finite number ‘of restrlctlons. ’Ihe group is based also on the relat1v1st1c ,f ——

spm operator, whlch enters transformahons v1a 1ts prOJectlons on flxed
. 3 N -

threelegs of ‘all partlcles (% is, in fact, ekw ). IOEE RN A

k!

An 1nvar1ant amphtude depends on vec{‘ors : e\k-; unless they :

. s
comc1de for dlfferent partlcles. It \is ev1dently 1mposs1ble to choose a com—
', mon ba515 t‘or all partlcles y as’ for each parncle ek : are orthogonal o
to 1ts momentum, and the momenta - of varlous partlcles are d1fferent (m

the collmear case two vectors may be common® for au parhcles, but in

- ,' a general case only one ‘may, the normal to the reactlon plane) However,

K - ; L /o

9. x/ Phenomenologlcal analysxs of an}phtudes often mvolves some bas1s »
constructed out of- the momenta (see ) We use four bases slmulta—.

Loy neously. :

“riant under (6), 1f vectors ek‘» for each partlcle are flxed In thlS case s




an amphtude w111 not “be Loréhtz— invariant, - if E it-.. pontains any '
outsxde vectors. R R Dol T x

- R

,‘ Therefore for noncolllnear bmary reactlons the vectors must be ex-

.

‘ pressed in terms of the momenta of partlcles that part1c1pate in the reactlon‘

. b Stress, that SU (6) “‘does .not represent the mergmg ‘of the SU (3) and e

: Lorentz groups. only the spm part of the total angular momentum enters :
transformatlons (6), and ‘it is smgled out”in some spec1f1c relat1v1st1c

i mariner to. ensure commutatlon w1th the free equahons of mohon. There—

‘ fore sU (6) Vexpresses the spm— 1ndependence, Wthh 15 understood 1n

\'w

f’a certaln relatsttlc sence. i : :
: Flnally let us’ take into account exp11c1t1y that each partxcle 1nk Ca
reactxon (7) has its own ba51s and that the basxs vectors are: expres- .
: A p; and p . To thxs ‘end

: we denote thrée vectors ( ¥ 1 2 3) for n-th. par‘tlcle ( 1= 1,2,3; 4)

sed in terms of the 4—momenta p , j'p

by e ( PP, p p,)- ’I‘hen for quarks in reactlon (7) the sU (5)

transformatlons are wrltten down as K O . s \»

. o a

= b‘u(p )~——-—2lm A +e (p p2p394)y y (a Ya )‘ )lu(p ). ‘ (8)

R -
N . ; .

Quarks w1th d1fferent 4—momenta and in varlous blnary reactlons trans—
form accordmg to dlfferent equlva.lent representatlons of the SU(G) group. ";
A representatlon is characterlzed by the set of the 4—momenta of partlcles

A

that part1c1pate m the bmary reactlon. The same is true for “all other

e supermultlplets. In SU(G) i there are. upper and lower 1nd1ces ’as in SU (6) :
" By’ deflnmon the. quantlty u(p ) wh1ch transforms accordmg to, (8), has T

the lower 1ndex A The mdex A umtes the D1rac spmor mdex @ with"

L 4—va1ues and the quark SU(3) ‘index a’ (- a = 1, 2 3) Respectlvely, the: . " ‘
quantlty u(p ) has the upper 1ndex, u (p ) and the transformatlon ) :

law - for 1t is s . e RARTEAE TP BN

SRS : N N -

(P PP p )yy(a+a‘A M (3)

. . NN ' 'n A

! ’b‘lT(pf)-:——lz—lT(p ){lw )\ +e

. :




3. Crosng Symmetry and Co-Ordmahon
of Threelegs . . E

The requu'ement of the crossmg, symmetry of amphtudes imposes

nk
essential restrictions on the choice of threelegs e . As a consequence,
"

threelegs for all particles turn out to. be co-ordinated in such a way that

if the threeleg for
other parhcles, that partxc1pate in the reactlon.
It is natural to identify one of the vectors, say e™! (p P p p ),w1th
P

one of partlcles is found, then 1t defmes threelegs for

the normal to the binary reaction plane ’

nl n : ) :
=X. (stu1234 , :
e, (Plpzpa}u) (stu123 )‘uv)\'p' PWPZA’PSP (9)

where 2 2 .
S=~(PI+PZ) » t=-(pl_p3> -“=-(Plfp4)

are the Mandelstam varlables, numbers 1, 2 3,4 standA instead of the nmas-
ses m, 4 T, my s om, of part;cles, and X' are the functions to be

defmed. For generality all masses are considered to be different,

Second vectors of each part.lcle may be V\ntten down as followsl'

ll
(plpzpap Y=g T LA, (stu1234)p Na: (stul234)p A]
1 o

22
¢, (p,p,0 P, )= Pav (A (stul234)p A+B (stul234)pM (10)
2 R . =

#VAP im

. pav ‘o - - : . e -
(p p2p3p4) Ap --!—m-:—,[A(stu1234)pm+Bs(stul234)pM] e
a

e

N~ ~ p : ) E RS * e
(p ppp)=¢ Y [ A (stn1234)p 3 +B (sw1234)p T e
2374 pvApP im,

Here their orthogona.llty to the correspondmg momenta and to the f1rst

vector is expressed in an, ‘explicit form, -

The third vector for n-th particle is



priv “nl ng

n3 ’
e#’(plpzpsp“)—clwkp {m Ex®p
. - n

(12)

I previous vectors ‘are normalized, this vector will be normalized too.
Let us require for our invariant amplitudes to be totally crossing

symmetrxc. Recall that. the crossing symmetry means the followmg. Let
pppp(p pzpsp ) be an amplltude of the reachon (7) Representmg

the: amplitude accordmg to the LSZ “method, we derlve, the identities

2 7Py P (12)

pppp(pxpipa P, )_=i‘A apup(-psp
y =4 . -
Pppp(p!'p2p3P4) ta PPDPP (plpzp:!p 4) ) (13);

( The sign is determined by statistics). In the iright—hand side of eq.(12)
there arises an amphtude with two antiparticles in the nonphy51cal ‘domain,
By means of analytxcal contmuatlon Py =0, " one can pass- to the amp-
litude EMP (p,p,P,P ) for the physical process 1,+2 -3 +4/
with two antlpartlcles. ln the identity (13) both amphtudes are in'the
physu:aldomam. The final amplitude is deduced by interchange LI

One’ always -can modify the transformations so that they should
leave m\mnant the crossing amplitudes, ’I‘he modmed transformatlons also
form a representatlon of SU (6), , the only deference bemg in the form of
vectors.- Il (see Table). If the vectors for the orlgmal reaction are
chosen (the first row), then the vectors for all crossing reactions are
defined too (the subsquent rows). In this sense the’crossmg amplitudes

remain SU (& )x invariant.

10



’I‘hree

~

'.Tablef“f“

legs for ’l‘ransformatlons Wthh Leave Invarlant the Cross‘mg

Crossing]”

2.b3“i‘p4

3.p l4-0p"2

4P zé-p sl ’

/75'p2‘f";7'p,4
6.pl.- -P,

P -p};

. Punplltudes L T

A e : g Ve c t or s

“1st particle - 2nd particle | 3d particle | . an particie | -
B Sy - 4 _ N

”‘(pppp) e“(pfppp)/ (pppp) k(pppp')'.

“‘(pppp)

.et“('p pvp Pl

"‘(p-p -p,P, )

(p ppp

2 v;'f(—fpip;pl P,

R
ATRPPERL

e(pppp)
l"(pppp)

—e‘(p-ppp )

) ’"‘( pp plp)

)-<" (p-p'p-p ).

2“( ppg R)

e(pppp)
5“‘(pppp)
-e"(p-p-pp)

fe(p-pp-p)

,—e"( p,l,p2 p,p)

3
-ppBR)

( p p P, p )
( PP P p
.(.p‘,-P;pzp,,)
< (piepir,)

i) S
<pppp,)

-"(-p,pPiP{l.

We cons1der all crossmgs wh1

,If a partlcle 1s replaced by some antl

in the table. :

K So; havmg defmed transformat1ons
‘formatlons for all: crossmg, reactlons. If on
: vanant amplmy{es for each row, of ’I‘able, th
: fulmled up " to the form factors, attached to 1nvar
to- choose these: form factors in the crossmg

‘However new relat1ons for threelegs arise if .

t101pate m the reactlon. For example, if the partxcles

: then the: CrOSSlng P 4—- p

i

ch” reshu.ffle a’ g,wen ‘set of partxcles.» =

partlcle there . ar1ses the s1g,n mmus

for. some reactlon we know trans-
e: mdependently wrxtes down m—
e crOssmg symmetry w111 be
jant: structures. It is easy
symmetncal form, "
1dentxcal parncles par— L

3 and 4 are 1dentxcal

does not chang,e the reacnon. I—Ience, in thxs

. case the followmg, equahtles are to be satxsf1ed

(pppp)—e

sing - \926—94

(pp

Hence here

°, Ps ) (:ni="‘1. -2,).

s, N
f

and analytlca.l cont1nuatlon we obta1n the

11

‘“(pppp)=e

: T Further if. the part1cles 2 and 4 are 1dent1cal and neutral’

(p 3 p,p %
\14)”:( »

then after cros~-

orxg,mal react1on. :




e, (P, pp ) =elkp —p 0 pz). (n=1 3)

‘ ERE ~ ( 15)
etc. ’Do have no troubles w1th such 51tuat10ns we shall requlre for v,ectors”r(‘
' in each column of the Table to be equal up to the su;n. we. shall call

such a basns the- unlversal one, “The unrversal threeleg is denned only

‘ by the momenta of partlcles, parthlpatan in’ the reaction, and 1t is 1ndef'

pendent oi any. other propertles of partlcles.l

“If after crossmg a- glven partlcle does not pass 1nto an- antlpartlcle,

then the correspondlng vectors must slmply remain: unchanged For example, e

we equate the vectors 1n 15 rows of the f1rst column. lf a crossmc1 turns
a partlcle into some antlpartlcle, then vectors are to be equal only up R

“to sxgn. So, after the crossmg 6 we set for the f1rst partlcle :

(=p b, ~p pd=te'S(pippop )i T L
R "2 ~1..4 NS S ) ‘3 4 . A\ (16)

Thereiore, in the framework of the umversallty there are the two followmg
possmj.lxtlesx/ . ' f L

S 1) Al vectors (k- 1,2 3) in each column are’ equated w1th )
those s1gns, as they stand Then x —spxn transiormatlons of both quark -
and anthuark turn out to be 1dent1cal (it the kmematxcs is the same)
More dmmtely the’ anthuark transformatlon law is wrltten down as -

v

du (p )———[-m ,\ +e (p 929394)y y (u +a A )lu (p ) 7(‘17),

) 1{
Chp s

(. T markes ,transposed, matrices) ‘In terms of the Dlrac equatlon solu-
\ti/ons u o(p)= C-ET( -p,) ,‘ : where € s the charge ,conjugatlon matrix, -
Note that the quantity (p )C 75' S transforms like u (p 2

2) For . k = 1, 2 the vectors ‘in each column are equated omitting

x/ We do not conslder more cumbersome sttuatlons, where basic vectors
for antiparticles are linear ‘combinations ( rotatlon) of ones for partlcles Thls is .
v a . way to look for further generallzatlons of SU ( 6 ) . -

12



minus - if 1t stand in the .’I‘able. As to the third vectors ( k -3) they must_
be equated just as in the -case 1) due to group considerations, Now the -

x -spin: transformat_lons for ant1quarks
: 1 ‘4, T Can : a. T
e (pn)""—{{-lm Agt [-e,u’(plp2p3p4)(al+le/\d) -

(18)
ng 4, Ty, _n3 d, T
—e#.(plpzpap4)(a2+a2>\d)+e (PP, Py p e va ANy v e (5)

differ from those for quarks (8) Here we see .a play of s1gns that is

the same as in SU(€),.However now it is a_ consequence of the crossmg
symmetry. Note that it is difficult to apply direclly the charge conjugation
to transformations due to the momenta involved (even in the collinear
case). Just as in SU(6), 2ue(p ) is not a quantity with upper or lower

indices, However -the quantity

(19)

we(p 1=u(p Iy (u (0 )=CTT(=p )
C n C .n H.oH C n .

transforms like u(p ) - Le. it has the upper index: "u<(p ). 1t ‘satisfies
= :

the same Dirac equation as u(p ) does
uz(ph)(lypn+m)= 0.

Now we pass to the realization of an universal basis in the case 2) o
mterest. We shall see that in the case 1) there are severe contrad:c—-
tions w1th experiment, e.g. the p1on—nuc.1eon scattering w1th the pamty

conservation is forbidden.

13



Restrictions on the Basis in the ‘sU(6), (case 2)

In the case 2) the total crossmg symmetry gives the followmg
restrxchons on the threelegs. A vector associated with-the normal to the

reaction plane is the same for all partlcles. It is written down as

4 n#=e#(mpp p,)= N(s—tﬂt—uﬂu—sk

27374 pw)\pp

1wPal psp'( 20)

-

where N, is a posmve normalization- factor.

For the second vector of the first particle. ‘we obtain

Prv [A(stu1234)p ,~A(tsu1324)p 5 10, (21)

pvAp im,

12 :
e #(91929394)

where A(stu1234) A, (stu 1234). The function B . in (10) turned
out to be expressed in terms of A. Transformations for the first particle

are determmed by one function A ( st 1234) with the properties

A(uts1432) = — A (stu1234)

(22)

( an antisymmetry under permutation - of pairs of arguments 1,5- and 3,7)
and : -

A(stn1234) + A(nst1423) + A(tus1342) =0

(23)
{ cyclic permuta’uons of paxrs of ‘arguments’ 1,5 2 6 and 3,7). One can

represent a function which satisties (22) and (23) in ‘the ‘form

A(sm1234)=f(sm1234)-f(mS1432)+f(§n1243y-Nug1423), (24)

14



s where .f . is a completely arbitrary function. The simplest -example of
function ‘A is . .. - . R - o
L A3 (su)g (), o (25)
v‘whe‘re q&(stu)» ‘is"an’ arb1trary totally symmetmc ‘fuhiction, . -
For partlcles 2,3 and 4 the second vector is’ obtamed from the

. vector (21) by means of permutations -
_SaD e, —anes, aoes, - (26) -

respectlvely. These permutat1ons and the 1dent1ty one form-an alternatmg

: ,representanon of the Klem four-group. The operatxon = (13) (24) means~

that one must mutual.ly transpose the momenta . p ‘th.h p. and P, with ©
(and correspodmg masses) and change the common sxgn. "I‘he fore--

gomg refers ‘to the f1rst vector too, but belng chosen m the form (20)

"»1t 15 ‘invariant under permutatlons (26) ’I‘he thn'd basic vectors are con-

’structed accordmg to (11) B‘or the partxcle I we have

(p P | (pp127).«

“(p PP, p )_ A(stu1234)[p ' —ii—-z— A(tsul m)[n #+_P_L.3_
m R . m

T . . 1 oo ) 1

'I‘he t.hxrd vectors for the part1c1es 2,3 and 4 can be obtained by
applymc ‘to” (27) the permutatlons o ‘ s R :

o (12) (34) (13) (24), (14) (23) o (28)
‘ of the Klem four-grOup. R

S For the: second and thxrd vectors of the ‘particle 1 the normahza— .

tion cond1t_19n Sis

N 2 o - .

B T P EE § 18 20 I 2 e pp ) g
(e AT 123 [ — 2 —m2 e A (tsw1324)[—12— —nl]-
L ’ T e ll’!l - . m: ’

“=2A(stu1234) A (tsu1324) n p3]=l (k=2,3).
ot » - “ R Al;

CAs L .



- . . L . N : =

-Due to (22) and (23) thxs expressxon is symmetrlc under any: permuta—
tion of paxrsk s, moit,my and ‘n,'m; wth each other. Thus,
the total crossing symmetry makes the threelegs of ‘all particles in the
bmary reaction be defined in terms of one funchon o A(sty 1234) with

the properhes (22) and (23). .

L Restrictions  on the Basis in the Case 1)

‘'In the case 1) the particle 1 thrééleg is given again by the formu-
lae (20)-(23) and (27), However in this case transitions to the particles,
2,3 and. 4 ére performed by the permutations (28) of the Kleih-foun—group
for all three vectors ( k = 1,2,3), This makes the particle a‘n‘d’antipartic’le

X —'spin ‘transfoi’niéticins be the same, But here' the common’ direction’
of the first vectors for both 1rut1a1 particles “is Oppos1te to ‘that for final -
ones, unlike the case 2) where the first vector is the same for all par-
ticles, Because of this in the case 1) there are no invariant parity con- -

_servmg amplitudes for bmary meson—baryon'reactlons.,

~ "4, Classification-of SU(6) Multiplets
e . PR E3 -

Above we confined ourselves mainly to the quarks. The mesons
and baryons are- described by the higher representations’ of SU(G) which
_are the direct products of the. quark ones, ) ‘

Mesons. ’I‘he mesons can be descnbed by tensor 7 Mf(p_) which
transforms like u (p)@u (p) i

‘MqB‘(p);l-[imd)« +e°k: (a +a">;')M(')]B‘ s (30)
A 9 at Y Yt TN p,‘A-

B .
The quantity M A(p)‘ satisfies the equations
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s

. ‘ "::, (p~2+#,2)(¢b=.0! (p“g+u2‘).5b“=
- ,/ S ,d PR ‘p.u

Va2

' multlplet

(1yp +u) (p)-

Wh1ch are 1nvar1ant under (30) S S Ce NP

~.’I‘he supermulhplet of 0 - and 1 7 mesons‘»‘irs decomposed with

respect to -SU (72 Y SU( 37) .. as follows- . .

where e . 1s the th1rd basls vector for -a glven partlcle, and qS (p) i g
V

: and b V(p)"_ are the wave functlon

A Y

z S ;‘

wh1ch fo].low from (30) and (31)

fact defmed w1thout any reference to

- S ‘ 1yp i
Sy —_—z[-¢<) 1y v.h, ()1_-———19y ! - (31)
R (p) i P+ y Yy P 2, y5>aﬁ% T
o~ ’ - . o - B ,.\ ';\,‘/2 ‘_.' L /‘ \A \ ?

of the O and 1~ nonets i

the basls. Really, ’we suppose that SRS

: The last equat1ons are 1nvar1ant under transformat1ons ‘@ ‘;andj- b:”/' IR :

",j,' In spite of the presence of vector ‘e‘lz ‘1n (31), the multxplet is' m,i‘

the meson wave funct1ons transform lxke : u(p)@u (p) as if the mesons B

were composed of quarks and ant1quarks. Hence we f1nd for the meson

s

gl )ty y b (p)!—-—"—p——‘iiy ¢ a( )
: ,-,,\\/2 [»-a‘ [,l _5» . 2 R : : : .

i

Th1s quant1ty transforms from the left and from the rlg,ht accordmg to the f

quark law (8) and the transposed ant1quark law ( 18), respectxve‘y.

Multxplylng by C e’Ly (see (19)) from the rlght, we obtain - more S
B convement quant1ty (31) wtth one upper and one 1ower 1nd1ces. S
. T oy ) - i P




3 ¥ 4
sqthet /
M ()=t (g s v )K=
RN S \/2 Q‘u‘ -k ‘ka 3 ; . o )

- Sl ¥
i

) .‘Z*’” :’ . -1 +
— _1_(__""_#_

. b b":
V +!s V :—!s"V rsXe ),
w20 lan 3 a

. ‘ . y L; : \‘— T o :
T Where s are Spin . metrices (2) for a. given partivcle.~.1i.:et' us ‘introduce

k.

SN RN

"”‘components S s P TE R TI  B T

3 ~";1n.=tead of V"V ’I‘hey correSpond to the pro;echons 1 O ' - of the'

usual spm prov1ded al quantxzatlon axis is" directed along e_’; ' ’I‘hen it

o is seen from (34), that . E AT A form the x—spln tl‘lplet with the’
o ‘PrOJectlons +1, 0, 1 ; and V turns out to be the ,amglet I—Iere we, deal
‘w1th the Spm rearrangement Wthh is the .same * as ‘in the SU(6) In ‘the

e 'latter group ‘the 36 somehmes is: represented analogously asllq g \‘

PR | -(P+a V )at 1f all momenta are 1n the Z dlrectlon 1n some:

s 4 FEREEN B
N coordmate system.\Stress that . LA 5 has the non— zero trace
RS A (35) .




~where b,

R It spnts 1nto 35 and 1 unhke the multlplet (31) ot’ mterest
‘ Bar_zons.

product of. three quark representat1ons, bemg totally symmetr1c in 1nd1—

part of the"

1s the 1 ’ smg,let of SU(3) As b
:) S
l.’g L0 in: the SU(G) “we deal w1th the 36—-plet (]ust as m PR

u
AZ)

E

SU(G) ) T ," I B AR S [ERE R 3
Note also that 36—p1et for 0 and’ 1" part’icles'haS‘ the. ‘form ..

ces A (a a) B (ﬁ,b) and C (y, c) The three D1rac equatlons are sa—-

t.lsned

The‘56 of’ the four\-momentum p is decomposed w1th respect

to su<2)@su<3)

"~ where ..

: “ ?'p tﬁ?-)da; B aj'

( the Bargmann— Wxgner equatlon)

c..

e

: 1_1},9“‘" (36)

B"I",lfifk : ‘b‘
M(py=—I[~¢ +iy y b1
R N a S pe

: enters'the remaining

vo e T e T

ABC

dBC

Y SR : v i

~

) '\’
3 “
e

TP B gt e B gy =0

1n ‘a mamfestly relat1v1st1c manner - as follows R

L yp+m . 1‘7"
(P) \/2 V"a bc(p)(y C)ﬁY\/ls

N

is the charge con]ugahon matmx, :

is the spm 3/ 2 wave functlon. o

‘,‘,,

The baryon 56—-plet B transforms lxke the dlrect\

S

is' the Dirac spinor,
. .




~. T 5
. N .

L. N

R - 2

R vet ")‘br(p?, - ¢ ‘y;pf?:),""#(?)' '«PH‘bu,nv y#:“bu“; R SEN T

e, . ~ .
L -0 L

‘ I =

:‘,', - S S ly p +m \‘ d - l . o :
The express1ons (y” 3 C) and (y y2p n C) are symmetrlc
e m’ m
PR and antlsymmetrlc m By, reSpectlvely. ’I‘h1s prov1des the symmetry
7 . In partlcu.lar, the f1rst term 1s tota].ly symmetr1c in"

SaBy (and therefore, in abc) Such a representatlon -of . 56 was :
It fo]_lows from (37). that

B'
s used
= in the “co].l;near case'

-Tpropertles of "B,
. —ABC
B is. wrltten

. down-as. ..

ibei Ly dyp+ m.'y ) ey 2 qbd‘-c (C_l lxp+n (38) SO
BETIRNC B}’ \/18 : Hyd, 2m 0 7’8 SRy

C

4 »gthh summat1on over three cychc permutat1ons of AB C F\thher, for B}
: the antlbaryon 56—plet ‘we’ fmd (m accordance with_ (19)) PR

Tt -

v -

Sl ame el g abets  dypEm 0. L PRV iy
e e T (et &’y (e Y.-HV‘B#‘

: ,'véhéée R v i :
e T - S . P ; L. 7" ' - '- . 5
I N A S T T SR P (p)=cw¢~( p)

e e e v_rv-": v S :

L e (p) 2o (p)c e y). (p)=c¢ T(=p).

{

: N k

TN : ;
. Z - N . g :

, : - ‘,.', o : . ;
; < .
e N - - i s
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: Here the unltary indices are omitted and for the spmor 1nd1ces the mater
‘notation 'is used, : A .

Note, _mat the original antibaryon‘wave function does not eonhin
e':' and transforms like n @u ®u' . VVhen writing down the invariant
amplitudes it is expedxent to use the quantmes w1th the lower or upper
indices. This leads us to (39).. O .
ln conclusion of this - secnon we note, - that other 8U (6) - represen/ta—‘”

tions may be treated quite analogously.

5. Construction of lnvariant Amplitudes

Possessing its oWh basis, each particle in:a given reaction- trans—, :
forms according to -its own law. . Nevertheless we can easy formulate a
general rule for writing down the SU (6) invariant c.mplltudes for any reac-
tlons w1th arbitrary number of partxcles. An 1nvar1ant amphtude is obtamed
by contractmg the upper 1nd1ces w1th the 'lower ones, some "metric mat-
r1x bemg inserted to transform the correspondmg threelegs into one
another. F‘or example, the contraction of the 1ndlces B and C:lin the

product M (p )N’ (p ¥ is written down as

b D. ) . : o
¥ A (p!_)_SﬁE,(l2)nrﬁ,b(p2), | L : ‘(41) .

where §(1,2) is the matrxx which transforms the threeleg of particle 2 -
into that of particle 1. Due to 5(1,2) the product (41) transforms as
if there were only 1nd1ces A and D, since the variations M (p )
over f5% and M (p ) ‘over\ 8% cancel, An invariant amphtude is
obtamed by contractmg in such manner all quark indices. Let us give
some examples. The .amplitude of the smglet— quark scatterln‘g is
= 3)s L GDu (1) @) é (2). :
a’‘a Qa (42)

3
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o~
" For. the quark— quark scattermg we have

ﬁ —-a’a .
Fl (4)513/3(4 2)uﬁ(2)u (3)S ’,(3 Du, (1)+ L
N . R ‘ ... (43)
+F, nB (4)Sﬁﬁ(41)uﬁ ‘1)‘TG'F(”S;'J&”“@(”' '

.

’l‘he general amplltude of the bmary meson—ba

is wntten down as

ryon reaction.

B1)+M(2)~ B(3)+M(4)

(1) -

Eau,ﬁb. YC(3)S (3 I)Sﬁﬁ 3 I)S (3;1 )Ba'u,ﬁ'b.y'c

~ce ) Y : - SRyt ,
dF- : ! 1
,' {_Fx Mad“)su'“'.z)Mu,“”a’a‘?'”* Gll\ D(4)j E(2) +

v

- 1.3.au.l3b yc (3)5 (‘3'1)513’3 (3 I)B B X Bd(‘_)l‘. { S v. /

.{F2 sw,(3,4)ﬁ;f s, (4, m» (2)5 5 (2 1)+F 5,3 mn (2)s (2,4),-7,‘(44)
, . “';,’5'
o W (4)85'5 (4,1)»~+

i . : R A
G 240,54 DY @)+ ¢ s 3 2)'165""’?’2)5.-‘ (511\72 (4)
+ ZS a( 4) ' ( )S (4) ) "E( )+ ‘2 y,y)( '3 »y'c( 818 :) 3 E ! +

i -
1

_nc.ﬁb ye ' .
+Fs-B - (3)s, ,(3 l)B , 5 (I)Sﬁﬁ,(:’: 2 4).

=S s (2.
. ';Mﬁ:b‘4,)455'5(4’_.1).S}'Y'$3'2)MY'C 5, (‘,}')', .



In eqs.‘(42)—-‘(~44) F -and. G arem‘varbityrary farm fac_fors, which depend;
. on the Mandelstam variables s -, t - ‘and 1. To illustrate ~the procedure
we keep all indices, We can analogously write down amplltudes for the
baryon-baryon processes, for 2- meson annihilation, It is easy to construct
also the amplltudes of processes, m which an arbitrary number of parhcles
is produced The metric matr:.x S, however, depends on threelegs, and

amplitudes will be. Lorentz- mvarxant if and only if threelegs are construct
ed out of the momenta of particles in the reaction,

For binary reactions such a realization of threelegs was obtained .

" in”Sec. 3, one’ vector in all threelegs bemg the normal to: the reactlon

plane, In this case it is easy to derlve the matrl.x $(3,1) which trans-

forms the first particle vectors e:lz , e;ls ) ’l -—-—-l'i—- into the third particle
34
“vectors ezz , e:;f , € u - 3t . respectively, %and which does not
im - . -
change the normal n’l= e;: 2 e::: . It may be represented in the form
{ e3(7 a e io
. v.oovd A
S(3,1)=-—;—-—(\/e;p e P+ - , )
. : Y T (a5)
e e :
- ¢ [

where summation over p,o = 1,2,3,4, is implied, Via threelegs the matrl.x
S(3; 1) depends on the momenta of all partxcles in reaction. Of course,
we may replace the numbers 3 and 1 by any others. When we say.that’

0 8(3,1) turns out basis into other, we imply its property

1 o
S(B1)y e =y e 5(3,1)  (p=1,234). '
eop B (46)

In particular, for p = 1 and p = 4

x| For derivation see Appendl.x 2. There one can find also the gene-
ral matrix S(3, 1) Wthh transforms two arbitrary fourlegs into one -
anotheér.
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‘Hence, the well-known SU (6)w relation for collinear events

ASUNERAL EEYERER

[s(3,1),y n 1=0,8(3,1) —— =
: [ im 'lms
(46)
E\Arthéf, note the relation
st (3 sTU3,1) = (1,3 '
}" (:1)}'4:8 (0 )= (lv) (47)

and the gfoup property

$(3,2)5(2,1)=5(31).

(48)

Due to these properties we can essentially simplify amplitude in
each particular case. For example, aiter putting (31) and (37) into
(44) we obtain the amplitude for all 0 +—15— -0+ —32— reactions in the

form

i ¢ 7 abe 33 _ 13 a’ —a’ b’ -’ o’
..g_.Falll_“ (3)e# S(3)te }'Vysl!lb,(l)tu,cd,(tﬁu(4)¢b(2)+ 6" (4)8%, (2)).

(49)

!5/

o to =2:9:24 (50)

- - 09 .
mpana~ At T panCA np » T AY

is valid for all angles in the exact U (6), symmetry.
Sometimes it is useful to bear in mind, that the $(3,1) between
I
spinors with the momenta p, ~and P4 (for example, between u (1)

and 1 (3)) may be reduced to

R (51)
$(3,1) f1+ lfzy#(p2 + pA)# )
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B where",v'f"i.,' ‘and Cop “are some funct1ons of s and t | In"'practice ‘only-; B
= their ratio’_“f e f /‘ is* essentxal whlch 1s equal to the ratlo of the quan- .

ity

1 2

","'m!m {(2s—m,+2m —m )A(stu12*4)+(25"“‘ +2m "m:)A‘(St‘u?’“”;

(52a)
-—2(s—u+m —m )A(tsu1324) 2(s-—u-— m +m )A(tsu3142)l
to the quan’ti‘ty :
E : g 8 . o : A
‘ms(s—r’n.2+mlm3)A(istul:241§‘:1.’)+grlv(s,s-m4+m1m3k)A(stu3412L)+vf7 ’
“(52b)
Colt=(m e w0 1 0m AGs3142) +m At 1342)].
The ratio = f, 'f ; may be also \wrltten ih other forms (see Ap—

pendlx 3) Stress, that up to the common multlpher eq. (51) 1s expressed

d1rectly in terms of the functlon ) A( stu 1234) Such a reductlon ‘of

the metr1c matr1x ' is always posslble. For example, in: eq. (44) we

"'jare able to replace all S . I—Iowever, the’ expressmn (51) does not

:possess sunple propertles, wh1ch ‘are “inherent ‘to" S(3 1) Therefore, such

replacements are exped1ent only on.the final’ steps of calculatlons. ;
Note that usmg some matrices '§ . (see’ Appendlx 2). we ‘may
transform the wave funct1ons of an’ part1cles to a some standard ba515

et P ( p = 1,234) (cf/ /) e.g. for quark u (p“) =5(st.,n)u(p

"

"I‘he standard basis may be chosen in such a manner that e'lf ! —(00 0 l)
1

'and "ty vy for ¥ =1,2,3 turn into o y‘,o y‘, o : respect1— )
R ' T o

i
vely. The "pruned" wave fu.nctlons transform as’

3

Sl e R Ty RN o B
Su (Pn)=—l2 {o )‘\d+74"1(,"1““1)‘4)*74"2(»“2*“:)‘d)',“”z(“a*“:)‘d)!“ ()"

25
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s

~over each quark 1ndex.‘In these terms the transformatxons coxnclde for—

)mally w1th the prkm— Meshkov ones, and amplxtudes are constructed out

"jrby the dxrect contractxon of 1nd1ces .

lnconsxstency of case !.A Stress that the metr1c matrxx (45) con— LR

: ‘nects the bases, whxch chffer ‘from each other o

nly in a rotatxon thhout
1

'~»:reflection. In the case 1) the dxrectxon of the vectors et for the ini-

"t1al partxcles xs opposxte to: that for. the nnal partxcles. Therefore the

“matrnc“S(3 l)e y Yo ' rves ‘as - the metric

matnx between the - 1m—

thal and final partlcles. 1t~ xncludes the reflectlon. Hence, 1n the case 1) R

: the parxty is 'violated - in the meson—-baryon reactlons. So, 1n the sxmplest

- conservatxon excludes the case 1)

example of the sxndlet— quark Scattermg the mva

rxant amphtude is pseudo—

calar., u(3)s(31) e " # u (1) L ’I‘hus, the requ1rement of the partty

il

oo 6. The Collinear Case

Even after 1mposmg the total crossxng symmetry there remalns a, “

famxly of the SU(é) groups. Each of’ them is characterlzed by 1ts own,

A (stu 1234) It is- remarkable that for" the colhnear conf1guratxons all ,

these. groups glve the same amplxtudes as.in th

can be. seen. from the followxng conslderatxons.

e SU(6) ymmetry ’I‘hxs R

a) ln the . colllnear case each: matrxx S reduces o the un1t matnx

smce now only 2 four momenta are mdependent

S. - accordmg to (51), then' the matrxx Ay, p

Really lf we replace all™

+p, ) reduces to the’ un1t

matrlx due to the’ Dxrac equatlon and the identity - u(p)y u(p) ———&u(p)u(p)\

2

b) F‘urthermore, for the colhnear connguratxons the vectors ( 23)

! are the linear combmatxons of two 1ndependent momenta p.and ¢ There—i

- fore puttxng the wave function of the . 36—plet (31) mto the amplxtude we

i have'the pOSSlblllt.lGS’ exther the matnx e y reduces to the unit matrl.c,

and the 36 can be represented by the quantxty

/ance 'S8, 1) S (3, st. )S(st, 1) these amplltudes are, of course,
'1dent1cal to the above ones. 3 : ”




Lok B b - . b _ —iyptm )
T = —=l-8 iy y o 1 IET .
vz Wsmel 2p o TS af
.3 o .
or e y turns into ygq. Let us give one example, For the collinear

meson-baryon processes there are 7 amplitudes which correspond to (44).
vWe can replace e'.sy ' by the unit metrlx m the four amplitudes with the
form factors ‘ F1 » and these amplitudes are the same as in/ 4/'. Three
amplitudes with the form factors = G . ( which is absent in /4/) contain
. the traces M:(p) = (’bf: P yo ); - Here ve':l y tu_lrns 'into yq*' e ’1‘hese
amplitudes arise because in} Su (ﬁ)w we’ ' deal with 36 instead of 35.
Among them only the amplitude with -~ G 2‘ is of interest.vlt describes
the nepltral vector meson production,.
Therefore, for all bases the.y collinear - SU (6~)! leads to the amplitu~
}des,r which are the same as in the SU (G)W . i
Let us discuss briefly the transformations -of:the collinear SU(6)
In this case the third vectors turn out.to be the definite combinations of
"'two -independent momenta. So, for a particle of the momentum p "
2
:-—AN (ny-qs: Y. S L

R . . . ‘ : ny o
At the same time an indeterminacy arises for the vectors e " ande”?

when passing fo the collinear case, It should be evaluated, proﬁded that-

1k 2k 3k 4k 1k tE '
- e =e =e = » pe =qe =0 (k=1,2),..
' B peoop - g
i, e, these vectors become identical for all particles /3/ .-

Threefolds ( vertlces) correspond to. the collinear case, and are
treated accordlng to SU(G)W . o , -u‘ - : v ) .

As to twofolds, none of three vectors ‘e - ~ k = 1,2, 3) can be.ex-
pressed in terms of the momenta, and therefore ‘the bases must be the
same for both wave funchons.

Thus , being 1dent1ca1 with the SU(6), for the - collinear configura-
. B - - . -
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t1ons, the SU(6), is the generalization of the former to “the non-colli-
near case. It is of. mterest, that the requu'ement of the total crossmg, sym-
“metry selects only those groups, which co1nc1de with SU (6) in the col-

linear limit,

-~ 7. Conclusion -

Thus,. for the géneral binary reactions we can' construct the fami-
ly of the symmetry groups SU(6) , which leave invariant the free
equations  and pass/ into SU(6),, in the collinear case, A ‘lot of conse-
quences ( e. g. (50)) do not depend on the choice of the group within
the family, These consequences would be verified first of all, -Afterwards
to fix the threeleg one could use the predictions, . which depend on the ba-
sis, e, g. those concerning the polariz‘ation*ph'enomena. In -spite of .an
agreement-in some cases (- e. g, the Johnson- Treiman relations), it
would be naive to expect.agreement of the exaci SU(E); symmetry with
experiment. Really, the SU(E), contains the strongly violated SU (3) .
Moreover, the nucleon-isobar ma;s difference manifests additional viola-
tions., The success of the SU(3) is-due to the lucky conjectured form -of-
its violations.‘ Only after an examination of. the structure ~6f the SU(6)
wolatxons -one- will"be . able - to gwe reasonable predictions.

The authors would like to thank M.A, Markov, Nguyen Van eru,
LLT. Todorov, B.N, Valuev, and espec1auy V., Tybor and AN, Zaslavsky
for helpful discussion. They are deeply indebted to M.S. Marinov for the

’

valuable criticism.

APPENDIX 1
For bilinear combinations of the spinors which satisfy the Dirac

equations (-,lyp»+,m"‘) a(p)=0  and-T(g)(ly g +m, )=0 . the foilowing

identities 'ar'e valid
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) | (mx mz+qb)~;(q)auvﬁ (F)’:,’

A

the forms .‘c’z—B—-l-w!

oym ¢ ap )i (aYo,, u(p)- 1 p)\?ipﬁ'(q)?"s “_(P)*i‘,’,‘v";q"vfpyﬁ “)F(q’) u v(‘f')'f

" ;(’q‘)ﬁ(p)é-;l‘ L u(q)y u(p), u(q)y u(p)=i

",:where a+B—-1 . To; denve (Al) (A4) we wnte ul"u-—u

T 15 often convement to choose arbm'ary parameters e« . and B m S

RIS TGO L R ERROHOR #,,:’A P PBT @,y u )~ (A)

[
. . . . PR v ‘
N - - e . <. - R §

.

(m m +qp)u(q)yy u(p)=—i(m q —rr LN )u(q)y u(p) k)‘ P q)‘u(q)y u(p)

. (A 2)
"y p,\q u(q)y u(p)-:(p 90,0, )u(q)u(p)+ T

, ver. (maq em p)ale)yy ulp)
Ty Couvdp A 2 AT pis .

i

. v‘—(‘m;(qﬁfﬁ,zp#)u(q)yt;g(p)fr,/(miqv—.lnyzfpv’)u,(g’)y#ut(,p)v (A5)

-Br g :

o oam p +Bm vq ary P .
22 z u(q)y v, u(p).@

; momo
¥q. l" “yp

; im

and decompOSe 4 l"yp #in the: complete set ‘of the Du'ac ma%nces. ’fhe '} :

u',

;1dent1t1es (AB)! follow from the relatlon b T e ' SRR IR

B ful"u—u(ar ve. ’ +ﬁ q Du. . o T
3 \ i m‘. 2  w _‘ ‘,”; " il % RSO

v 1. 2
L_or a= B:

’ . o S iy
e - mom o PR
.',‘ l + m2 R .» m 1 2 . . PR . ;

Note also -the lmear 1dent1ty

pkyy u(p) (5 :i# L p )(5 +m ’bp )a.b, u(p) (‘A-é)-,‘
uw\p R kv )

P L
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. E‘or\\\pthefj ”r’iaehtitﬂies,*ih pé‘rtictétxl‘ar,‘k,_yfor" spin’

i APPENDIX 2. Derivation of the Metric Matrix' S(31) - o o
. . - . . R s g C - b ST
tors it is [easy . to wrxte down ‘a Lorentz transformatlon Whlch ; :
o turns the four ormonormal vectors el mto any . other ones e”‘ R
Q=23 e e T RS TS
. SRR ] BRI T SINE P ERTOUP ST, Pt PP SR P ST LT
I L AL P R e ~_»>_ S e e aa) e

" F‘or vec

7

’Dus form of ya

uv remams vahcl 1n the »presence of reflectxons. In clenva- l o Ve
two bases differ” from each other e

P

: non of matrxx/ 'S . we suppose that the -

’n a rotatlon w1thout reflecnons. Let us start ‘with - the’ threeclxmensmnal

e L

:rotatlons. One can' fmcl the matn.x S-—‘e 2 in terms of matrix |la - ||
- R P Loomn

VAN . e

N w1th the help of the conclmon )

P A :
oL . T A

o ’i'.v"" P | -»-»f, L EEENS Ry © : S e . a
‘2" O'(D -','—TO'GJ Tate L - 3?.1?'(’, . 3 A
e’ ‘o e " =0 a’ ali=e ; S, D= 3). RN @
mo . nlam’ 2o T ®m ,m.,n ,'l’_2' ), e (A'B) ,

R T
)

: I/Deco'rhpvo"sing» theile‘ftﬂ' hand side in m;ité'ices o, - we find -

- S 0 a imleos e ] (8- VB smlol o, 0 (A9)
: ol : Rt nm < . nm -2 2 . S nmk. -k -
A Tt A PO . [ S @ g ](D‘ o . : i

OOy

N
B - - N B
~ E . . . . - B ;,

“Contracting _ am and multiplying (A.9) by “k‘mn ‘we obtain

. N ! AR

S i @ =2ws|alil, e =5
Gl T R ey ~oesmlel

v : S X . s g \ . . ; - T .
. 5 . . . : o f T R B sl e

mn. nm_ -

Hence we fmd J. : in‘:terfms‘of,'a- o -and ﬂna,liy' S
‘\1 > o - -y " NN me. - LA | P

N —_— W - nd T L ee—— -
».’S(3,1)=e 2 = cos ol i 99 ga l“‘" SN VR TRPOARLIRLE L EIREL IS SR
} 2 2 2 L S~ mm " et




- When verifying the property o &k $(3,1)= S(3,1)¢;§ . , or what is:the
same, (A.8) the following identity is useful : S ‘

(1+a")( ~8 )=‘—;1,—(a —a . )a -a ). ’ (A.a2)

In our 4 -dimensional case the normal remains unchanged, i.e, a rotation
is in fact a 3—-d1men51ona.l one, It can be represented in the form
t

T %y %uv T“"’
S==e # =e ’

where matrices

o =t e eMelo - (4,1,k=234)
1 2 e n v ouv

satisfy the algebra of the Pauli matrices. The matrix S is determined by

- -1 . . .
the equality Sa‘w S =05 8,08, with 8, - (A7), Tir'us equality can be
reduced to (A.8) with a, = e:‘" e;“‘ ( note the property e:‘m= e:‘" a ).

The same considerations as in the euclidian case lead us to eq. (A,11)
which is identical to eq. (45). In verification of (46) the following |

identity for rotations about the normal is useful

a +a :
py t Ay, 1 1 : (A.13)
app ( 3 8’“' +e# e, ) 3 (aw\—a,\#)(aAv 8 ).

It follows from (A.,12). For arbitrary 4-rotations the following . relation
can be proved

1

T %% ® l+y slney 1~ ~¥s
4 py Tpy [17s i i
S=e = e (oSt +—0 ——_)+ st +— @14)
2 N - 4 v “uy T ( 4 uv uVT-)
{ +V ) v
o (o to
where r =\ BV BV it 0 = 1, ®
+ ) Hv 2 pvdp Ap
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This relation is deduced by the decomposition of exp(-——a o ) into
pv  pv

the product of two 3-rotations,

1
T Cpy i ) i
e ‘ =exp[—§—m#vo#v(1+y5)]exp[-é— “’pv,"pv“"ﬂs”'

: Further, it follows from condition S Yy st Yy By that
Csine_sinr sinr sinr
a {08t OEf +©, @, -———mm———)3 IR SUSh YR
Hv =+ TAp Ap L BE Bv T 2t r “ur Caw
(A.15)
sin ¢ _ eﬁsr+ v slnr, cosr.. . v
+ (o - Y.+ —_—t (et )
.o 2r_ 14 v 2,+ pv pv
and, finally, that ~
1 1+y . 1- v
L (s et =Y c0sr ) (e 410 a (A.16)
a 2 - 2 + T ey py
16 2 zl v R i B " h 1 v K
cos r =(aw) +auv(a“v-aw):23wa‘wk (AL7)

4oosr_cOST =23, .

The expressxon (A.16) represents a general rotation - without{reﬂectxon)
v I . With the

of spinors: in terms of the rotation matrix for vector || a

help of (A,17) one can obtain the identity

"16 2 (. 2 S . g v
(a““): aw) +a“v(aﬁv-—afv“)] -4»(alwa#kvb) (A7)

Note the useful 1dent1ty which expresses the symmetr part of an arbitra—
ryormogorﬂl matrlx in terms of its antisymmetric part and 1ts trace
N, L
(a -1 48 & - .
wt BT 7 “vapp) (BM 5, ) a, a,,) 7 Oy /\p(a/\p L9 (Aa8)
This identity was used also in 15 : ) *
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The matrix S (A16) can .s',erve as ‘a.'"metric ‘matrix" for ‘many par-
ude amplitudes when bases of partlcles do ‘not.have any common vector,

_and we can not confine ourselves to the 3—d1mens1ona.1 ‘rotations,

Appendix 3 "~ Other Forms for the Ratio*fl’: f2

Invariant amplitude can be derived directly fromvthek requirement of the
invariance (without uée of the metric matrix). As an example we consider
the singlet; quark - scattering, For genez;ality the maSséé ‘of initial-and final
quarks and' singlet are supposed to be different. The general »a'\'mp.litude is

written down as

Meu(p If +16,(y,p,+p ) u(p ). | - (A09)

Asfter transformations {8) we have
SM=ulp M(af +Bf )y +(rf +pf )y, p + Py dule),
where a,8,r - and p -are definite functions of -A (-'stu :1234) and

masses, Two homogeneous equations af W BI -= 0 and r f~ +pf,=0

turn out to be compatible: vamshmg of the determinant is equwalent to

the equality of the norms (19) of vectors e#s and ela « In this way
p :

we obtain the ratio f . f2 in two forms: one of them.is the ratio of

(52a) to (52b) and the second one is the ratio of the quantity

| .
2 ‘ 2 :
ma(s--bl'nz—ml ma)A(stu1234)—ml(s—m‘-mlms)A(stu3f12)+

+lt \~(r~l—m3)'2][m3A(tsu1324)-m‘lA(tsu3142)]

to the quantity
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m o, [A(s1234)~ A (st 34121

The latter form of the ratio is inconvwehientv as it contains an indétennindcy
when passing to the equal masses. We can receive third form for this ratio
if we evaluate !T(ps)S(S,i)u(p!) _with the use of the explicit form of basic
vectors and the identity (A.4). In this way the ratio f,:f,  turnsoutto be
the ratio of the quantity e ’

Rl " " R - L L 2:‘ i 2 2‘A " 2 2
© L A(sm123)A(stn3412) s —s(m -2 m +m Jemem (M o—-m +
: 2 13 4 1 s 1 2

+m2-'-m2)—mzmz+mzm2 1+ A(stu1234)A.(tsu3142)[t—(m +m ‘)2-]--‘
3 4 1-.3 2 4 X 1 3 )

. .(s-rr:—ml P )+ ACtsu 132004 (st 3412) (= (m 4 m ) (s=mem m )+

+ A (tsu1324) A (tsu 3142)[ (¢ = n? = ) ~4n ril-dnm m

to the quantity’

) : 2 ! : ‘
[(s—m2+ m‘ms)ms+(s-—m4+m1m3)m.l]A(stu1234)A(stu34v12) +

+lt=(m +n ) 10n, ACste 3412)A (ter 1324) + m A (st 1234)A (tsu 3142)) .

One can dfrectly verify the “equivalence’ of this ratio with the ratio” (52a)
to (52b). The verification is rather tedious and uses essentially the equa~

lity of norms (29) of vectors e and ¥ .
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