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I. Introduction.

At first sight the title of the paper 1s somewhat paradox. -~
al..One would think what does the form faotor, whichbis, as well
known, related to the isotoplcally invariant strbng interaction,
care for the violation of. the invarlanoe. Nevertheless these
things are found to be rather closely connected. Firstly, the
concept of form-factor itself implies the presence of the electro-
magnetic interaction violating the isotopic invariance. Secondly,
recall how the problem of the electromagnetic mass is formulated
in olassical field theory. The pion is there represented as a
ball which canibe either neutral, or chgrged. Then the mass
difference of the balls should depend on their radius: the
smaller the charged ball is, the heavier it is than the neutral
one by the quantity Aﬁhjg?%7 . Thus, knowing the mass
difference of pions we can determine their "radius" r .

Such a relationship between the mass difference and the
"size" of the pibn is‘not a privilege of classical electrodyna-
mics. In quantum f;eid theory there is also a formula which:

/1,2/

relates the mass difference with the form-factor of the plon N

‘although here the derivation is based on some approximation. 3
However both in classical and quantum field theories we delt,

as yet, with a global isotoplo invarianoe violation, i.e. with

a simple mass splitting 1n$ide an isomultiplet due to the total
charge. It is difficult fo expect that one number available, anm
can give sufficient information about the charge distributions if,
of course, we do not specify beforhand its form.

In local theories, we are usually dealing with, the isotopic

snvarianoe violation should be also local, i.g. should have the



form 'é}«{;«:jm s what may give_furthe; evidenoe about the
form of the charge digtribution, i.e. about the form factor. But
what we have to put on the place of %; and in the case .
of isotopic 1nvai1ance violation? This question, in fact, was

6
answered in many papers/3’4’§’ /

as follows: when the electro-
magnetic interaction is switched out the theory is isotopically
invariant. This means that togethér with the vector of the slectro
magnetio current ( more accurately, with isovector part of it

o r
4; ) there exist local operators %Qf for whioh

c}«'//, (*)=0
and space integrals the time components of which form the isoto-
pic group/generators. If now we switch on a minimal electromag-
netic interaction then it turns out that

il = Qe for] s (@

where 47 Q

/4
tion is switched on and JAC“' is the electromagnetic potential.

denotes the current when the electromagnetic intérac-

In Section II we give a somewhat different definition of the
charged vector current than that presented in the abovementioned
papers and find its divergenoe within the accuracy up to e? By
applying then the obtained expression to pions we get within a
certain assumption a noﬁ—linear integral equation for the pion
form factor. Section II1 is devoted to an approxiﬁate anhlytié\
solution of this equation by expanding it in the eigenfunctions

of the'group of motion of the Lobachevsky space and by the asympto
tic solution of the obtained functional equétion. At the end of

this section an expression for the r.m.s. radius is given the

numerical value of which is found to be 0.3 fermi.



II. Current Density, the Divergence and the Equations

for the Pion Form Factor

As was already said in Introduction it is not apparently
difficult to determine the density of the charged current when the
electromagnetic interaction is switched out. When the electromag-
netic interaction is switched on the current is "dressed" with
the electromagnetic vertices, Therefore it is natural to determine

suoh a current in terms of "electromagnetic®" S-matrix

@ @ o Yt T it @ ~
J (x)= 7—\/%) - ex /{e [m(////t] efs "%
= - (x) exp §~ce ot
/al (/, bem AS >/° r.,/ e % x) Z{rh Lea, T/ f,
- where > and £ denote the corresponding ordering in time.
Writing the right-hand side of this expression by perturbation

theory it is not difficult to get that, up to the terms e*

@ '@ o (oS '
.7,44 x) = J/« (x) + <e/c/y/o/e; 157 V/M‘?xjem—w~ (2

-e /o/)/ o/y[o{;m (y//o{m </ ) (xg//é?(y,,, ~5%)0(%-x)

Now assume that the electromagnetic interaction is of the usual

form of the type "current = potential", i.e.

nt . 3
ofem (x) = C;“(x)‘éu(x,) , (2

where Q is the electromagnetic field operator ( it is not

Vad
reno;malized by the strong interaction), and J;( is the electro-
magnetic current density, consisting of the isoscalar part and the
third component of the isovector.

Further we assume that the commutator %df'/.@/] vanishes
outside the light cone and has a singularity of the ) -function
type at the cone vertex. (This assumptionmay be Justifled by the mo

7

dels such as quark model or model with nonabelian group of

gauge transformations 8).This yields

[/,, 47 ‘/‘;G)N/Sm—x) - c?jf’m S(x-y) . (&
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The Schwinger terms which usually appear in the commutatlion rela-
tions for space- and time components are non-essentlal for us,
since they appear only in commutators with identical isotopic indi-
ces, Now it 1s sufficient to take the divergence of both sides
of the equality (2) and using eqs.(3) and (4) as well as the con~
servation of {:0 to get an equality which will be valid for any
matrix elements without photons
\7 O(x ) =
=g oeyc/jv/p 2 o O f Coa fs DYCr-2)B=x ) 1) (])

where [)rtt and l)i are the retarded function of photons
and thevacuwhaxpootation of the photon field anticommutator (see,
e.g.9 ). The same formula can be derived from eq. (I) by expanding
;Zg? and /@“ in the right-hand side in a power of €.

Consider the problem of the relativistic invarianoce of eq.(5).
The invariance of the first term on the ripht hand side is obvious
and that of the second term is based on vanishing of the current
comnutator outside the light cone. However, further we shall expand
the matrix elements of the product of currents entering the com-
mutator and the anticommutator in a compiete set of the intermediate
states and then cut off this serles. For the anticommutator this
procedure harbours nothing dangerous while for the commutator this
cutoff will lead to the violation of the local commutativity and,
as a consequenoe, to the loss of the relativistic invariance. To

10

avoid this we follow the Dyson advioe and represent the commuta-

tor in the form

8-/ e, [ %s]

being aware that due to the uncertainty of the product of distribu-
tions such a procedure of separating 6??&=yyj/ can lead to a



divergence, to the necessity of renormalization and, as a coﬁse—
quence, to the appearance of uncertain constants. But, as will be
seen, this ambiguity is non-essential in our case.

Thus, applying the Dyson procedure we obtain a relativisti-
cally invariant co-multiplier.

,A,(V‘X)¥ D%y s)Oly-1) O Cr-)= Dy-x) Wl (v) (6)

in front of the current commutator. Now we transform eq.(5) to the
momentum representation taking into account oondition (6). After tbe
ordinary manipulation we get
EFID%) I Fé> =
= gfé’/%é; [ 2 ”"(;—,o)[(;y///oj/;”)(;,,//;0(0,/,;‘-> + J, =YD
+ AP i - =
where @)= {Ju n;f?(o) , and Dre(i—)= /:_/1 (see?).

2~ (EA,
R EA
We go over to the calculation of ,Zl (x) . By integrating we

I

obtain that the Fourier transform of the characteristic function

of the upper light cone .\/; is

¢ oY 8% PR )
p)= o/XV("')e = = == Y ol x @ °
\/; ( J/ 7 wrr /a{r

and after the contraction of the obtained expression with the

Fourier transform [)1 we find

. oy
A ) = /9/;’0 PP T 5[ —:ﬁ‘em(r Wj} (8
However the written expression is meaningless since the integral
diverges. In order to make the function ,ZL meaningfull we note
that the formal expression (8)satisfies the differential equation
(here and in what follows we omit the indication on the going

round the poles because it is non-essential for us).

o4, B
of <2 = ;ﬁ rli‘vr) )R



whose solution is

A (5% = 77—(-:—,—;}—2 (Grrn¥/+C) y

where (' 1is an arbitrary real constant. It is not difficult to
see that such a procedure is equivalent to the ord1nary subtraction.
Thus, an indefinite vonstant has appeared in the term with the cur-
rent anticommutator as a consequence ‘of the Dyson procedure. However,
in the case we afe interested in there appears a condition which
allows to determine this constant. L

Now let us go over immediately to the derivation of the equa-
tion for the pion form factor. To this end, as the initial and
f£inal states in eq. (7) we taike the one-pion states with oharges s

4

and S’ and in the sum over the intermediate states we also restrict

ourselves to a one-pion state only. Then the matrix elements of the
current in the right-hand side are written, using the well-known for-

~

mula, through the form factor

- @ - _‘ (/O"“/D)/., Q , .

' (o) = [ sl B 9

SESVIp @ B2 oo Tos £FF) (9

where 7 ? are isotopic matrices of the triplet. However
s's

for the left-hand side matrix element ‘</:55"/o_®a(o)/§s>, we may
not use the isotopic invariance. In accordance with our approxima-
tion we keep in this matrix element only the term of the order of
&% and the term proportional to the mass difference. Now employing
the transformation properties of <E'S'/5‘p(o)//’,$> with respect to
the 7~ and ( operations and under the complex conjugation, tak-
ing intc account the conservation law of electric current €§)q=o)
and the fact that the 7 meson antiparticle is 7t -meson it
is not diffioult to obtain
B579%Es> = (10)
Q

N é””’” [ 7',"7""/5.5%‘(/’-%)*@[7,07-4’/53 Gerr)),



2
where A/277= e = /7o and o= SUx is the fine structure

constant. It is also easy to establish the conneotion of the func-'
tion /Tand(f with the invariant funotions of the matrix element of
Q .
é; v , which,up to terms contributing to the divergence of the

order of &% , 18 of the form

</’5/J @ g5 > ("_JJW/T (P*P) FlP P+ 7'30/0/0'—'/0;‘, C(/’-'/")) .
Hence we conclude that the function F in eq.(I0) is the meson
form factor and (G (M%=0 , Inserting egs.(9) and (I0) into

eq.(7) we see that in the right- and left-hand sides there appear
two terms in each which transform in different ways under rotation
in the isotopio space: one of them as the anticommutator {71?7rf?
and the other as the commptator Z7"° ?/ . Besides, the first

of them is purely real and the second one‘is purely imaginary. This

makes it possible to equate these terms and obtain two equations:

[ Flpr)= JL CREE ieyper)| an

327“9n4/n

C(/"/’)",é g ff?wj/ﬂ (,{4?-1/+C]F(ﬁ’7/f'(ﬂ7)(12)

with the additional conditions G770 ana F(»*=7Z  the
first of which allows to determine the constant c . Thus, we have
derived a non-linear integral equation for the pion fornm factor
which will be investigated in the next section. As to the second
relation connecting the radiative correaction for the S -decéy
of a pion with the form factor we do not know as yet whether any

useful information can be obtained from it.

. 1II. Solution of the Equation for the Form Factor, the

Root-Mean Square Radius.

Now we are engaged in the solution of eq.(II). For this it is



convenient to go over to the space velocity/ll/which 1s the Loba~-
chevsky space,. the 1rfespective.veloc1ty of a particle being reb:e-
sented as a point in this space and the scalar product of two mo-
menta by the masses of the corresponding particles as the hyperbo-
lic oosine of the distance between the points ocorresponding to the
velocities of these particles. Thus,—,f,,;z— oha ,./;_—céf ,71‘.__ chc
and the sides & , £ , ¢ form a triangle in the Loba-

chevsky space (Fig. I)

'&‘G/

&

Fig. I.

D
1.e. chc= chachl- shashbcosé , Rewriting eg. (II) in terms

of these variables, after the integration over the azimuthal

angle, we have

&4&#0‘[*04('1'
Fa)= f/"("’ S F(6)F(c)= ()

_ g{gm Yre B,

where &= o ’ /«(b’/=5#é’szn8a/&/€ is the invariant mea-

/67 AM
sure, and
V= f ,y,(f) FUEIF(cI= [Joppul€) (F(Ere F(E))F e

3/ f,,y,/!j :Agc/ Fl) Fc) = J.,/ &) Qb)) f (e

]{_—_ Y @), , = L/;fq(@cé'q ! e = Jopuc€s BEI FC<
( The definition of the functions @ , D, and A 1is ob-

vious from these equalities). Notice that each of the functions
is a contraction on the Lobachevsky space motion group; therefore

it is natural to make the expansion in the "radial" eigenfunctions

12,13
of this group/ /

/-Hf( Aa} ;{n/oa (14)

o LS - 2
//D"(Oj_ ' Sha V;::m
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Thus, let

- I5
F(a) [f(ﬁJ@(a)f’z‘?o (13
and inversely
foo)=fo/£s#£ F(E) €0 . (16)
These formulas and a .particular case of the "multiplication theo~
re "/1340r the functions 6%
Ny

[ Ptersinecto= vz Rcasp s,

[+

where G 4 and C are the side 1engths of the triangle
given in Fig.I, yield-
Y ()= Vax (£ () +¥(p)) fep)
Y (p)= Va7 P(P)f (p)
Wip)= Var Plr) £(p)

If, in addition, the known identity is used

O/la/D(C))::. —1//./2.;_"/}2”;(5:)., -/;’;@_L(a))

it may be found that

(% (’O/ [ /?" f’*c/ /}”O"LJ JASD

(19

an

/14/

Fp)= 2!(/;”5”//"‘6')* L pip-i) ) - pap)

Inserting eqs.(I7) and (I8) into the obvious equality

4 2
Fpr=e(¥irr trie tirs)
we are led, instead of the integral equation, to the following

funotional equation:

11



2f¢) = vz e {’” C(Plpiise PRI ) S+ (20)

+ —~ L (i) - i) (P «#e1)f
to which eq. (I9) relating ¥  with # 1is to be necessarily
added. )

'As is seen, the obtained non-linear functional system for the
exact solution is not at all simpler than the initial integral
equation. However, it has the advantage that there appears a pos-
sibility to investigate various limiting cases, in particular, the
case of large ﬁ , which corresponds to small momentum transfers,
according to (I4) and (I5).

Now we turn to the asymptotic behaviour of 7[(_;0) +« A simple
integration by part of eq.(I6) will lead to that all the coeffici~
ents in the expansion in Vf’ vanish. Therefore to find the asymp-
totic behaviour of ][(Jp) it is necessary to know the analytical
properties of /:_(o) in the complex Q- plane /15/ . As 1s
known, the pion form factor is analytical in the plane ¢ =-2mf04a-_1j
for the exception of the cut [4»72, 00) + In the Q —plane this
will lead to a singularity on the lines ImQ = JT+ 2% so that
the maximum value by which the contour of integration may be dis-

placed in the expression

oo .
o (ﬂa
—\E ' - E_L_fF(a)s/:aé ola
‘f(ﬂ)- l/;j_o—/o/-‘(a)%a sinpa oa = t/,r—g[ﬂ_m
is (T « This will lead to the following asymptotic behaviour for

. - 7P
P oo 3((10)"’0(5 /jo) In the case of
Fla)sha f Fla)sha ,ipa
- /2 / = L ofa
f(ﬁ_)* VTT—;JO cha-7 Sinpadas = Vor pJ Cha-A € :
when displacing the contour of integration it is necessary to go
roux;d the pole at the point a=0o0 , what lead to the behaviour

. PP~ L O p) - (21)

12



Our approximation is that by inserting eq. (2I) into 2q.(20) we

reject exponentially small terms and obtaln a linear equation for

Fe),

,Qjoﬂjf(P)= €ﬁ2f+£}/0°+¢')+ (2/0—4')][(,0—[)1‘ 4_,0/0017,/ (22)
where & =&’y Such a rejeotion is practically equivalent to the
fdllowing replacement in eq.(I2)

FC€) 2 (23)
D)= s — Taa - -

The solution for eq. (22) is found in the form

fepa= [ e € P e, (28)
Yoo

where 2 (X) together with its first derivative vanishes when X->oo,
As to the limit X— - = , owing to that f(P) 1is real, b(r)= 4060
and consequently must dlso decrease. These boundary condition;
follow immediately from the connectlion between Q_ and £~
(see below) and from the rate of the decrease which i1s required
by the integral equation for F  1in the abdve approximation.
Indeed, eq. (I5) can be féwrtten in the form

Fla)= 2z L2 f o4 f(ﬂ)'/- FCr)

from where taking into account (24) we obtain immediately

____ é(n -a) (23)
Fa)= O{Q/ a)+4 0)

(The numerical coefficient in the right-hand side is non-essential
for us since the function 2 is determined up to an arbitrary

constant).

Thus, we may conclude that

a

1 [ - .
J[Oo):ij.?‘_/é(xjé‘ Pl - j—é /g()e"”

13



and inserting it in eq. (22) we are led to the following differen-
tial equatiop for Q(x)

}Z ”(x)— & /——?é 2}() (chx+1 )+ écx),;,észo . (26)

Although the asymptotic of equation (26) can not be given any
physical meaning because in our approximation we may believe the
solutions only in the region of small - X , the investigation of
asymptotic behévioﬁr is necessary 1h order to fix the suitable
solution for eq. (26) by choosing one of the érbitrary constants.
(The second arbitrary constant will be used to normalize the fbrn
factor Ao,
To choose the suitable asymptotic solution and understand what

it goes into for the‘region of small X we make the replacement

12 hx + C
e cE(&X fj§(x) | (27)

since as two linearly independent solutiohs of the equation for ; :

7()():

/4
$ e e (chnet) S (xrao (28)
we .can choose the soiution of definite ﬁarity wlith respect to

the replacement x-—»>-x 3

g(,‘)': Co even <) C: Eo-:/ul x)
where g”“(o);-j and §,'_,,,“’)=f . After the substitution
S = shx it is not difficult to conclude that at X—>=° two
v . ¢ Jl'hé-é'ér}
linearly independent solutions are of the form }x »wéz; cos(eshx).
Taking into account eq. (27) we find that to provide the decrease

of Qj(x) it is necessary to put

Co=-iC . | (29)

Thus, eqs.(25), (27) and (28), the condition (29) and the norma-

lization condition determine unambiguously the pion form faotor.

14



"However,~ow1ng tb the fact that our approximation is valid only
.for small X and the information on the pion form factor is
very poor and contradiotory.we restrict ourselv221{o the calcula-
tion of the rms. radius. The simplest way to do this is the fol-
lowing. Inserting in eq. (26)
hx) = a°+a,x+az§+
and equa%ipg the coeffioients for the identical powers of X, we
express (, in terms, say, of Q. - and & which may be
chosen arbitrarily. Using the replacement(27) it isﬂ't difficult to
find the condition (29) to be now
a,= S
. 4&(1-28)
Taking into account this condition

—_ £
. a, = (1— /6&2- /=28 )az

and using the expression (25) we find the first two terms of

the expansion of the form factor

%)= 4~ X2
Fx)= 1 2 (1_%)

which gives ’

\ /£ .
KF>»= < 2
/-2 +./6£ ) where |6==—8,i}2/),_;,"

Substituting the numerical values &= Yi3z 4 m= 135 mer and AM=% S,

’Zw: o,23;,’;=o,3ﬂ '

1V. Conclusion,

we get

The r.m.s, radius of a pion obtained in the previous section

is based on three approximations. Let us consider these approxima-

. tions more closely.

15



The first one is the reStrictiop up toterms of the order of

2 in deriving the expression of divergence. The validity of it

e
‘apparently beyond any doubt since such aﬁ expansion proved itself
to be excelent in quantum electrodynamics.

_The second approximation, i.e. the rejection of all the states,
but the one-particle one, in the expansion of the current produot
in a complete set, is more confused . Frangly speaking, we are
not able to give to this approximation at least some wordy  Justi-
fication of the type "nearby singularities" or "saturation condi-
tion". The only justification appears to b:%fact that 1f in eq.(II)
we put PP =m? ve are led to.a formula which connects the mass
differemces with the form factor. Inserting in this formula the
pion form factor in the 59 -meson approximation we obtain the
mass difference which is in rather good agreement with experiment.
This allows to expect a reasonable value for the form factor not
too far from the point pP=? as well. This fact is also
seen from the comparison of the'obtained‘radius with the |
meson radius of the pion which is found to be about 0.6€.Unfortu-
nately, we have no more to compare with since the expériméntal
data available are rather inaccurate and as a rule are based on
assumptions of theoretical nature such as "Chew-Low pole diagram".
The question naturally arises: why we did not use the nucleoﬁ form
factor which is known rather well today to check the validity of
a similar equation? However, the use of the isotopic invarlance
violation in the form (I) does not allow us to write a closed
set of equations for the nucleon form factors, at least dpe f; the
fact that the isoscalar form factor will enter the righthand side
of tpe equation together with the isovector one. Thus, some more.

equations are needed for the system to be c%osed.

16

Pﬁtywevhave ne one of them. ( Of course, if the supposition such .
as the siﬁiiarity ofvthe behaviour of all nucleon form factors
with the momentum transfer is not pade) So, the only possibility
to check the validity of one-meson approximation would.be the
‘account of the next intermediate states and, first of all; three-
pion state, at least in the form of W ~meson.

Finally, the third approximgtion, namely the rejection of
the exponentially smali'termsbwhen P (what corresponds to
small momentuni transferj, can be easily overcame by the numerical
caloulation of the initial 1ntegia1 equation with the help of an
electronic computer. However, it seemspfematurallyto do this
untill .the question about the validity of the second approximat16n~
is solved.

In conClusion I take the opportunity to thank D.I.Blbkhint—
sev,.I/T.Todorov, A.T.Filippov and especially M.Micu for many

interesting and rather fruitful discussions.
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