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. 1. Introduction 

It is the SU(6) symmetry suggested by Gursey and Radicati, and 

Sakita 
1

/ two and a half years ago that we owe a number of succesful 

relations. and essential predictions, particularly for ~lectromagnetic inter.;, 

actions 
2
/. These results are being understood in two ways. The first way 

- quark model - which is a simple and natural interpretation of the sym

metry - is based on the crucial assumptjon that particles' are composite. 

The second way - current algebra· - suggested. by Gell-Mann 3/ is an 

attempt to interpret symmetry by means of usual concepts of the local 

relativistic theory. The starting point of this way is to postulate equal-: 

time commutators of some local operators. Following this way, use can be 

made of such an achievement of the local theory as dispersion relations 

(it was done by Fubini, Furlan and Rossetti
4

/). At the same time this 

method employs the notion of local operators at a fixed moment of time 

which is indefinite in the local theory. 

In the summer of 1965 N.N. Bogolubov suggested to use ordinary 

dispersion relations to obtain some results of this approach without pos

tulating any commutators. For this purpose use was made of the so- called 

superconvergent sum rules G/ which has been well-known since 1959
5
/. 

The Italian physicists?/ derived similar sum rules sta~ng from current 

algebra.· These sum rules nave attracted recently considerable attention. 
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In general, current algebras applied to electromagnetic interactions 

were touched upon, only in 1966, in a hundred papers, what in no way 

makes my task easier, 

su( 6) s y m m e t r y 

We consider in brief the main predictions of SU(6) symmetry for elec

tromagnetic interactions. The greatest E!uccess of this symmetry has been 

achieved in describing the static limit of the three-particle vertex 

~ 
Fig,1, 

11 p 

t 

SU( 8) 
--+ 20 constants 

quarks 

r (cv .. "y)- 10 constants 
su ( 8) 

where the wavy line stands for the photon, and each solid line is a par

ticle or a resonance. The SU(6) symmetry allows one to express in terms 

of the proton magnetic moment the magnetic moments and the magnetic

dipole decay constants. of the remaining seven baryons and ten. nearest 

baryon resonances, i.e, 20 isotopic::tlly independent quantities 
2

/. Simi

larly, 10 magnetic consta·nts of nine vector mesons 
2
•8-

1
0/ are expressed 

in terms of the "-' .. "Y decay width. I would like to note that the quark 

model goes still farhter and succeeds. in relating the cv .. "y 
11-13 9/ 

to the proton magnetic moment ' • 

decay width 

However, great mass difference of particles involved in the decay, 

especially in meson decay, makes one to introduce an additional assumP

tion showing which constants the predictions of symmetry are referred to, 

As those, we usually take the constants entering the simplest relativistic

invariant effective Lagrangians. 

The number of the magnetic constants measured are much less than 

that predicted by the symmetry. The experimental data are discussed in 

reports by Chuvilo and Khachaturian. 

The comparison which experiment is at present as follows (see also 
24

a/) 
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P.p p.I+ 

P.n e/2m p 

theory 1.5 2.79 

experiment 1.46 2.1±.0.8 

p.A 
----

e/2 mP 

0.96 

o. 79±.0.20 

p.(N* ... Ny) 

2,.;2 P.p 13 

1 

1.28±.0.02 

1.25±.0.02 

1.20±.0.08 

The second and third predictions in this table follow from SU(3). 

The experimental estimates of p. ( N* ... N y ) have been obtained from 

the data on photoproduction in the first resonance region: the 

timates - from 11° -photoproduction
14

•6/ and the third - from 

production 
15

/. There are also preliminary data on p. I o and 
. 16 17 an analysis of strange particle photoproduchon ' 

first two es

"+•photo-

from 

Theory 

r< P ... "y). 

0.13 .:!:.. 0.03 

5 

0.6 

Experiment 

MeV 

upper bound of direct 

measurement, CERN18/ 

0.2, yp ... "+n, yn ... 11-p, 0° ,180° 

The Lebedev Phys.Institute, Moscow19/. 

This estimate is the least sensitive 

to possible uncertainties in theoretical 

formulae for photoproduction. 

0.1 y p ... p 0 p , 

Hamburg20/. 

The estimate is obatined with the aid 

of diffraction model. 

0.4 yp ... p -N*++, 
21/ Hamburg • 

0. 7 p -Production by pion through 

photon exchange with nucleus, 

Paris22/. 



r<q, .. l)y)/r<¢
0 

),% 
t t 

8 ±. 2 
22a/ 9 + 11 Sacle • 

- 22b/ 
0 ±. 8 Berkeley • 

We see that the agreement with the available meagre experimental 

data is good. It is very important to proceed with measurements of the mag

netic moments and radiative decay widths, as well as decays of vector 

mesons into lepton pairs {see Khachaturyan's talk) and pseudoscalar mesons 

-into two photons. 

The collinear group SU(6) is a relativlsti<=: generalization of the . 
23 w ' 

group Su{6) • For the electromagnetic vertex this collinear group simply 

generalizes the static SU(6) relations to the corresponding form-factors. 

In particular, we have 

G(p) ( 2)iG(n,( 2)~-3/2 G(n)( 2) .. 0 
Mq Mq 1 EQ 1 

(N* .. Ny) 2.j2 (p) 2 
GM 1 (q 2)=-

3
-GM (q >. (N* .. Ny, E2,Ll).,o, 

G (4m 2 )~ G (4m
2
)=0, 

E M 

see, e.g. 
24

/. These relations are fulfilled in exper1ment25/. 

The SU(6) symmetry was also applied to electromagnetic mass dif-
. 25/ . 

ferences (see Chuvilo's talk) and four-particle vertices • As far as the 

four-particle vertices· are concerned it is easy to think of dynamical models 

in which symmetry breaking may be large{e.g. due to the mass differences 

of virtual particles in propagators) even if in the three-particle vertices the 

symmetry is not broken. Therefore, one should be aware here either of 

the mechanism of the process, or be able to take into account the sym

metry breaking. The results of the current algebra mainly refers to the 

three-particle vertices. 

6 



Current Algebras 

The su( 6) symmetry is an approxiamate dynamic symmetry: it can 

be applied only to static and collinear processes (in contrast to S U( 3)). 

It is not an easy matter to guess relativistic equations which would admit 

solutions having such a symmetry, Besides, even in the cases to which 

the unitary symmetry is applicable, it is broken, what follows from great 

mass differences in the multiplets ( this refers to the S U( 3) symmetry as 

well). The method of the current algebra
3

/ is an attempt to construct a 

relativistic theory of broken symmetry which would allow one to obtain 

relations of the SU( 6) symmetry without postulating this group as a sym

metry of physical states. The question concerning the origin of this sym

metry becomes of minor importance. 

The main notion of this method is a local current i ( x ) 

First of all, the vector and axial currents i f1 ( x ) and j f1 ( x ) are considered 

which describe interactions qf hadrons with photons and leptons. These 

currents are local since such are photons and leptons, regardless of 

the fact whether hadrons are local or composite. The locality of currents 

permits one to use dispersion relations in this approach 
4

/ • At the same 

time use is made of the concept of the local operator at a fixed moment 

of time which is uncertain in the local theory. Th,is uncertainty is demon

strated, on the one band, in possible presence of indefinite Schwinger 

terms in commutators. On the other hand, use is made of the amplitudes 

expressed in terms of the T -products of the currents which are, ge-

nerally speaking, different from the physical amplitudes, It would be nice 

to overcome these difficulties as rigorously as was done, for instance in 

proving dispersion relations. 

The axiomatic formulation of the local theory suggested by Bogolubov 

and co-workers26/ which is just a theory of the local current may serve 

as a basis for this purpose, The above difficulties have been treated in 

\ 

. 27/ 28/ 29/ ' . 30-36/ 
papers by Schwinger , Johnson , Okubo . and by other authors • 

The main idea of the current algebra approach is as follows. Consider 

first a theory with exact S U( 3) symmetry •. In this theory the vector current 

is a conserving octet 
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a j(a} (x) .. o. 
/1 /1 

This means that the corresponding charges 

o(a) efj(a) (x) d; 
. 0 

( 1) 

( 2) 

are independent of time and, therefore, commute with the Hamiltonian. On the 

other hand, in the theory with exact SU( 3) symmetry there m..tst exist eight 

generators of the group commuting eith the Hamiltonian. One of them - the 

electric charge operator - is present among E (l (a) • Therefore, all the 

Q (a) are the generators of the group and satisfy the commutation rela

tions of the S u( 3) algebra 

[ 0 tal nltll]., i £ Olyl 
- ' ' afly 

(3) 

If now the symmetry is broken, the operators Q(a) cannot com

mute with the Hamiltonian and, therefore, are time- dependent. The main as

sumption of the current algebra approach is that the commutators of these 

operators with each other· at the same moment remain unchanged 

[ Q(a) (t), o'tl 1(t)] .. i {aflyQ(y) (t). ( 4) 

, -(a) 
This assumption is generalized to the charges of the axial current· Q 

(determined by the formula ( 2) with J instead of j ) 

[Q(a) (t), Q"ltll(t)]h.,ifatlltYl(t), (5) 

-(a) '- R 
[Q (t),Q 1 ~'-' 1 (t)]•d{aflyQIYl(t). ( 6) 

These are the relations of the algebra SU (3) x SU ( 3) • 'The coinci-

dence of the right- hand sides in eqs. ( 4) and ( 6) implies that the vector 

and axial currents are similar and ip some sense "equal in magnitude". 

A further generalization of these assumptions, which is more dan

gerous from the- point of view of the· local thtwry, is to postulate com

mutators between charges and currents, e.g. 

8 



( 7) 

and, finally, between the currents themselves, e,g, for the spatial compo

nents of the vector current ( I, j = 1, 2, 3 

( 8) 

In this formula S ( a{3 1 are Schwinger terms containing derivatives of 

the 8 function and symmetrical with respect to a ... {3 and J lyl is a 
0 

certain unknown operator different from j ~Yl by operator terrrs, As was 

shown by Buccella, Veneziano, Gatto and Okubo
30

/ the equality J'Y
1
(x)=JY

1
(x) 0 0 

contradicts locality if the Jacobi identity is postulated for the currents at 

a fixed moment of time, 

'l'here exist a number of methods for obtaining information from the 
4,37-40/ . . ( ) postulated commutators , We fJ.rst cons1der the commutator 8 • 

' Using this, it is easy to find the commutator for one of the components 

of the ma_gnetic moment operator 

(9) 

[ (a) (a) tyl 
m1 ,m 1 ]= fa{3y M 

( 10) 

where Mtyl is some operator, Following Lee-Dachen-Gell-Mann
37

/ we 

consider the matrix elements of eq, ( 10) between the states of the baryon 

octet and decuplet and the nonets of the pseudoscalar and vector mesons 

with zero momenta. 

We expand the operator product in a complete system of states and 

restrict ouselves in this system by the same states ( i,e, by the octet and 

jdecuplet or the nonets). Then we get a system of equations for the mag

netic constants of the baryons and mesons, whose consistency condition 

yields all the results of the static SU( 6) symmetry for the electromagnetic 
37,41-43/ . ( ) vertex . • No new results are ava1lable the operator M is unknown , 

what settles a contradiction between the relations of Lee- Dachen- Gell- Mann
3 -;f 
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and Cabibbo- Radicati44/ 'in favour of the latter one. The contradiction 
Cy> Cyl x) 

arises if in eq• ( 8) we put J 0 ~ j 
0 

• Thus, we obtained the result 

of SU( 6) symmetry without assuming its existence. However, it is clear 

that this result depends essentially on which states are taken into ac-

. count in the sum over the intermediate states in the commutator. The as

sumption on these states, i,e, on the saturation of commutators is the 

second principal postulate of this method "for obtaining the results of SU( 6) 

symmetry. 

One can give a lot of examples showing how essential this postu

late is, So, if the commutators between charges and currents ( 7) and si

milar commutators for the axial quantities are saturated by the baryon oc-

tet and decuplet, then one obtains a zero solution for the anomalous mag

netic moments of the baryons and the decay constants of the resonances45• 
46/ what is, of course, unsatisfactory, On the other hand, it is only 

the assumption about saturation, without using any algebraSj, that may 

yield relations of the SU( 6) symmetry type
6
/, To show this, we cons-

sider the amplitude of the virtual photoproduction of pions on. nucleon 

1T ·;ct.y ' 2 2 ) ~Tf1e<qp'll 1,(0)Ip>=u(p )y
5

(kf1yk-yf1k )u(p)f(11,t,k )+(11 

N N + ... , 

where j (x) 
(1 

is the electromagnetic current, k ~ p '+ q - p is the 

momentum of the virtual photon, and the points indicate the terms we are 

not interested in. Only the term written down has two energy factors k f1 

and yk in front of the invariant amplitude 'Therefore, if at high 

energies 11 the· whole amplitude f T f1 increases slower than 11 1 then 

11 -I decreases faster than 

11:. oo I T I < const 
(1 

II-> lfl<~n~ ( 12) 
II 

X/This equality is used in papers/
67

/ where the commutators for 
higher moments of the current and their application to photoproduction 
of higher resonances are considered. 

. ) 
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Using now the analytic properties of f and applying the Cauchy 

theorem to this function, we see that the integral over the large circle 

Fig,2, tends to zero, and therefore, theintegral over the cut vanishes 

x) 
00 2 

Jlrof(v,t,k )dv.,o. ( 13) 
-oo 

Fig,2. 

Now we restrict ourselves in this so- called superconvergent sum rule 

only to the nucleon and nearest resonance contributions. We neglect the 

finite resonance width ( note that such an approximation is always made 

in the SU( 6) symmetry. In calculating the resonance contribution it may 

give an error as large as 30o/o). With this reserve, we obtain the following 
2 

results (at !(' • 0) 

2 
m 2 m" 3t 

gNNTTp.v' "'GN*NTTp.(N* .. Ny)m[(l+-,-) ---2 ---] 
"' M mM 

( 14) 

( 15) 

Here p. 'v, s · are the isovector and isoscalar nucleon magnetic mo

ments, m and M are the nucleon and resonance masses, and the under-

lined constants are known from the "N scattering. '!he first of these 

relations is in agreement with experiment, The second one depends on 

, what points to its approximate nature. However, for those t which 

correspond to the energy region of the nearest resonance and only for 

which the resonance approximation in dispersion integrals holds true, the 

dependence upon t changes the right- hand side of eq, ( 15) less than 

by 10o/o and serves as a certain indication to the accuracy of the app-

roximation made, For the threshold value t.,.-·m 2 
( 1 + m /M) -I at which 

1T 1T 

x/It is worth noting that this sum rule ~s used to show tbe cqe
xistence of two sets of dispersion relations for photoproduction/72• 731, 
corresponding to two different decompositions in inw:triants, exactly in 
the same way, as it was recently done to show the coexistence of 
linear and q):!acfratic mass formulae for baryons following from the cur-
rent algebraf76f. . . 
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there is no unobservable region in the dispersion relations we have 

2.j2 
fl ( N* .. N y) I -3- IL p = 1. 28, ( 16) 

what is in good agreement with SU( 6) and experiment. 

If the relations ( 14) and ( 16) are supplemented by the SU( 3) re

lations for the octet and decuplet, we get almost all the relations of the 

S U( 6) type for the baryon 56- plet ( except the relations for the magnetic 

moments of the resonances). 

We compare this result with what the current algebra gives us. This 

approach allows us to obtain, with the help of the PCAC hypothesis, re

lations of the form 

where g 

g(v=t=m
2

=0)=C 
1T 

( 17) 

is a certain amplitude and C is a constant known from the 

commutator. The direct check of such relations is difficult since it requires 

an extrapolation to the nonphysical region. However, if it is assumed that 

for g the dispersion relation without subtractions holds true, eq. ( 17) 

allows one to write down the sum rule. 

1 00 

C=- f 
f m g (v, t= m 

2 
= 0 ) 

17 
dv. ( 18) 

7T J.l 

We see that if C= 0 ( zero commutator) this relation looks like a super-

convergent sum rule. It was the zero commutator that was used by Fubini 

Furlan and Rosetti4 / for photoproduction. It is possible to show that in 

this case the only difference between the amplitude f entering the supe.t'-

convergent sum rule ( 13 ),. and the amplitude g/11 at t a m 2 ., 0 is 
1T 

that the former one involves longitudinal amplitudes of the virtual photo-

production, and the latter - does not. Therefore, in principle, a difference 

between them is possible. 

It follows, however, from experiment or from dispersion theory that 

the longitudinal amplitudes are small, the relations ( 13) and ( 18) prao

tically coincide and we get the result of the current algebra 
4

•
47

/ directly 

from eq. ( 15 ), putting t = m 2 = 0 
1T 
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An approximate account of _the next resonance
47

/ shows that its 

contribution is of the same order (59{.) as. a possible error in the first 
I 

resonance contribution due to inaccurate knowledge of the quadrupole 

amplitude. 

The sum rules for photoproduction of strange particles were treated 

by M:ithur and Pandit47a/ using the current algebra and by Pisarenko
47

b/ 

using superconvergence. 

We consider next the example of the Compton scattering. Several 

years ago Lapidus and Chou Kuang Chao
48

/ and Gerasimov
49

/ obtained, 

with the help of the lollY- energy theorem, the following sum rule 

2 
I' ,2_ I' 2,. __ m_ f ~ [ u(p) -u(p) -u(n) ± u(n)], 

p + n 217 2 a v + ( 19) 

where u is 'the total cross section for photon- nucleon scattering. The 

upper index corresponds to the. proton or the neutron and the lower index 

indicates that the photon helicity is parallel or antiparallel to the nucleon 

spin. As it was recently show by Drell and Hearn
50

/ 1 the sum of these 

relations does not contradict to the available experimental data. 

Aznaurian51/ has considered the saturation of these relations by 

the nearest resonance. Let me remind you that the sum rule for photo

production ( 13) have led to the relation ( 15) which contains the pion

nucleon constants besides the magnetic ones. The sum rules ( 19) make 

it possible to connect only the magnetic constants 

(20) 

2 
'2 2 U+r )(l+r) ,.2(N*-+Ny). I' p +I' n"" ..;..... __ 8'-'-r --~ .- (21) 

where r= m/ II • The latter rule gives 

2'1!2 
,. ( Jti* ... N y} I -3- ,. p"" 1.11 (22) 

in accordance willi photOproduction. 
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The Compton effect on each of the baryons has been considered 

in the same manner. It turns out that the restriction to the nearest reso

nances leads to results which agree with 5U( 6) symmetry everywhere 

except the channel into which the resonance A ( 1405) gives a contri-

bution. This resonance does not belong to the decuplet. If we took into 

account only the decuplet, we would obtain zero magnetic moment of the 

A .:..hyperon. However, even the account of A ( 1405) leads to a 

contradiction. What is clear is that the" saturation problem seems to be 

rather complicdted. It is possible to indicate a criterion for choosing su

perconvergent amplitudes (de Alfaro, Fubini, Furlan and Rosetti?/ sug

ges_ted to make use of the Regge pole hypothesis), but it is much more 

difficult to give a dynamical criterion showing which of them can be satu

rated by the nearest resonances. 

'The main role in studying the problem of saturation belongs to ex

peri.rrentators. If at present we can estimate the contributions of the known 

higher resonances, then the question concerning the role of the non- reso

nance background is still completely open. The study of this background 

which is an effect of higher symmetry breaking requires the phase shift 

analysis or - at higher energies - the determination of the Regge type 

parameters. From this point of view, to understand higher symmetries, one 

should study first their breakdowns. 

However, the current algebra method allows one to formulate the 

problem of higher symmetries the other way round. Indeed, I have not yet 

said anything about a relationship of the algebras with the 5 U( 6) quarks. 

'The commutators of vector and axial currents which were discussed 

above, are a generalization of the 5 U( 3) symmetry. Using the quark model 
w 

it is also possible to introduce tensor currents and to find their commu-

tators. Fubini, 5egre and Walecka
52

/ have shown that the relations thus 

obtained are close to the algebra of 5 U( 6) • Therefore, saturating these 
w 

commuators by one- particle states one can obtain the 5 U( 6) results 

without assuming explicitly the symmetry to exist 5
2

- 55/. However, the 

tensor currents like quarks are unobservable, at least for the present. 

Therefore, in order to interpret these results one has to make. additional 

assumptions. It is peculiar that if the one- pole model is postulated for all 
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vertices into which the vector mesons can give a contribution ( this is 

rather a rough approximation) then one obtains ·not only the SU{ 6) 

results for the magnetic moments but also succeds in relating the mag

netic constants of mesons with that of baryons like it is done in the 
· 55a/ 

quark model, This result obtained by Petsakos, Segre and Walecka 

will be reported at the Conference, I only note that the saturation cri

terion in such an approach .reduces to a requirement that the equations 
x) 

obtained after the saturation of the commutators were self- consistent • 

Thus, the problem of obtaining higher symmetries from the lower 

ones by the current algebra method is rather complicated. Discussion 

of higher symmetries should .be postponed, at least up to the next today' s 

review report devoted to quarks, . We come to the question about the 

symmetry breaking, namely, .the S U{3) symmetry breaking. 

As I have already • said the main hypothesis of the current algebra 

method is that the equal- time commutation relations ( 6, 7,5) 

\ 

( 6a) 

[Q, j 1. j (sa) 

( 7a) . 

hold true even if the symmetry is broken. Therefore, they allow one to 

calculate the corrections to the su( 3) formulae. Fubini, Furlan and 

Rossetti have shown 
4

/ that the sum over higher intermediate sta~es in 

these commutators can be expressed through a dispersion integral of the 

imaginary part of the scattering amplitude for some process, either real 

or hypothetical, If this integral does not require subtractions (this is· an 

additional assumption which can be verified in the Regge pole model if 

one disregards the Schwinger terms) then from ( 5a- ?a) we obtain the 

S U{ 3) relations with corrections which are given by the dispersion in

tegrals, 

X 

The one- pole model for the form- factors in a superconvergence app-
71/ roach was considered by Oehme , 
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The, corrimutator ( 6a) yields the well-known Adler'- Weisberger
56

•
57

/ 

relation which connects the correction to the weak axial constant with an 

integral of, the pion- nucleon cross section. Fortunately this integral can be 

calculated from experiment and gives a good result. A similar relation for 

the electromagnetic interaction follows from ( 5a). It connects a weak nuc-

leon form- factor G ( t ) 

tude58•59/ o 
with the integral of the electroproduction ampli-

G(t) .. Fv(t)+o (t). 
1 ( 23) 

If the integral is neglected we have a result of the SU( 3) - symmetry. 

Unfortunately, the integral o can be calculated now only under an assump

tion about saturation. In the given case we believe that this assumption 

is' justified. Taking into account in o only the contribution from the ( 33) 

resonance Furlan, Jendo, and Remiddi58/ have obtained 

G(t")-= F
1
v(t) - t v 

4m2F2(t). (24) 

where F ~ and F 2v are the Dirac and Pauli isovector form-factors 

of the nucleon. We see that at small t the correction is small. 

The commutator ( 7a) gives COJ;'rections for the magnetic moments. 

Unfortunately, the corrections in this case are integrals of the amplitudes 

which can be interpreted as photoprodudtion amplitudes of scalar particles 

whose existence has not yet been established. Therefore, these integrals 

can be estimated only under model assumptions, even if we saturate them 

by lowest states. Using some mode160/ it was shown that the col;'rectiom, 

to the S U( 3) formulae for the magnetic rrioments are small ( of the order 

of 2 0 o/o ) • Finally, the commutator [ 0 , a #l j #l ] leads to the mass formulae 

with corrections due to SU( 3) 4/ and or SU(2) breaking. The case of 

SU( 2) symmetry breaking was considered in details by Faustov74/ who 

succeded in finding the mass formulae, involving electromagnetic mass 

differences, which take into account the interference of electro,magnetic 

and medium- strong interactions. In this case the current algebra approach 

seems to give some additional dynamical information as compared with the 

pure group- theoretical method. A similar question is also considered in 
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Efremov's report· to this Conference. '!'he electromagnetic mass differences 

on the basis of superconvergence were recently considered by Harari
75

/. 

As far as the commutators between vector currents of the: type ( 7a) 

are concerned when symmetry is not broken (isotopic symmetry for the 

isospin currents or SU( 3) in the general case) then the sum rules 

following from the commutators (e.g. the Cabibbo- Radicati relation 
44

/ ) 

can be obtained directly from the gauge invariance and certain assump

tions about the high- energy behaviour of the amplitudes ( 60a- f, 35a). 

'!'he commutator for the electromagnetic current of the type 

[ j , j , ] .. t , j >. can be obtained in the quark model. It allows one to 
/l 1\ Op.Y" 

connect the weak constant g A with an integral of the total cross sec-
\ 

tion for the· absorbtion of polarized photons on polarized ;1ucleons, into 

which the high energy region gives the main contribution 
68

/ ; this . com

mutator also leads to an approximate relation between g A and 11 ° 
lifetime 

69
/ • 

Pll mention some other applications of the current algebras. Using 

t b W . b 61/ f t d ll d t . th curren alge ra e1n erg ormula e a so- ca e sof p1on me od 

which makes it possible to connect the processes with different number 

of not very energetic pions. '!'his method proved to be succesful for weak 

interactions. Its application to electromagnetic processes allowed one to 
62,63/ succeed in connecting the decay widths of 71 .. 211 y and 71 .. 2 y 

as well as X 
0 

.. 2 11 y and X 
0 

... 2y 63a/ • Formulae have been also 

obtained which connect the cross sections for the processes e + e - .. 11 +;-
and 1111 .. 1111 

64
/ • It is worthwhile noting, however, that the validity of 

such an approximation is not yet quite clear. Its application to the process 

w ... 2 11y gives zero in contrast to experiment65/. 

Bjorken
32

/ applied the current algebra t~ estimate the photo-ab

sorption cross sections at high energies and to calculate the hyperfine 

structure of the hydrogen spectrum. He found that the contribution from 

very virtual photons in the diagram of the virtual Compton scattering is 

less than 4.10- 6 in agreement with what Prof. Yennie said yesterday 

about the new experimental value of the hyperfine structure due to a new 

determinetion of the fine structure constant. '!'he application of commuta-

tors to calculations of radiative corrections to the f3 decay constant 

17 



in cut- off models was considered in refs. 32• ?O/ • Finally, attempts were 

made to establish a relationship- between the 11N .sc:attering .lengths and. 

nucleon magnetic moment
66

/. The latter results are still·only speculative. 

We see, however, that the potential possibility of applying the current al

gebra method to electromagnetic interactions may be considerable. 

Before I stop I would like to repeat once more that symmetry is 

beautifUl, but we can appreciate it only through its breakdowns. One 

_could appeal to experimentators and ask them to search for symmetry 

breakdowns if they themselves did not find these breakdowns rather often. 

The theory of the symmetry breaking should point to where these 

breakdowns are to be sought for in the first turn. 

18 
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