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The problem of the number of the subtractions in the dispersion re­

lations for various invariant amplitudes, i.e. the problem of the dynamics 

of interaction ca.n be associated with the analysis of the dispersic-r1 sum 

rules. 

It is in fact so in the virtue of that the dispersion sum rules are 

the exact consequence of certain assumptions about the number of the 

subtractions in dispersion relations. 

A certain assumption about the high-energy behaviour of the one 

of the invariant amplitudes L for rr N 

made in the ref./
5

/. 

-virtual photoproduction have been 

The unsubtracted dispersion relation in the variable v for the 

quantities L ( v ) and v • :L ( v ) have been obtained from these as-

sumptions and a certain sum rules follow from them. In the resona n c e 

model the account of nucleon and the N 3 3 isobar gives sum rules which 

are in good agreement with the experimental data. 

It is interesting to recognize if the unsubtra cted dispersion r e lations 

a r e valid fo r the other invaria nt photoproduction a mplitudes. 

In s ec. I of this not e we investigat e the dis p e r s i on sum rules which 

are c onsequences of the definite assumptions about the high-energy be­

haviour of various invariant amplitudes. 

In sec. 2 we consider the sum rules which a re obtained from the 

high-energy behaviour of the amplitudes together with the assumptions 

about the validity of the equal-time commutator relations. 

Finally we c ompare results, which are obtained b y these methods. 
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I. · The Dispersion Sum Rules for "N -VIrtual 

Photoproduction. 

Consider the amplitude-like quantuty: . 

T =fO(x )e-lkll<p's'l[i (x),div ·A (O)]Ips>d 4 x, 
n n p 

where k is the photon momenta., div Ap (X)"' a fl A flP (X) 

(1.1) 

is 

the divergence of the axial current with the same quantum number as a 

pion labled with index p , I p's'>, Ips> are the one-nucleon states, jn(x) is the 

electromagnetic current. The quantity T n has the all tra nsformation properties of 

the virtual "N -photoproduction amplitude. In the virtue of it the quantity T n can 

be expanded on 6 gauge invariant quantities: 

R" =if" (p')y 5
[ p"(p '. k) -(p· k )p'"] u"(p) 

I 

R n = ;;-• ( p ') y ~ [ y n ( ( p ' ± p ) • k ) - y • K ( p '± p) n J U 8 ( p) 
2 . 3 

R" = -ii" (p')y~[y" y·k - y ·k y"lu"(p) 
4 

R"= ;•' (p')yS[(p-p')"k 2 -((p-p 'l · k)k"]u"(p) 
5 

R n = U 8 
( p ') y 5 y • k [ yn y • k - y • k y n l U 

8 
( p ) 

(1.2) 

With the account of Isotopic structure T n can be written as follows: 

n e n ( ll (2) 1 (3) 
T =~R 1 {rpL 1 +8p 3 I..: 1 +-[rp,r

3
]-L

1 I= I 2 
(1.3) 

From the crossing symmetry of the amplitude we get the following pro­

perties: 
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L(a)• (v) = ± L(a) (-v), 
1,2, 4 I, 2, 4 

I +, a = 1,2 

-,a = 3 

L(a)* (v\ = + L(a) (-v) ' I a = 1,2 
3, ~. e 3, ~. e + , a = 3 , 

(1.4) 

where the invariant variables are defined .as follows: 

(p+p')k 
S=(p+k) 2 

V= 
2m 

(p'-k)2 
2 

u = . t=(p-p') . 

Now we assume a high-energy behaviour of all amplitudes which 

enables us to write down the unsubtracted dispersion r e l a tion for all 

quantities L 
1 

( v ) and ( v ) in the variable v x/ 

give. 

From these assumptions we get: 

f , lm L ( v', k 2 
, t ) d v ' = 0 , ( I = 1, 2, 3, 4, 5, 6 ) • (1.5) 

The rela tions (1.§} in the frame of the made assumptions are exact. 

We consider approximate consequences which the relations (Lq 
/ 

Now we analyse the relations (1.,r in the point of view of the re­

sonance model taking into account the one-nucleon and the N 
33 

-isobar 

contributions in these relations only. 

x/Now it is important to emphasize that these total assumptions for 
the a ll invariant amplitudes (1.4), of course, have a m ethodical, formal 
character. In fact, assume that the high-energy asymptotic of the quan­
tity T is determined with the Regge poles exchance at th e t -cha n-
n el. (Regge-poles with th e same quantum flWmbers as p , w -me-
sons). 

In account of ap(O)~ 0,5.:!:_0. 3; aw(O)= 0.5.:!:_0.1 we see that 
some -invariant amplitudes L J may generally have a high-energy be­
haviour which do not allow us to write down the unsubtracted disper-
sion relations for the quantities v · t J ( v ) and for these amplitudes 
L 1 ( v ) its elves too. , The discuss ion about it to be continued. 
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W o make use of the Goldberger--Treiman r e la tion and define the 

coupling constants a s follows: 

i a g (q 2 

< N(p 'll dlvA (OJI N(p) >= NN " 
p 2 2 

m" - q 
u(p')r y u(p); 

p 5 

< N(p'll divAP (0) IN (p) > 
3 3 /l 

( Q 

2 

) ') T U (p); i a g N*N 11 U ( p,) ( p - p /l p IJ. 
2 2 

m - q 
11 · 

< N(p ') I (j. :€} I N 33 (p ) > 

/l 

i 3,. ( N* .. N y) X 

2-./2 

- ' " y ~ (p ·k) " y ; 

(1.6) 

xu(p}[(-ky 5 + lr +rk- --5 -J u (p) . / 
. , , , , J' M ~'- . . /l M /l · r-. 

• •• •I>' <-<. '· .! ( u/ r~v 1iJ t..-) I .l'f) 11t.f"'tiu lf t•/<i .. l ~ .. J;/ ~ c.f 'PI< . : ) / 1-1 - t Pl. 

J'i~a'tu!. ... [(-z-.., 1f~e4z ~· : ·(P f-K-f? ' ) ;./Itt 'tt""Fi /~"~- t-r>U! ... l.u.11....> . 
From the above d ssumptiori.s a nd eqs. t f .6), (1.5) ~ obtain the follow-

ing rela tions. 
( 3) 

For amplitude L 
1 

, (k 2 = 0) we get: 

2e g NN 17 +(-t) 
2 t- m 

11 

(1. 7) 
3 /l ( N * .. N y) g N*N 

11 
( - M - m ) 

= 0, 
2-./2· :M 

where m m" M -are the masses of nucleon, pion arrl the N 
33 

-isobar, r espectively, p. ( N* .. N y ) is the magnetic moment of N* ... N + y 
transition. 

This rela tion for forward photoproduction does not hold for expe-

rimental values of the qua ntities w hich a re contained in e q. (1~ 7). 

The discussion concerning this fa ct will be g iven below. For in­

varia nt amplitude L c 3 l we get: 
2 
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ll ,y ( N) g + ( - 1_3 ) 
NNIT 

31-'(N*~Ny) gN*Nrr 

2y2 

x ( (M+ m) 2 {5M -m )+ m! 

12M
2 

( m -2M) + _t _ 1 = O. 
4M 

X 

(1.8) 

If the experimental value ll 'v ( N ) = 1, 85 
e is used, for the forward 

2m 
photoproduction the value of the quantity I!~ N* ~ Ny) 

from eq. (1.8). 
gNNIT 

We make use of the value of ratio 

can be obtained 

obtained from the dis-

persion sum rules for the rrN 
g N *N 1T x/ 

-forward scattering • 

Making use of eqs. (1.8) , (1.12) yields: 

3 
-=ll ( N* ~ N y) = 0, 95 !l{P), 
2y2 

where ll ( P ) is the total isovector magnetic moment of the proton. Ex­

periment gives for this quantity the following value: 

3 -= ll ( N* ~ Ny ) = (1, 25 ± 0, 02) ll ( P). 
2y2 exp 

(II 
For the amplitude L 

3 
we get: 

ll, s (N) g = 0 
NNIT 

(1.9) 

x/In refs.f5J3/ the relation has been obtained for rr N -forward scatter-

ing as follows: 
(1.12) 

g 
N Nrr 4m 2 

3 

2 2 2 2 
(M +m -1P

17
)[(M-m) 

2 
- m" 

g N *N Tr 

From eq. (1.12) we have 

g N Nrr 
~ 1, 235( GeV) , 

This value d iffers from the v a lue 
exp.decaywidth r(N*~Nrr) 

ggN;m = 1,252(Gev) obtained from 
N Nrr12 - 0 MeV and gNNrr "" 13,55, 

exp 
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for the amplitude L I 2! 
3 

,. 4 
Jl ' . ( N ) g N N IT + J • 

we have: 

3Jl(N*~Ny) gN*Nrr 

2,;2 

3 2 

x [ -(m+M) + m 17 (m-2M) + -t-l = O. 

12M 2 4 M 

X 

F'rom eq. (1.10) for forward pho toprodu c tion w e obtain: 

3 
--=-1' (N*~Ny) = l,lSI'(P). 
2y2 

F'rom eq. (1.6) for the amplitude ( 3) 

L • we have: 

m•l' v(N)g +(-2._.) 
NNJT 3 

31'(N*~Ny) gN*Nrr 

2y 2 

2 2 2 2 

X 

x l~- ..1.... + 
2 4 

[ (m-M) -2mM- m
17

]• [2mM-(m-M) J 
. I= o 
24M

2 

( 1. 10) 

(1.11) 

v 
whe r e I' ( N) i s the total isovector nuc teon ma gne tic mome nt: 

fl v ( N ) = Jl.( p) - f1 ( n ) 

2 

M .:king U3e of th e 0q. ( 1.. 11) we cPcPivc•: 

3 

2 y 2 
j.< (N*•Ny) l. 29 I' ( p ) • 

Fbr lhe ampl iturl e 
( I ) 

L 
5 

we get : 

e~ t·IN JT -- = 0 ___ 2 __ _ 

m - t 
( 1. t3) 

" 

a nd fo r the a mplitude 
( 2) 

L w e 
5 have : 
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(1.14) 

xI ~ +( ;:.m_a ___ M_a:..)[:.;.(.;:;m_+_M_.:.)_2_-_m......!!~~ I = 0. 

M (m
2 -t)6M

2 

" 

Eqs. (1.13) an:i (1.14) do not hold for the forward photoproduction. 

Finally, for th~ amplitude L 
1
6

1 
l we get: 

an:i for the amplitude 

I''* (N) g NNrr 

2 
= 0. 

we receive: 

,v(N) 
p. gNNrr 4 

+-
3 

31' (N*-+ Ny) gN*Nrr 

2y2 2 

2 2 

x I m [ m rr - ( m + M ) ] + _t_ 1 = O. 
12M

2 
4 M 

(1.15) 

X 

(1.16) 

F'or the forward photoproduction from eq. (1.16) we obtain: 

3 
---::::I' ( N*-+ Ny) = 1, 28 I'( P) 
2y 2 

The sum rules for the other ampliutde are trivial. 

The relations (1.15) an:i (1.16) have been obtained in ret.f5/. As 

see, eq. ( 1.8) is hold with the accuracy about 22'}b, eq. ( 1.10) i s h o ld 

with the accuracy about ~ , an:i the relations ( 1.11) an:i ( 1.15) are hold 

with the experimental accuracy. 

The eqs. (1.9) and (1.15) coincide an:i read: 

I'(P)+,..(n)= e 

2m 
p 

while expe ri ·nent gives: 

9 
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(~dp) + p. (n )] ~ 0,88 -L- . 
•xp 2 mp 

As it have been shown in ret./
81 taking into account of the contributions 

of nucleon, the N 11 (1518)-resonance and the N 
33

_ isobar in the sum 

rules (1.6) gives: 

P. ( P) + P. ( n ) = ( 0, 85 ± 0, 03) _e-
2m 

p 

A s to the relations (1.7), (1.13),and (1.14) 0 they do not hold (fo.rt~o). 
Perhaps, this circumstance s hows that the unsubtracted dispersion r e l a-

tions do not hold for the quantiti es v o l. 
1 

(v), v o :L 
5 

( v) 
and for the 

a mplitudes L1 {v), L 
5 

( v ) i t selves too. 

It is possible tha t fo r these amplitudes the contribution of the high­

energy r egion coming from Regge-pole exchange in t-channel and the 

mid-energy contribution a r e importa nt. 

Note, that the a mplitudes L l and L 
5 

one-nucleon term h as a pole in the varia ble 

a r e these for which the 

a t the point t = m 2 - k 2 
0 

11 
As it i s easy seen, the a mpli tudes L 1 and L 

5 
correspond 

jus t to the invaria nts , which vanish for the forward photoproductionx /. 

x /In fact, tak e the Breit coordinat system. In this system w e get 

p + p' = 0 E = ko 
~ -+ 
k =A 

-+ -<I+ o )p q_.=;; +(1 - 8 ) p 

m;-k
2 

-+ 2 -+2 2 2 
8 = J I A(E) I = v E -k -{1+8) rt 4 p 2 

where: c = ( p + k - p ' ) is the pion mome nta. 
In the Breit coordinate syst em the invariants R 

1 
can be expanded 

in six invariants of the Breit system. The spacia l parts of these take 
the form/9/ i a ; i <;; p_.l p' ; i <;; p' > ~ ; i <;; >:' r i <a_. r > P_. 
(~ X p-+1 . 

By simpl e calcula ti ons we obta in tha t the quantities R , R depe nd on 
• • ...., -+ ~ 1 5 . 

th~ mva_;1"!nt_. 1 (a p) p onl y j and R 2 , 3 , 4, 6 dep end o n the mva n a nts 
ia; i (a A ) A . T a king it i n to account we get for the forward pho to-

productio n as follows: 

R (t = O)= R (t=0) = 0 
_j;) s 
R ( t- 0 ) o/ 0. 

?. , :l , 4 , 6 

JO 



In account of that we get as follows. Consider the quantity T ( t = 0) . 

From the a bove discussion this quantity contains the invariant a mplitu-

des L 
2 

L 
3 1 

L 4 L 6 only. Then we assume a high-energy 

behaviour for the qua ntity T ( t = 0) which enables us to write down the 

unsubtracted dispersion relations in the variable v both for the quan-

titles T ( v t D o) arrl 1/ • T ( 1/ I t "' 0). Analogously to the 

above discussion we obtain in the resonance model the relations of the 

type (1.8)1 (1.9)1 (1.10)1 (1.11) 1 (1.15) arrl (1.16) only, 

As it was shown all these rela tions are in a reasonable agree­

ment with experiment. 

Consider the r e la tions (1.8) , (1.9) 1 (1.10), (1.15) arrl (1.16) from the 

point o f view of the SU(6)- symmetry. 

In the static SU(6) - limit the r elations (1,8), (1.10) arrl (1.16) coin-

cide arrl take the form: 

where 

2 
M ~ rn >> rn 

2
,- t : 

g* 
- = lim 

4m 

TT 

g*I'(N*~ N y) 

g 

g M2~m2 >;) m 2 g NN TT 

TT 

In the SU ( 6) -symmetry we ge/
7 J: 

where I' (P) 

I' (N * ~ N y) = 2y 2 I' ( p)' 
. 3 

is the total proton magnetic mome nt, 

(1.17) 

From the sum rules fo r the forward rrN - scattering (1.12) we ob­

tain in the s tatic SU ( 6) -limit as follows: 

11 

16 
9 (1,18) 



F'r·om the e q s , (1. 17), (1. 18) we h a v e : 

v 2 
I' ' (N) ~ -/t(P). 

3 (1.19) 

The SU (6) r e la tion for the total nucleon moments reads: 

/l ( p ) 
-;-<;;) ~ 

3 

2 (1.20) 

For the anomalous isovector nucleon magnetic moment from eq. (1.20) we 

get: 

/l ' v ( N) ~ /l ( p) - 1 -fL( n t, ~ - 1 T ; (1.21) 

M a king u se of the e q s . (1,19)-(1.21) in the s tatic · SU( 6 ) -limit we get as 

fo llows : 

fL ( P) ~ 3(-e -
2m 

p 

I' ( n ) ~ - 2 f _ e_ 
2m 

p 

(1. 22) 

T h e r e la tio n s (1. 9) and (1.15) c oincide an::l b k e the form: 

I' 
/L ( p ) - 1 f I' ( ::_}_ I) . (N)~ ------ ( I • ' )) 

M et king use or the e q. ( 1. 20) ;Y., lll•) SU ( 6) -limi t ft·om 0 q . ( J . 'J) 1v•: h.:1ve 

lh t-:- •·e la ti o n s (l.2i} too. 

Fin.:J.ll y , in the sin lie SU ( 6) limit U 10 e q. ( 1. 1 l) lctkes U •c· form: 

2 

M ... m >> m , -I ; 

4m 
I' v CN) ~ 3v2 . . 

f( 

/l(N*-.Nyl g* 

r 

( l. 2:l) 

If we compare eq. ( 1. 23) with eq. ( 1., 17) we see tha t the s um rules 

J 2 



for the a mplitudes L 2 
L 

4 
L 

& 
give for the total isovector 

magn e tic moment of nucleon the same value as this for the anomalous 

i sovector magnetic moment of nucle on. 

In the SU (6) -symmetry we get: 

p.(P) - I' ( n) = ~) 
2 6 (1.25) 

Making use of e qs. (1.24), (1.25) yields: 

v 4 v I I' (N) I = -I' (N) 
sum rules,SU ( 6) 5 SU ( 6 ) 

(1.26) 

Thus, we have shown that the relations obtained from the sum rules for 

the invariant amplitudes L 2 l 6 are in agree ment with SU ( fi) 

and the relation. obtained from the sum rules for the amplitude L• g ives 

for the quantity p.v(N) the same value as for the quantity I', v (N) 

in the static su ( 6) -limit. The all above relations show that (for t = o) 

the sum rules for the amplitudes L 
2 

L 
3 

, L 4 L 6 a re saturated 

(with a certain accuracy) by the contributions coming fro m the members 

of the unitary octet and decuplet. These are joint as a barion 56-ple t 

of SU ( 6). 

F'or the forward pho t oprocluction the all obtained s um rules in the 

r esonance model g ive a reasonabl e a g reement •vith the exp e rimental data. 

Note lha t the " so.tura tion" by nuc l eon a nd the N 
33 

-isobar o f the 

r ekttions obtained for the ampli tudes L2. L 
3 

L 
4 

L 
6 

, s how as 

fo llows . P e rha p s , it testifies about th~ validity o f the unsubtra ctocl dis-

p e r s i an r e l a tions for the amplitudes a nd o f the assumption L 
2, 3, 4. 6 

about "decuple t d o minance". But at the same time this "saturation" can­

not b e a n una mbiguou s evidence o f the validity of the uns ubtracted dis-

p e rsian relati ons in the variable 11 for the quantities L 2 , 
3

, 
4

, 
6 

( 11) 

and II L 2, 3, 4' 6 (II ) • It only indica tes on mutua l compensation of the 

nucleon contribution with the N 33 -isoba1· contribu tio n, whil e the contri­

butions of the mid-e ne1·gy a rd hig h-e n e rgy r egions to the qua ntity 

.f.Im L 
1 

( 11 ) d 11 can b e impo rtant anct can g i ve as follo ws : 



J Im L 
1 

( v ) d v , 0. 

To investigate this question one needs "to take into account the 

contributions coming from the mid-energy and high-energy regions at 

the invariant amplitudes, Make the following assume that from any cal-

culations the high-energy behaviour of an amplitude 

gou.Sly known and we have as follows: 

Im L ( v , t = ronst , k 2 = const ) < 
I -

v .. 00 

where: a >0. 

In this case the following relation 

2 J lm L 
1 

( v , t , k ) d v = 0 

• 

~ 
1+<1 v 

L 
I 

is unambi-

' 

(1.25) 

is valid, In the opposite case the relation (1.25) is an assumption only. 

2. The Equal-Time Commutator Relations and the Sum Rules 

for Photoproduction 

The assumptions about the unsubtracted dispersion relations both fcc 

the quantities L
1 

{v) and v L 1 {v) give the sum rules as follows: 

J Im L 
1 

( v') d v' = 0 • 

This rela tion is obtained without any current algebra postulated, In the 

method of Fubini, Furla n, Roseu/
2

•
3

/ the sum rules are obtained from 

the assumptions about the validity of the commutator relations a nd about 

the validity of the unsubtracted dispersion relations for a n a mplitude 

L 1 • These sum rules for photoproduction take the form: 

14 



lm L1 (v ') 
d v' = 0 

v 

am 

f lm L
1 

(v ') dv' = 0 ·• 

It Is interesting to compare in detail the sum rules obt.::.ined from the un­

subtracted dispersion relations only with the sum rules obtained from 

postula ted current algebra for various amplitudes. Consider the photo­

prcxiuc tion problem. We shall deal with the same c ommutator relations 

as in r efs./
2

•
4

/ . 

Conside r the commuta tor relations which are used in ref./
2

/. These 

read 

[ QP 1· ( 
3 

l < x o ) 1 - o 
' 11 ' -

(2.1) 

(2.2) 

where j ( 3
' 8 l(x) 

11 
n etic current, 0 p 

a r e i sovector and isoscalar parts of the e l ectroma.g­

i s the axial " c h a r ge": 

Q = f j A ( j(' 0 ) d 
3 

X = lim p p 0 • 

...... 
fe-lqx J/o (;, O)d J x 

(2.3) 
q ... 0 

11 

= lim 
q ... 0 

f1 

J A ( x) i s the a xial c urre n t , and p is the SU ( 3) -index. 
rr' 

'l'u.k e the ma trix e l e me n t of the commuta tors ( 2. 1) and (2. 2) between 

the o ne-nucl P.on states. The n fo llo1.vin g Fubin/
2

/ , l e t us c o n s ide r the 

q u a n tity : 

1 5 



< N(p')j [Qp, i<~, 8 ) {0)] IN(Pl > •,. = lim F( 3• 8 ) {q), {2.4) 
q -+0 

/1 

where ( ,, is an arbitrary covariant vector, and define: 

D (X ) = a /1 } A (X) E div } A (X ) • 
p I'P p (2.5). 

The qua ntity D ( x ) has the all quantum numbers of a pion. p 

Making use of eqs. (1.4) and {1.3) after partial integration we ob­

tain for the quantities Ff 3,8/ as follows: 

lim F ( 
3

' 
8 

)( q ) = lim I c 
11 J < N ( p ' ) I [ D ( x ) • j ( 0 ) I I N ( p ) > x 

q -+ 0 q -+ 0 p 1' (2 6) /1 11 • 

! qx f 4 
X e "I (-X O) d X + 

+ iq J < N(p')j[J"'A(x) , j (O)I j N{p) > e'qxr-;(-x )d 4 xl, ... p /1 0 

lm q 
0 

= 0 for jq 0j < 8 , where 8 > 0 . 

T a king into a ccount the a rbitra riness o f the vecto r < we s hall choose 
I' 

in followin g : ( k • f) = 0 a nd ta k e t · = k 2 = q 2 = 0. We define 

the invaria nt varia bles s 
u ' , v ns in the previo u s section. 

The q uantities F< 
3

• 
8 

l have the a ll tr·an..s fonnatio n pt·op erties of the 11 N 

photo production a mplitude . In the virtue of it the qua ntity F< 3 ' 8 l can be 

expanded on the invaria nt quantities as follows : 

F' = ;j ( P ') [a • :~~a + f ~~ fl + y • :My + 8 · :It, 
0 

1 u ( p ) . (2. 7) 

In e q. (2. 7) the invn ri<:tnt qua ntities Ma , ~~ fi 
fined as in r e rs /

1
•
2

/ a nd these h<:we the form: 
My M8 a r e d e-

16 



M (3 ~ 2y 
5 

[ ( p ' · k ) ( p · :.C ) - ( p · :k )( p ' · :.C ) ] 

( 2. 8) 

,., .. .. 
M ~y [( ( p-p' ) . k)l -((p-p ')• l)k 

y s 

M 8 ~ y
5
[( ( p + p ') . :k )~'-((p+p')l l -2n' h; k , 

where m is the nucleon mass, a , {3 , y , 8 are the invaria nt 

functions of the varia bles 11 , t 

As it is e a sy seen/
2

/ in the limit q p. -+ 0 only M a survives 

while M (3 vanish in this limit. In the virtue of it we 

consid e r in this limit the invariant amplitude a ( 11, t ) only. We use in 
o' o' 

eq.(1.6) the complete s et of the states I n > arrl take E f. p , E f. p 

Fro m these we obtain that in the limit q -+ 0 only the firs t t e rm i n p. 

r.h.s. of the e q. (2,6) survives a rrl eq.(2.6) read: 

lim Fe 3 • 8 ~q) = lim lllf < N(p ' )J[D (x).j (O) I J N (p) > e1 q• 8 (-x )d
4

x . 
q -+ 0 p q 

11
-+ 0 p /l O ( 2, 9) 

I' r 

Following Fubini/2•3/ a ssume now that for the invaria nt amplitudes a< 3 
• 

8 l 
p 

thE' uns u btra cted dis p ersion r e la tions in the varia ble 11 a r e valid for 

fi x ed t = 0. These dispe r s i o n t·e la tions take the form: 

a ( 3, o 1 ( 1, ) = ..!._ j 
p rr -oo 

Im a e 3 ' B 1 ( II ' ~ 
d II' , 

( 2, 10 ) 

In the virtue of the commutator r e la tions (2,1) a nd ( 2. 2) c orrPs p o nd ­

ing s um rules r ead: 

lim 
q ~ 0 

p 

lim 
~ -+ 0 

p. 

17 
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We make use of the Goldberger-Treiman relation and define the coupl­

ing constants as in the Sec. 1 b y eqs. (1.6). From these in the reso­

na.nce model, taking into account nuc l eon a nd the N 
33 

-isobar, we ob­

tain from eq. (2. 12) as follows: 

F2"(0) gNNIT=O. 

From eq. (2.11) we get as follows (q 2 = 0) :x/ 

(2.14) 

F v ( 0) g _ 3__ ( m + M ) 2 3 gN "' N 7711 (N* ... N y ) 
0 2 NNIT 9 --M-2-

2y 2 (2.15) 
As we see, eq. (2.15) coincides with eq. (1.16) for t=q2=0. 

From e q. (2.14) we obtain: 

F "(0) = !1' "(N)= 11 (P;+/l(n) = 0 (2.16) 
2 

Make use of the experimental value o f the anomalous lsovector magnetic 

mome nt of nucle on: 

F v(O) = ll'v(N)= 1,85-e-
2 2m 

p 

xl The rela tions (2.14), (2. 15) as the corresponding res ults obtained 
by Fubini fo r . photoprocluction have been got in the following way. WE. 
took q = 0 and the n singled o ut d iffe r ent structures in th e sum rule s 
forthe

11
quantity Fl = [aM +f3Mf3+YMy+8Mo : = aM I . 

q= o a u q = o q = o 

The r e i s in principle another way o f treatment. We put q ~ 0 and 
make us e o f the mutual independence o f the diffe ren t invariant a~plitudes. 
From them we obtain from the sum rules fo r the qua ntity F = a M + 

+ f3 M B + Y M y + 8 M 8 the s um rules for each invaria nt ampli¥ud e . 
After that we take infinitly small values for q everywher e . In this way 
the second t e rm in r .h.s . o f e q. (2.6) for q .f 011 g ives the contributions 

~o the parts of the amplitudes , which a r e a/;tisym~etric ir: the 3,p or 8(-{\ 
tndecesf a nd does not to symmetnc parts o f amplitudes (t. e . to a<+l, f3 , 

y<+ l, 8. +l , ). The sum rule for the q uantit y yi+J i s trivia l. The one-

nucleon contributions in thfl/sum rules for the a mplitudes a i+J , f3 1+J 
a nd 8(+) a r e g ive n in ref. The calcula tions show as fo llows. If in this 
treatment vye s hould take into account a l so the N 

33 
-isobar contribution 

to these s um rules we o bta ined fro m e q s . (2.1) (2.2) the r e la ti ons which 
contra dicted to exp erime nt. 
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From this a nd fro m eq. ( 2.15) we obk1i n for the for vvard pho t o proclu c tion 

( t 0) the value o f the magn e tic mo m e nt of the tra nsition N * ~ N y 

as follows x/ 

2-./2 
11(N * ~ N y ) = --11( P)1,35 

3 

While e xperiment gives: 

(N* ~ Ny) = 3i2_ 11 (P) (1 , 25 ± 0,02). 
·~ 3 

The eq. (2.16) have been obtained In the resonanc e model from the one­

dimens ional dispersion relation for the virtual photoproduction if we take 

into a ccount only nucleon and the N 33 -isobar. 

To obtain the sum rules for the other invariant amplitudes (2.8) we 

conside r now othe r commutator relations. So, we take the commutator rela-

ti eel . 
141 . h tak th f ons us rn ret 1 whtc e e orm: 

where j a (x) 

cf>f3(x) o 

is the vector current component, 

is the pseudosca lar field operator, 

a , y and f3 are the SU (3)-indices. 

(2. 17) 

For the matrix elements of e q. (2.1) between the one-nucleon states 

we get: 

a ~ f3 af3 y 
< p' l [i

0
(x,O), r/> (0)\ l p >=< p' l cy cf> (O)Ip> x 

x/ In r e r./
2

/ u sc of the following interaction 

' ( 3 ) + c -
< p I j (0) I N > = i- 1/; y y u 

I' 33 " m" N s 11 " 

for th e N * N y - vertex with the val•te C obtained in 

from e q . (2. 11) as follows : 
v e 

11' (N) = l , 99 --
2mP 
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Following Fu.bini/
3

/ let us define the quantities : 

Ta{3;=f < p' l [ia{x), ¢f\O)]p > A(x )elk• d 4 x 
/1 /1 0 (2.19) 

a rrl 

1'/ -i a {3 I k X 4 
taf '= -f< p' l[i (x), ¢ (O)]Ip>e d x. 

/1 2 /1 (2.20) 

After the partial integ ration we obtain b y a simple way as follows: 

k /1 Ta p = Wa {3 + c af3 F y ( t) 
/1 y (2.21) 

p. aB a f3 
k t = w 

/1 (2.22) 

where: 

W a{3 = f < P 'I [ Da (x) , ¢{3 (0) 11 p> f' ( x 0 
) e 1 

k x d 4 x (2.23) 

af3 •i . [ a f3 , I 1 k x 4 
w .;:. ) < p I D ( x), ¢ ( 0) · p > e d x . 

2. (2.24) 

The qua ntity ( T af3,) can be exparrled in the set of invariant quantities 

as follows: 

a{3 p. - af. a(-J 
T 1, < = u(p')y !A ,( P f) + A (k<l+ 

5 l 2 

aB a(J ~ ., a fl 
+ A 3' (q <) + A 

4 
' + k [A 

5 
(P ' \ + 

(2.25) 

a f3 a(3 a f. , 
+ A

6 
(kf\+A

7 
(q<\+A

8 
( \ lu(p) 

arrl the s imilar expantion for the qu ntity ( t a fl. ~ ' • If we choose a, f3 

as isospin irrl ices we get: 

a(3 0 af. (+) 1 [ a {3
1 A =u A + - r ,r , 

2 
A(-J (2. 26) 

We assume now the unsabtracted dis p e r s ion r e la tions in the varia ble v 

for fixed t for the quantities A 
1 

( v ) a rrl W ( v ) . 
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These relations take the form: 

A (v) = __.!._ /" 
i "-oo 

a 
1 

(v ') 
d v' 

(2. 27) 11 '-II 

W(v) = J w (v ') dv' 

"-oo ll,- v 

Making use of the eq. (2.25) an:i of the similar relation for the quantity 

read: 

and 

we obtain from eqs. (2.21) , (2.27), (2.28) the sum rules which 

J aaf3 ( v', k 2 
, q 2 

, t) dv' = 0 
~ 

(2. 29) 

(2.30) 

The amplitudes (+) ) 
a I ,~ (v are the odd functions a nd a< -l (v) are 

1 ' ~ 

the even functions of the variable v , In the virtue of it the non-trivial 

relations coming from eqs. (2.29) a n:i (2.30) can be written as follows/4/: 

00 

2m f ( - l ( , k 2 2 ) , a f3 y a 1 v, ,q,tdv=c F(t) 
y 

(2. 31) 

an:i: 

roo ( -) { ' k 2 2 ) d ' 0 a ~ v , ,q ,t v = . 
0 

(2. 32) 

Note, that e qs. (2. 29) a n:i (2.30) are the sole sum rul e s which follow 

from the commutator relations ( 2. 17). For the other invariant virtual pho­

toproduction amplitudes we get nothing from e q. ( 2. 17) • 

Let us choose as follows: a • 3, . 8 "' 1, 2,3, i. e . we choose 

the qua ntity ¢ f3 ( x) as the pion field operator with isotop ic ind e x (3. 

Then we obtain as follows: 

c~ Fy{t) = +[r 3 , r f?J F(t) 

fL 3 a il'~x) = O . 

21 



Thus, the quantity ¢f.( Jt ) Is a pion field operator, In the virtue of 

it the l.h.s. of eq. (2.29) has the. pole In the variable q 2 in the point 

q 
2 

= m~ , while the r.h.s. of eq. (2.29) does not depern on the variable 

q 
2 

quite. The refore the residue of the l.h.s. of eq. (2.29) in the point 

q 
2 

= m 
2 

is equal to zerJ4 /: 
IT 

2m f residue 
O(q2 ~ m2) 

IT 

2 2 
[ a'~-l (11 ', k , q , t)] d 11 ' u 0 • 

Now we get: 

residue 
2 2 

(q -miT) 

2 2 2 2 ( -) 2 
[aC1-l(ll,k ,q , t))=(t+k -m

11
)1m,8 (11,k ,t) 

and slrnllarly: 

residue 
(qa~ m a l 

IT 

( l 2 2 
[a 

5
- ( 11, k , q , t) J ~ 21m B (-)(11 ,k 

2 
, t) 

(2.33) 

where the invariant amplitud~ ,8 ( 11 ,k 2 t) a nd B ( 11, k 2
, t ) are defined as 

in eq. (2.8). From these using eq. (2.33) we ha.ve /4/ as follows: 

2 2 "" (-, • 2 
(t+k -m )Jim ,8 l11 , k , t) d v'= O 

IT 0 
(2.34) 

arr:t sirnllarly from e q. ( 2.30) w e get: 

f Im B c- 1 ( v ' , k 2 
, t ) d v '= 0. (2.35) 

Cons ider the sum r ule (2,35) in the reso nance model taking into account 

nucleon a rxt the N 
33 

- isobarxf. 

From this we have: 

eX/In r e f,/ 
4

/ use of the followin g inte raction < p I j '} 1 ( 0) I N; ~r > = 
= i -m- r/1 N y 5 y p. u v for the N * N y v e rtex gives frf"e value o the a no-
maloUS' isovector magnetic mome nt of nucleon as follows : 

v 
p.' ( N ) = 3. 1 _ e -

2 "' p 
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X 

2 2 
x 1 _ ~, [ _( M_+_m_) __ ( _s _M_-_m_) _+_· m....:"::....:..( _m_-_2_....:M) + _t _ l = 0 

3 12M2 4 M 

(2.36) 

For the forward photoproduction we have from eq. (2.36) as follows: 

2,;2 
1L ( N*-+ N y \ = -

3
- ll (p) 0, 96 . 

The sum rule (2.34) in the resonance model yields: 

4Fv(O) +(-2._) (m+M) 
I gNNTT 3 M X 

(2.37) 2y 2 

x (m 
2 

- t) = 0 , 
TT 

where F v (0) = _!:.._. 
I 2 

Eq.(2.37) coincides with the relation (1.7) obtained from the one-

dimensional dispersion r e lations for the invariant photoproduction ampll­

tude (R 
1 

c) 

The r elation (2.36) coincides with eq. (1.8) obtained from the sum 

rules coming from the one-dimensional dispersion rela tions for the inva-

ria nt photoproduc tion amplitude ( R 
2 

' ) in the r esonance model. 

Finally the conclusions can be drown that use of the commutator 

r e lations toge ther with the assumption about the unsubtracted dispe rsion 

relations for the p hotoproduction amplitude gives sum rules for some in­

variant amplitudes. T h ese s um rules give rise to the same results as 

these ·coming only from the one-dim.ensional dispersion r e la tions for the 

photoproduction amplitudes, 

It is inte resting to note, that the one-dimensional dispersion rela­

tions method allows us to obtain the sum rules for the amplitudes fdr 

which from the current algebra method (in the Fubini technique) this 

information can not be obtained. 
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The relation (2.37) and the coinciding with it eq. (1. 7) do not hold 

for the experiment values of the quantities which are contained ln eqs.(l. 7), 

(2.37) for t ~ 0. 

As in the Sec. I we conclude from this that the unsubtracted dis­

persion relations In the variable v do not hold for the invariant .amp­

litudes {3 ( v) and for the amplitudes (R 1 <) ., coinciding with it. Perhaps, 

for these amplitudes the contribution of the high-energy region coming 

from the Regge-poles exchange in the t -channel is important. As it was 

pointed in the Sec. I the invariant multiplier u ( p ') y 
5 

( P <) u ( p ) of the 

invariant amplitude a 
1 

( v) in eq. (2.25) vanishes for the forward phe>­

toproduction. In the virtue of it if analogously to the discussion in the 

Sec. I we consider the relation (2.21) and (2.22) for t ,. 0 we obtain 

from this the sum rules in the kind of (2.32) only. As it was shown these 

sum rules in the resonance model are in agreement with experiment. 

Finally we conclude as follows. As it was shown in this paper, 

there are two alternative poss ibilities to obtain the sum rules for phe>­

toproduction problem. The first one consists in the making use of the 

assumptions about high-energy behaviour of the invariant amplitudes which 

enable us to write down the unsabtracted dispersion relations in the 

variable v for the quantities L 1 ,(v) arrl v L1 ( v ) (assumptions about 

"superconversion" of the amplitudes). 

The second one consists in the ma.klng use of the equal-time co~ 

mutator relations together with the assumptions about the unsabtracted 

dispersion relations in the variable v for the invariant amplitudes L 
1 

(v ) . 

We saw that both methods give the same res ults. Na mely, the sum 

rules for a g roup of the invariant a mplitudes in the resonan ce model a re 

in agreement with exp eriment while these fo r another g roup of the inva­

riant amplitudes a re not. 

Perhaps the last circums ta nce show tha t dispersion relations without 

subtractions do not hold for the invariant amplitudes of the second g roup. 

Generally speaking, it is not clear for the time being both for the dis­

persion sum rules a nd for the sum rules obtained from the equal-time commu­

tator relations, why used sum rules in the resonance model a r e valid 

for some amplitudes and do not hold for the other. This problem is being 

studied. 
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