





The problem of the number of the subtractions in the dispersion re-
lations for various invariamt amplitudes, i.e. the problem of the dynamics
of interaction can be associated with the analysis of the dispersicr: sum
rules,

It is in fact so in the virtue of that the dispersion sum rules are
the exact consequence of certain assumptions about the number of the
subtractions in dispersion relations.

A certain assumption about the high~energy behaviour of the o
of the invariant amplitudes Lfor N -~virtual photoproduction have been
made in the ref./sl.

The unsubtracted dispersion relation in the variable v for the
quantities L (v ) and v-L (v ) have been obtained from these as-
sumptions and a certain sum rules follow from them. In the resonance
model the account of nucleon and the N isobar gives sum rules which
are in good agreement with the experimental data.

It is interesting to recognize if the unsubtracted dispersion relatio

> valid for the other invariant photoproduction amplitudes.

In sec. 1 of this noie we investigate dispersion m rules which
are consequences of the definite assumptions about the high-energy be-
haviour of various invariant amplitudes.

In sec. 2 we consider the sum rules which are obtained from the
high-energy behaviour of the amplitudes together with the assumptions
about the walidity of the equal-time commutator relations.

Finally we compare results, which are obtained by these methods,
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where the invariant variables are défined as follows:

(p+p)k
2m

. s=(p+k)*

2
w= 00 -k),  t=(p-p")

Now we assume a high-energy behaviour of all amplitudes which
enables us to write down the unsubtracted dispersion relation for all
quantities L (v ) and v-L, (v )} in the variable v x/

EFrom these assumptions we get:

[ImL (v, k%, t)dv’ =0, (1=123456) . (1.5)
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The relations ( in the frame of the made assumptions are exact.

We consider approximate consequences which the relations (:

give,

Now we analyse the relations ( in the point of view of the re-

sonance model taking into account the one-nucleon and the N

a3 ~isobar

contributions in these relations only,

x/

Now it is important to emphasize that these total assumptions for
the all invariant ar itudes (L4), of course, have a methodical, formal
character, In fact, assume that the high-energy asymptotic of the quan-

tity T is determined with the Reggerpg ° exchance at the t ~chan-
nel. (Reg,g&poles with the same quanfumr bers as P, w -
sons).

In account of (0) ~ 0,5+0.3; a, (0)= 0.5+0.1 we see that

some invariant amphtudes L may gencrally have a high-energy t

haviour which do not allow us to write down the unsubtracted disper-
sion relations for the quantities v.Ll (v ) and for these amplitudes
L, (v ) itselves too. .The dlscussmn about it to be continued.

[62]









; 3! . .
ale Ly we havo:

3 (N* S Ny)
4 H 14 EN*ng
) et 3 = L (1.10)
v
3 2 1
I —(m+M)+m”(m-25) . t e
' 12m 2 4

) for forward photoproduction we obtain:
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for the amplitude L(:) we have:
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is the total isovector nucieon magnetic moment:
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litude L, we have:
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3) and (1.14) do not hold for the forward photoproduction,

ally, for the amplitude L'’ we get:
p®(N)g
— NNm _p, (1.15)
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the forward photoproduction from eq. (1.16) we obtain:

D h(N*aNy) = 18 u(P) .,
272

‘ules for the other ampliutde are trivial.

relations (1.15) and (1.16) have been obtained in ref./5/. .

1.8) is hold with the accuracy about 22%, eq. (1.10) is hc
ccuracy about 8% ,and the relations{1.11) and (1.15) are t
xperimental accuracy,

egs. {1.9) and (1.15) coincide and read:

B(P)+pu(n)= =
2mp

rrinent gives:



[k(p)+p(a)] = ogge_ .

exp 2m

>n shown in ref.‘/B/ taking into account of the contributions

N,, (1518)-resonance and the N,

'S

. isobar in the sum

() + p(n)=(0,85+0,03) —Cu_

2m .
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: relations (1.7), (L13), and (1. 14), they do not hold (fo‘rt=0).
ircumstance shows that the unsubtracted dispersion rela-
ld for the quantities v.l, (u).u-ZLs(u) and for the
), L (v) itselves too.

ble that for these amplitudes the contribution of the high-

:oming from Regge-pole exchange in t-channel and the

ribution are important.

the amplitudes L, and L5

are these for which the
m has a pole in the variable t at the point t=m? -2,

T
asy seen, the amplitudes L, and L, correspond

riants, which vanish for the forward photoproductionx/

take the Breit coordinat system. In this system we get
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k —p ) is the pion momenta,
it coordinate system the invariants R can be expanded
3 of the Breit system. The spacial parts of these take
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culations we obtain that the quantities R R deperd on
> >

“p)p only,and R 2,346 depend on the invariants

Taking it into account we get for the forward photo-
lows:
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nm the egs. (1,17), 8) we have:

;t'v(N)= ~~§—-[¢(p).

(1.19)
> SU(6) relation for the total nucleon moments reads:
u(p) 3 .
AT (1.20)

the anomalous isovector nucleon magnetic moment from eq. (1.20) we

ViNy- HP) -1 -p(n) Sp(p) 1 (1.21)
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ing use of the egs. (1.19)—(1.2]) in the static  -su(¢) ~limit we get as
WS
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L.15) coincite ard take the form:
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It we compare eq. (1,23) with eq. (1.17) we sce that the soum rules



the amplitudes 1
gnetic moment of nucleon the same value as this for the anomalous
wvector magnetic moment of nucleon.

In the SU(6) -symmetrv we get:

p(P)— p(n) Sp(P)
#V(N)lsu(s)= 2 - = Pﬁ : (1-25)

Making use of eqs. {1.24), (1.25) yields:

v 4 vy (1.26)
N = N *
s ( )|sumrules,SU( )5 # ¢ )lsu(ﬁ) *

us, we have shown that the relations obtained from the sum rules for
v invariant amplitudes L, , L, , L, are in agreement with SU(f)
1 the relation obtainec from the sum rules for the amplitude L, gives
© the quantity uV(N) the same value as for the quantity VN

the static SU(6) -limit. The all above relations show that (for t =0)

L L L are saturated

* sum rules for the amplitudes L, , 3 0 . 0 5

th a certain accuracy) by the contributions coming from the members
the unitary octet and decuplet, These are joint as a barion 56-pl
SU(€).

For the forward photoproduction the all obtained sum rules in
sonance model dgive a reasonable agreenent with the experimental date

Note that the "saturation" by nucleon and the N, - Dbar of tl
tions obtained for the amplitudes v Ly L, L, show
‘ows, DPerhaps, it testifies about the validity of the unsubtracted «
rsion relations for the amplitudes Iz' nde and of the assumption
out "decuplet dominance”. But at the same time this "saturation" c
t be an unambiguous evidence of the wvalidity of the unsubtracted

2,3, 4,8 69
20, 4,6 V) It only indicates on mutual compensation of t

rsion rclations in the wvariable v for the quantities L
1 vlL
cleon contribution with the N,, -~isobar contribulion, while the co
tions of the mid-energy amrd high-cnergy regions to the quantity

‘m Ll (v ) dv can be important and can give as follows:
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Mp= 2y [ 1) (pre)=(p-k)(p )]
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My=y [((p+p)ek Yem((psp el ~2myge k,

vhere m is the nucleon mass, ¢ , 3 , v , 0 are the invariant
unctions of the wvarlables v , t .

As It is easy seenlz/ in the limit 9y 0 only M, survives
whlle M/g N My , M5 vanish in this llmit. In the virtue of it we
.onsider in this lmit the invariant amplitude a(v,t) only. We use in
»q(1.6) the complete set of the states |n> and take E # por , E aépo’.
From these we obtain that in the limit q# »0 only the first term in

whes. of the eq. (2.6) survives and eq.(2.6) read:

lim F! 38Xg)= lim € < N(p~) [B( Ui (0)! > elaz @ (=~ d4x.
- P Ao il p )| Px) JF()|N(p) e (xo) ()é.g)

2
Tollowing F\Jbir\i/“’3/ assume now that for the invariant amplitudes a'?:®!
P
he unsubtracted dispersion relations in the variable v are valid for
ixed t = 0. These dispersion relations take the form:
; oo (3,8) Y
a(p]‘))(l,)z.l_.f map '~ 070 e (2.10)
T _0 . °

In the virtue of the commutator relations (2.1) and (2.2) corresporr!-

ing sum rules read:

. ()
lim a (w)=0, 2,11
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y
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this and from og. (2.15) we obtain for the forward photoproduction

0) the value of the magnetic moment of the transition N* 5 Ny
!

/
lows

41(N*+Ny)=£‘i3-2-y(l>)1,35 .

experiment gives:

=
p (N* > Ny)= 2y 2 u(P) (1,2540,02).

exp

q. (2.16) have been obtained in the resonance model from the one-
sional dispersion relation for the virtual photoproduction if we take
ccount only nucleon and the N, -isobar.

To obtain the sum rules for the other invariant amplitudes (2.8) we
ler now other commutator relations, So, we take the commutator rela-

4
used in ret{ /, which take the form:

[j‘;(;,O),¢>/’(0)1: e (05 G, (2.17)
ja(x) is the wvector current componermnt,
0
%) is the pseudoscalar field operator,

and B are the SU (3)-indices.

For the matrix elements of eq. (2.1) between the one-nucleon states

ot
il B a
0G0, 6 01105 =<1 47 (019> x
) (2.18)
{ -+ . Y,
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X/In ref./"‘/ use of the following interaction
<P onnt s S0
i"ll )'1331'>~' m”UNysyuuv

2> N*Ny ~—vertex withh the valite C  obtained in ref,/lol gives

2q. (2.11) as follows:

Y (Ny= 1,99 -2 .
p’ (N)=1, _i-';p
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