MフTロ, 1967, т. 53, N.2/8

ОБЪЕДИНЕННЫЙ ИНСТИТУТ c. 673-679

яДЕРНЫХ НССЛЕДОВАНИЙ
Дубна

R.A. Asanov

AАБОРАТОРИЯ TEOPETИИELKОЙ ОМЗИКИ

STATIC SCALAR AND ELECTRIC FIELDS IN THE EINSTEIN THEORY OF GRAVITATION

1967.

E2 - 3108

R.A. Asanov

STATIC SCALAR AND ELECTRIC FIELDS IN THE EINSTEIN THEORY OF GRAVITATION

```
Асанов P.A.
Статические скалярное и электрическое поля в теории тяготения Эинштейна
```

E2-3108

В работе рассмотрена модель сферически-симметричного тела (сферы) при наличии гравитаиионного, электромагнитного и скалярного полеи. Найденые статические решения отличаются от решении проблемы, данных Фишером, Бергманом и Лейпником, в отличие от последних удовлетворяют общим требованиям, которые должны предъ являться к статическим решениям в рамках обпей теории относительности, и естественно интерпретируются физически.

Препринт Объединенного института ядерных исследовании. Дубна, 1967.

Asanov R.A. E2-3108

Static Scalar and Electric Fields in the Einstein Theory of Gravitation

The model of a spherically symmetric body (sphere) was considered in the presence of gravitational, electromagnetic and scalar fields. The static solutions derived differ from those given by Fisher, Bergmann and Leipnik by that the former satisfy the general requirements imposed on static solutions in the framework of the general relativeity and are naturally interpreted from the physical point of view.

Preprint. Joint Institute for Nuclear Research. Dubna, 1967.

The static spherically symmetric model of a body (sphere) of restricted dimensions is considered in the presence of gravitational, electromagnetic art scalar fields. A similar problem was repeatedly solved in the presence of ofly gravitational and electromagnetic fields (see for example, papers by Papapetrou ${ }^{1 / 1 / B o n n o r}$ etc. $/ 2 /$. It was shown that such static solutions are possible. Such moxtels were subjected to a criticism even by Einstein $/ 3 /$ because of some ambisinj; ithich permits to choose various distributions of the electric charge densitv.

An advanced investigation of the problem in the presence of only aravitiational and scalar fielts with a point source was mate by I. Fisher in 19 1' 1 ! Nrt. hovever that this solution in itself has no physical metaning sincin it f . m , ot st tisfy the requirement for the motric to be Euclidean in the infirit slv emmil region near the origin $/ 5 /$ (i.e. at this point the ratio of the length of an infinitel, smill circle to its diameter is not $T \pi$, what follows from the equality $e^{\lambda(0)}=0$). Moreovror, in ref. $/ 4 /$ the error in the calculations has led to a wrons conclusion abotut tho non-schwarzschild behaviour of the function $e^{\nu(r)}$ at $r-\infty$. Thr total enorgv was also found to be wrong (the infinity) due to a strongly sincular transformation of the coordinates. Thus, in reality, the described system can not be realized. Morcover, as it will be shown below, the static model of a particle (body) consisting of a "dust-like" matter can not also be realized in the presence of onlv sravitational and scalar fields. (It is impossible to fulfil the condition like (15) $x^{2} m^{2}+k G^{2}=0$, here G is the scalar constant, K is the gravitational ionstant. Tlis conclusion can be understood from the physical point of view since both dravitational and scalar forces are attractive and, consequently, can not be a basis for thr construction of a steady system.

Tie problem of a point source for gravitational and scalar imas ilosh fields was also considered by O.Bergmann and R.Leipnik $/ 6 /$ in 1957 . Tt, Y, riv, in addition to the Fisher's solution, some othor ones. However, a fraction of them, as the authors point out, dons not obey the condition for the metric to be Galiloan at infinity. The remaining one does not satisfy the natural coriditions of positiveness (>0) of the quantitios $x^{2} m^{2}$ and $x G^{2}$ (or the sum $x^{2} m^{2}+x G^{2}$). In particular,
the solution for which $m=0, G \neq 0$. does not satisfy the Bianchi identity $\frac{\nu^{\prime}}{\mathcal{L}} \rho+j V^{\prime}=0 \quad$ (comp. below eq. (6)) at the point $r=0$ since at this point we would have $\rho=0$ but $j V^{\prime} \neq 0$.

It is clear from the physical point of view that if, in addition to the gravitational and scalar fielts, we introduce the electrostatic one then we may hope to construct a steady model since the electrostatic forces are repulsive. We first consider the case of a massinss scalar field. We do not introduce phenomenological external forces lnside the body. This picture corresponds to a "dust-like" body structure.

For the Einstein equations $G_{\mu}^{\nu}=8 \pi \times T_{\mu}^{\nu}$ the material tensor consists in the mentioned case of three parts. The tensor of the matter is

$$
\stackrel{(m)}{\nu}_{\mu}^{\nu}=-\rho g_{\mu \sigma} \frac{d x^{\sigma}}{d s} \frac{d x^{\nu}}{d s}
$$

here ρ is the invariant mass density. The electromasnetic field tensor (in Gaussian units) is
here

$$
\begin{aligned}
& {\stackrel{(l m)}{T_{\mu}}}_{\mu}=\frac{1}{4 \pi}\left(F_{\mu \sigma} F^{\nu \sigma}-\frac{1}{4} \delta_{\mu}^{\nu} F_{\sigma \lambda} F^{\sigma \lambda}\right) \\
& F_{\mu \nu}=\partial_{\mu} A_{\nu}-\partial_{\nu} A_{\mu}
\end{aligned}
$$

The tensor of the scalar massless field is

$$
T_{\mu}^{(s c)}=\frac{1}{4 \pi}\left(-\nabla_{\mu} V \nabla^{\nu} V+\frac{1}{2} \delta_{\mu}^{\nu} \nabla_{\sigma} V \nabla^{\sigma} V\right)
$$

The equations for electromagnetic and scalar fields are

$$
\nabla_{\mu} F^{\nu \mu}=4 \pi J^{\nu}, \nabla_{\sigma} \nabla^{\sigma} V=-4 \pi i
$$

here j is the invariant density for the scalar field source. In the considered static spherically symnetric case we have

$$
\begin{aligned}
(d s)^{2}= & g_{\mu \nu} d \xi^{\mu} d \xi^{\nu}=-e^{\lambda}(d r)^{2}-r^{2}(d \theta)^{2}-r^{2} \sin ^{2} \theta(d \varphi)^{2}+e^{\nu}(d t)^{2} \\
& \lambda=\lambda(r), \nu=\nu(r), \operatorname{det} g_{\mu \nu}=g=-e^{\lambda+\nu} r^{4} \sin ^{2} \theta \\
& \left(\xi^{1}, \xi^{2}, \xi^{3}, \xi^{4}=2, \theta, \varphi, t\right)
\end{aligned}
$$

The Einstein equations become

$$
\begin{align*}
&-\frac{\lambda^{\prime}}{r}+\frac{1-e^{\lambda}}{r^{2}}=-x\left(V^{\prime}\right)^{2}-x e^{-\nu}\left(\varphi^{\prime}\right)^{2}-8 \pi x \rho e^{\lambda} \tag{1}\\
& \frac{\nu^{\prime}}{r}+\frac{1-e^{\lambda}}{r^{2}}=k\left(V^{\prime}\right)^{2}-x e^{-\nu}\left(\varphi^{\prime}\right)^{2} \tag{2}\\
& \frac{\nu^{\prime \prime}}{2}+\frac{\nu^{\prime}-\lambda^{\prime}}{2 r}+\frac{\nu^{\prime}\left(\nu^{\prime}-\lambda^{\prime}\right)}{4}=-k\left(V^{\prime}\right)^{2}+x e^{-\nu}\left(\varphi^{\prime}\right)^{2} \tag{3}
\end{align*}
$$

here φ is the scalar potential of the electromagnetic field and the prime means the derivative $d / d r$.

The equation for the electromagnetic field takes on the form

$$
\begin{equation*}
\varphi^{\prime \prime}+\left(\frac{2}{r}-\frac{v^{\prime}+\lambda^{\prime}}{2}\right) \varphi^{\prime}=-4 \pi J_{4} e^{\lambda} \tag{4}
\end{equation*}
$$

here J_{4} is the electric charge density, and the equation for the scalar field is

$$
\begin{equation*}
V^{\prime \prime}+\left(\frac{2}{r}+\frac{v^{\prime}-\lambda^{\prime}}{2}\right) V^{\prime}=4 \pi i e^{\lambda} \tag{5}
\end{equation*}
$$

The contracted Bianchi identity $\left(\nabla_{\sigma} T_{1}^{6}=0\right)$ gives

$$
\begin{equation*}
\frac{v^{\prime}}{2} \rho+j V^{\prime}+\varphi^{\prime} J_{y}=0 \tag{6}
\end{equation*}
$$

It retains in the set of equations (1)-(5) only four independent. Note that the sum of the equations (2) and (3) leads to

$$
\begin{equation*}
\frac{v^{\prime \prime}}{2}+\frac{3}{2} \frac{v^{\prime}}{r^{\prime}}+\frac{\left(v^{\prime}\right)^{2}}{4}+\frac{1}{r^{2}}-\lambda^{\prime}\left(\frac{1}{2 r}+\frac{v^{\prime}}{4}\right)-\frac{e^{\lambda}}{r^{2}}=0 \tag{7}
\end{equation*}
$$

which on integration gives

$$
\begin{equation*}
e^{-\lambda}=\frac{1}{\left(1+\frac{r \nu^{\prime}}{2}\right)^{2}}+\infty \frac{e^{-\nu}}{r^{2}\left(1+\frac{r \nu^{\prime}}{2}\right)^{2}} \tag{8}
\end{equation*}
$$

2 is a constant of integration.
Wo first fint the asymptotics, of the solutions for $\Gamma \rightarrow \infty$ then we use it as an "external" solution. In order to construct the solution inside the body we use well-known receipts of connecting the internal and external solutions at the boundary.

Outside the body (i.e. for $\rho=j=J_{y}=0$) eqs. (1) and (5) have the following solutions vanishing at infinity

$$
\begin{equation*}
\varphi^{\prime}=-\frac{\varepsilon}{r^{2}} e^{\frac{\lambda+\nu}{2}}, V^{\prime}=-\frac{G}{r^{2}} e^{\frac{\lambda-\nu}{2}} \tag{9}
\end{equation*}
$$

here \mathcal{E} is the electric charge.

In this case the problem reduces to a completely definite system of equations

$$
\begin{align*}
-\frac{\lambda^{\prime}}{r}+\frac{1-e^{\lambda}}{r^{2}} & =-\frac{x G^{2}}{r^{4}} e^{\lambda-\nu}-\frac{x \varepsilon^{2}}{r^{4}} e^{\lambda} \tag{10}\\
\frac{\nu^{\prime}}{r^{\prime}}+\frac{1-e^{\lambda}}{r^{2}} & =\frac{x G^{2}}{r^{4}} e^{\lambda-\nu}-\frac{x \varepsilon^{2}}{r^{4}} e^{\lambda} \tag{11}
\end{align*}
$$

To find the solution for this system at $r-\infty$ we use the requirement for the metric to be Galilean at infinity $\left(e^{\nu}-1, e^{\lambda}-1\right)$ and the condition of correspondance with the Newtonian approximation (for this the integration constant is chosen so that $e^{\nu}-1-\frac{2 \times m}{r}+\ldots$). As a result we get the expansions

$$
\begin{align*}
& e^{\nu}=1-\frac{2 x m}{r}+\frac{k \varepsilon^{2}}{r^{2}}+\frac{1}{3} \frac{(x m) x G^{2}}{r^{3}}+\ldots \tag{12}\\
& e^{\lambda}=1-\frac{2 x m}{r}+\frac{k G^{2}+k \varepsilon^{2}}{r^{2}}+\frac{(k m) x G^{2}}{r^{3}}+\ldots \tag{13}
\end{align*}
$$

These expansions if $\mathcal{E}=0$ naturally give the asymptotics for the Fisher's solutions, if $G=0$ tramorm to the solution for tho electrostatic problem (NomströmReissmar $\left\lvert\, / e^{\nu}=e^{-\lambda}=1-\frac{2 k m}{r^{\nu}}+\frac{k \varepsilon^{2}}{\Gamma^{q}}\right.$) and if $\varepsilon=G=0$ transform to the Schwarzscrited ondion

Usine the asynmptotics found it is easy to determine the constant \mathbb{D} in the inteural (3) of the initial system of equations

$$
\begin{equation*}
\mathscr{D}=x^{2} m^{2}+x G^{2}-x \varepsilon^{2} . \tag{1.4}
\end{equation*}
$$

To hafil the requitumont for the motric to be Euchidean if $r-O$ it is neceseary to have $e^{\lambda(0)}=1$. If the function e^{ν} is mot too simfular in the onigin then from (8) it follones that the solition of interost can bo deriver only if

$$
\begin{equation*}
\mathscr{D}=x^{2} m^{2}+x G^{2}-x \varepsilon^{2}=0 . \tag{15}
\end{equation*}
$$

Note that if $G=0$ this gives the condition $x^{2} m^{2}-x \varepsilon^{2}=0$ for electrostatic problems obtained in the Papapetrou and Honor's models. Thus, we have the solution for the problem outside the body in the form (12), (13) which is used as an "external" in constructing the model of the sphere of large radius

$$
\begin{equation*}
R \gg x m, x \varepsilon^{2}, x G^{2} . \tag{16}
\end{equation*}
$$

We have also the exact relation which is valid both outside and inside the sphere

$$
\begin{equation*}
e^{\lambda}=\left(1+\frac{r v^{\prime}}{2}\right)^{2} \tag{17}
\end{equation*}
$$

Now we look for the internal solution for $V(r)$ in the form

$$
\begin{equation*}
V(r)=A r+B, \quad A \text { and } B \text { are constants. } \tag{18}
\end{equation*}
$$

The boundary conditions on V and V^{\prime} (see Synge ${ }^{/ 8 /}$) require the continuity of them at $r=R$ and give:

$$
\begin{align*}
& A=\frac{2 x m}{R^{2}}+\frac{4 x^{2} m^{2}-2 x \varepsilon^{2}}{R^{3}}+\ldots \tag{19}\\
& B=-\frac{4 x m}{R}+\frac{-4 x^{2} m^{2}+x \varepsilon^{2}+2 x G^{2}}{R^{2}}+\ldots \tag{20}
\end{align*}
$$

The quantity e^{λ} is connected automatically owing to (17). The derivative λ^{\prime} has a discontinuity at $r=R$ (simultaneously, with $\mathcal{V}^{\prime \prime}$, and ρ). Then we have to connect the derivatives of the fields (V^{\prime} and φ^{\prime}). Due to some ambiguity we choose for $\varphi^{\prime}(r)$ elsewhere inside the sphere the value which it takes on at tue boundary: :

$$
\begin{equation*}
\varphi^{\prime}=-\frac{\varepsilon}{R^{2}} e^{\frac{\lambda(R)+\nu(R)}{2}} \cong-\frac{\varepsilon}{R^{2}} \tag{21}
\end{equation*}
$$

Then the scalar field is connected automatically due to (2), which gives inside the sphere

$$
\begin{equation*}
x\left(V^{\prime}\right)^{2}=x e^{-\nu}\left(\varphi^{\prime}\right)^{2}-\frac{A^{2}}{4} \cong \frac{x \varepsilon^{2}}{R^{Y}}-\frac{x^{2} m^{2}}{R^{4}} \tag{22}
\end{equation*}
$$

This, the natural requirement for the quantity $\left(V^{\prime}\right)^{2}$ to be positive is satisfied owing to the condition (15). Using (17), (18) and (21) from the Einstein equation (1) se obtain for the mass density

$$
\begin{align*}
8 \pi x r^{2} e^{\varepsilon \lambda} \rho & =\operatorname{Ar}\left(1+\frac{A r}{2}\right)+\operatorname{Ar}\left(1+\frac{A r}{2}\right)^{3}-2 x r^{2} e^{\lambda-\nu}\left(\varphi^{\prime}\right)^{2} \cong \tag{23}\\
& \cong \frac{4 x m r}{R^{2}}-\frac{2 x r^{2} \varepsilon^{2}}{R^{4}}
\end{align*}
$$

To provide for the quantity $\rho(r)$ to be positive the following restriction

$$
\begin{equation*}
\frac{2 x m}{R}>\frac{x \varepsilon^{2}}{R^{2}}, \text { or } R>\frac{x \varepsilon^{2}}{2 x m} \tag{24}
\end{equation*}
$$

should be fulfilled elsewhere inside the sphere which does not contradict the conditions (15) and (16). The behaviour of the functions $e^{\lambda}, e^{\nu}, V^{\prime}$ and φ^{\prime} is given by the graphs of Fig. 1.

Let us consider the behaviour of the covariant densities of the electric and scalar charges in this model. Taking $\varphi^{\prime}=$ const, $\nu^{\prime}=A, e^{\lambda}=\left(1+\frac{r A}{2}\right)^{2}$ from (4) for the first one :eve have

$$
\begin{equation*}
-8 \pi r e^{2 \lambda} J_{y}=\left(1+\frac{A r}{2}\right)\left(4-\frac{A^{2} r^{2}}{2}\right) \varphi^{\prime} \cong 4 \varphi^{\prime}<0 \tag{25}
\end{equation*}
$$

since $A r \cong \frac{2 x m}{R} \cdot \frac{r}{R} \ll 1 \quad$ and $\quad \varphi^{\prime}=\operatorname{const}<0$.
Consequently, $J_{Y}(r)$ has elsewhere the same sign (and is positive). For the densilty of the scalar field source we have from eqs. (5) and (2)

$$
\begin{align*}
8 \pi x r e^{\nu+\lambda} V_{j}^{\prime \prime} & =-x r \nu^{\prime}\left(\varphi^{\prime}\right)^{2}+\left(4+r^{\prime}-r \lambda^{\prime}\right)\left[x\left(\varphi^{\prime}\right)^{2}-\frac{A^{2}}{4} e^{\nu}\right] \cong \tag{26}\\
& \cong \frac{x \varepsilon^{2}}{R^{y}}-\frac{x^{2} m^{2}}{R^{y}}=4 \frac{x G^{2}}{R^{y}}
\end{align*}
$$

The last equality follows from eq. (15). Consequently, j has elsewhere the same sign (and $j<0$ since $V<0$). Note that from these formulas it follows that the densties f and J_{y} have (integrable) singularities at the origin ($\left.\sim 1 / \sim\right)$. It is known that this singularity is specific and due to our simplest choice $\nu^{\prime}=$ const. If we assume that at least $V^{\prime} \sim r$ at the origin and the quantities φ^{\prime} and V^{\prime} vanish at $r \rightarrow 0$ the singularity disappears. The same is valid for $\rho(r)$. (From eq. (23) it follows that at $\left.r-0,8 \pi x \rho \sim \frac{2 A}{r}\right)$.

The expression for the total electric charge of the system in our metrics

$$
\begin{align*}
I & =4 \pi \int_{0}^{\infty} \sqrt{J_{\mu} J^{\mu}} r^{2} e^{\frac{\lambda}{2}} d r=-\int_{0}^{\infty}\left(\varphi^{\prime} r^{2} e^{-\frac{\nu+\lambda}{2}}\right)^{\prime} d r= \\
& =\left.\left[-\varphi^{\prime} r^{2} e^{-\frac{\lambda+\nu}{2}}\right]\right|_{0} ^{\infty} \tag{27}
\end{align*}
$$

for the solution obtained gives

$$
\begin{aligned}
I & =\left.\left[-\varphi^{\prime} r^{2} e^{-\frac{\lambda+\nu}{2}}\right]\right|_{0} ^{R}=\frac{\varepsilon}{R^{2}} e^{\frac{\lambda(R)+\nu(R)}{2}}\left(R^{2} e^{-\frac{\lambda(R)+\nu(R)}{2}}-\lim _{r \rightarrow 0} r^{2} e^{-\frac{\nu+\lambda}{2}}\right)_{(28)} \\
& =\varepsilon
\end{aligned}
$$

This is in agreement with the electric charge conservation law.
The total mass of the system according to the Landau formula $/ 5 /$

$$
\begin{equation*}
M=\left.\frac{1}{2 x}\left[r\left(e^{\lambda}-1\right)\right]\right|_{0} ^{\infty} \tag{29}
\end{equation*}
$$

is in this case

$$
\begin{equation*}
M=\frac{1}{2 x}\left[r\left(\frac{2 x m}{r}+\ldots\right)\right]-\frac{1}{2 x}[r(1+\ldots-1)]=m \tag{30}
\end{equation*}
$$

Thus the construction of the model is completed.
Te consider now a possible construction of an analogous model of the sphere in the presence of scalar field of mass μ. The Einstein equations and those of the scalar field are

$$
\begin{align*}
& -\frac{\lambda^{\prime}}{r}+\frac{1-e^{\lambda}}{r^{2}}=-x\left(V^{\prime}\right)^{2}-x \mu^{2} V^{2} e^{\lambda}-k e^{-V}\left(\varphi^{\prime}\right)^{2}-8 \pi x \rho e^{\lambda} \tag{31}\\
& \frac{V^{\prime}}{r}+\frac{1-e^{\lambda}}{r^{2}}=k\left(V^{\prime}\right)^{2}-x \mu^{2} V^{2} e^{\lambda}-k e^{\nu}\left(\varphi^{\prime}\right)^{2} \tag{32}
\end{align*}
$$

$$
\begin{align*}
& \frac{\nu^{\prime \prime}}{2}+\frac{\nu^{\prime}-\lambda^{\prime}}{2 r}+\frac{\nu^{\prime}\left(\nu^{\prime}-\lambda^{\prime}\right)}{4}=-x\left(V^{\prime}\right)^{2} x \mu^{2} V e^{2}+x e^{-\nu}\left(\varphi^{\prime}\right)^{2} \tag{33}\\
& V^{\prime \prime}+\left(\frac{2}{r}+\frac{v^{\prime}-\lambda^{\prime}}{2}\right) V-\mu^{2} V e^{\lambda}=4 \pi j e^{\lambda} \tag{34}
\end{align*}
$$

The electrostatic field equation (4) and the Bianchi identity (6) conserve the provious form. The sum of eqs. (32) and (33) leads to the equation for e^{λ}, which integrates into

$$
e^{-\lambda}=\left(1+\frac{r \nu^{\prime}}{2}\right)^{-2}+r^{-2} e^{-\nu}\left(1+\frac{r \nu^{\prime}}{2}\right)^{-2}\left[\bar{D}+2 x \mu^{2} \int_{r}^{\infty} V^{2} r^{2}\left(r^{2} e^{v}\right)^{\prime} d r\right],(35)
$$

\bar{D} is a constant of integration.
Outside the body (ie. for $\rho=j=J_{y}=0$) the system of equations under consideration becomes completely definite. We find the asymptotic expansions of its solutions for $r \rightarrow \infty$ takings into account the condition for the metric to be Galilean at infinity and the correspondence with the Newtonian approximation. For the electric field we have as before the exact expression $\varphi^{\prime}=-\frac{\varepsilon}{r^{2}} e^{\frac{\nu+\lambda}{q}}$. For the scalar field represented as

$$
\begin{equation*}
V(r) \sim \frac{1}{r} e^{-\int W d r} \tag{36}
\end{equation*}
$$

from eq. (3.1) we get

$$
\begin{equation*}
-W^{\prime}+W^{2}-\frac{\nu^{\prime}-\lambda^{\prime}}{2}\left(W+\frac{1}{r}\right)=\mu^{2} e^{\lambda} \tag{3?}
\end{equation*}
$$

It is natural to look for the asymptotic of e^{ν} and $e^{-\lambda}$ in the form

$$
\begin{equation*}
1-\frac{2 x m}{r}+\frac{k \varepsilon^{2}}{r^{2}}+O\left(e^{-\mu r}\right) \tag{30}
\end{equation*}
$$

assuming that $e^{-\mu r} \ll 1$
Then from eq. (37) for the scalar field we obtain

$$
\begin{aligned}
& W=\mu+\frac{\mu x m}{r}+\frac{\alpha}{r^{2}}+\frac{\beta}{r^{3}}+\ldots \\
& 2 \alpha=\kappa m+3 x^{2} m^{2} \mu-x \varepsilon^{2} \mu \\
& 2 \beta \mu=x m+2 k^{2} m^{2} \mu+5 x^{3} m^{3} \mu^{2}-x \varepsilon^{2} \mu-3(x m) k \varepsilon^{2} \mu^{2}
\end{aligned}
$$

Substituting this expression into eq.(36) and choosing the integration constant from correspondance with the usual solution without gravitation wo get for the scalar ficld

$$
\begin{equation*}
V=\frac{G}{r} e^{-\mu r-k m \mu \ln \mu r-\frac{\alpha}{r}+\ldots}=\frac{G}{\Gamma(\mu r)^{k m \mu}} e^{-\mu r-\frac{\alpha}{r}+\ldots} \tag{39}
\end{equation*}
$$

Note the pecularitv of this expansion in comparison with the flat-space case (factor $(\mu r)^{-x m \mu}$) which vas indicated by Zastavenko. Now it is possible to find the first terms of the expansions with the exponents for $e^{-\lambda}$ and e^{ν}. They are

$$
\begin{align*}
& e^{-\lambda}=1-\frac{2 x m}{r}+\frac{k \varepsilon^{2}}{r^{2}}+k G^{2}\left(\frac{\mu}{r}+\frac{1-k m \mu}{r^{2}}+\ldots\right) e^{-2 \mu r-2 k \mu m \ln \mu r+\ldots}+\ldots, \\
& e^{\nu}=1-\frac{2 x m}{r}+\frac{k \varepsilon^{2}}{r^{2}}-\frac{k G^{2}}{2}\left(\frac{1}{r^{2}}+\ldots\right) e^{-2 \mu r-2 x m \mu \ln \mu r+\ldots}+\ldots \tag{41}
\end{align*}
$$

Where the last dots are followed by the terms vith the higher power exponents. The expansions (39) (41) are easily compared with the Stephenson $/ 10 /$ results, who has obtained the expansions of the same quantities in a power series in \mathcal{K}.

Using the asymptotics obtained we find the constant in the exact integral (35)

$$
\begin{equation*}
\bar{t}=x^{2} m^{2}-x \varepsilon^{2} \tag{42}
\end{equation*}
$$

It is now obvious that for $e^{-\lambda}$ not to be singular at the origin when the functions V and e^{V} are not singular there it is necessary to have

$$
\begin{equation*}
x^{2} m^{2}-x \varepsilon^{2}+2 x \mu^{2} \int_{0}^{\infty} V^{2} r^{2}\left(r^{2} e^{v}\right)^{\prime} d r=0 \tag{43}
\end{equation*}
$$

Then for $e^{-\lambda}$ we get

$$
\begin{equation*}
e^{-\lambda}=\left(1+\frac{r v^{\prime}}{q}\right)^{-2}-r^{-2}\left(1+\frac{r^{\prime}}{2}\right)^{-2} e^{-v} q x \mu^{q}\left(V_{0}^{r} r^{2}\left(r^{q} e^{v}\right)^{\prime} d r\right. \tag{44}
\end{equation*}
$$

Further in order to construct the model we use the asymptotics as an "external" solution. This means that the following restrictions $\frac{\gamma m}{R}, \frac{\mu \varepsilon^{q}}{R^{2}}, \frac{k G^{q}}{R^{2}}, e^{-\mu R} \ll 1$ are to be imposed on the body radius and, consequently, outsido the body the scalar field will give an exponentially small contribution. Assuming that inside the sphere the scalar field remains small we obtain a model which in its physical meaning is
very close to the Bonnor models imolving the gravitational and electrical fields only. This is also seen from res. (43) and (44) which give immediately relations clause to the mpapetrou and Bonrior formulas $k^{2} m^{2}-k \varepsilon^{2} \cong 0, e^{\lambda} \cong\left(1+\frac{r v^{\prime}}{2}\right)^{2}$.

We take again for the internal solution

$$
\nu(r)=A r+B, \quad A \text { and } B \text { are constants. }
$$

Imposing on V and V^{\prime} the boundary conditions, we obtain

$$
A R=\frac{2 x m}{R}+\frac{4 x^{2} m^{2}-2 x \varepsilon^{2}}{R^{2}}+\ldots, B=-\frac{4 x m}{R}+\frac{3 x \varepsilon^{2}-6 x^{2} m^{2}}{R^{2}}+\ldots
$$

Then we have to connect on the boundary the quantity ${ }^{(s c)}{ }_{1}^{1}=\frac{1}{8 \pi}\left[(V)^{2} e^{-\lambda}-\mu^{2} V^{2}\right]$. After letting V and V^{\prime} continuously so inside the sphere by a simple choice of $V=v_{1}+v_{2} r\left(v_{1}\right.$ and v_{2} are constants) we provide simultaneously the, continuity both of in function e^{λ} (according to eq. (14)) and the expression 'TC' ${ }_{i}$. This procedure leads to the expression V inside the body

$$
V=\frac{G}{R}(\mu R+\mu x m+q+\ldots) e^{-\mu R+\ldots}+\frac{G}{R}(-\mu R-\mu k m+1+\ldots) e^{-\mu R+\ldots} \frac{r}{R}
$$

Finally, the function φ^{\prime} thumb out to be connected automatically fun to eq. (3) . To simplify the analysis of the mass tensity. nelatiour we subtract eq. (3) from (31) and int

$$
\begin{equation*}
8 \pi x r e^{\lambda} \rho=\lambda^{\prime}+v^{\prime}-2 x r\left(v^{\prime}\right)^{2} . \tag{45}
\end{equation*}
$$

Using the values

$$
\nu^{\prime}=A \cong \frac{2 x m}{R^{2}}, \lambda^{\prime} \cong \frac{r \nu^{\prime \prime}+\nu^{\prime}}{1+\frac{r \nu^{\prime}}{2}} \cong \nu^{\prime}=A, V^{\prime} \cong-\frac{\mu G}{R} e^{-\mu R}
$$

we set for the risht-kut situ of (45) an approximate expression

$$
2 A-2 \frac{x G^{2}}{R^{2}} \mu^{2} r e^{-2 \mu R}>0
$$

i.e. ρ is surely position. For the electromagnetic field eq. (32) gives everywhere inside the splore t allee

$$
x\left(\varphi^{\prime}\right)^{2} \cong \frac{k \varepsilon^{2}}{R^{4}} \cong \frac{k^{2} m^{2}}{R^{4}}
$$

which is almost concert and rimose to that on the boundary.

Now it can be shown that the donsity of the electric charsio Jy tais tho same sign and the total charge and the total mass of the sustem are \mathcal{E} and m respectively.

Using the obtained expression for the scalar field we can intorpret the condition (43) approximately as follows

$$
x^{2} m^{2}-x \varepsilon^{2}+\frac{1}{15}\left(x G^{2}\right)\left(\mu R^{y}\right) e^{-2 \mu R+\ldots}=0 .
$$

This equation is really very close to the Papapetrou condition $x^{2} m^{2}-x \varepsilon^{2}=0$ since $e^{-\mu R} \ll 1$.

The problem of a possible role of the gravitation in the nature of elomontary particles was considered even by Einstein. Its various quantum and classic aspects are being discussed $/ 10 /$. Such models may be interesting as applied to elementary particle theory. We hope to come back to this problem later on.

I am grateful to Academiclan M.A.Markov for formulating the problem as well as for the persistent support and attention. I thank also L.G.Zastavenlco, V.I.Ogievetsky and I.V.Polubarinov for consultations.

References

1. A.Papapetrou. Proc.Roy.Irish.Acad., A.51, 191 (1947).
2. W.B.Bonnor.Zeits. fur Phys., 160, 59 (1960), H.J.Efinger. Acta Phys.Austriaca, 19, 264 (1965).
3. A.Einstein. Sitzungsber. preuss. Acad. Wiss ., B.I, 349 (1919).
A. Эинштей. Собрание научных тиудов, том 1, стр. 684 "Наука", Москва, I985.
4. И.3. Фишер. ЖЭТФ 18, 636 (1848).
5. L.Landau, E.Lifshitz. The Classical Theory of Fields, Addison-Wesley Press, Cambridge, 1951.
Л.Ландау, Е.Лифшид. Теория поля, 3 изд. ГИФМЛ, Москғя, 1880.
6. O.Bergmann, R.Leipnik. Phys.Rev., 107, 1157 (1957).
7. G.Nordströ.n. Verhandl. Kon.Ned.Akad.Wet., Afdel.Natuurk, Amsterdam, 26, 1201 (1918); H. Reissner. Ann.d.Physik, 50, 106 (191.6).
8. J.L.Synge. Relativity: The General Thoory, North-Holl. Publ.Comp.,Amsterdam, Дж. Сииг. Обиая теория относительности. ИИЛ, Москва, 1963.
9. G. Stephenson. Froc.Cambr.Philsoc., 58, 521 (1962).
10. M.A.Markov. Suppl.Progr. Theor.Phss. Extra. Nimber, 1965 , p. B5.
