








The static spherically symnmetric model of a body(sphere) of restricted dimen-
sions is considered in the presence of gravitational, electromagnetic an! scalar
fields. A similar problem was repeatedly solved in the presence of ornlv gravita-

/l/

tional and electromagnetic fields (see for example, papers by Papapetrou’
2
etc./ /\ It was shown that such static solutions are possible., Such mrriels were

Bonnor
subjected to a criticism even by Einstein/a/ because of some ambiguity which per-
mits to choose various distributions of the electric charge densitv.

An advanced investigation of the problem in the presence of only eraw’tatio—
nal arnd scalar fields with a point source was made by LFisher in 19 1(’/1‘f. Nt
however that this solution in itself has no physical meaning since it 1 5 ot -
tisfy the r irement for the metric to be Euclidean in the infinitoly emiall resion
near the origin/5/ (i.e. at this point the ratio of the length of an infinitelv small
circle to its diameter is not CJT, what follows from the equality CM‘;— O), Moreover,
in ref, 4 the error in the calculations has led to a wrong conclusion about the

ev(r)

non-Schwarzschild behaviour of the function at M= 00, The total enecrgy was
also found to be wrong (the infinity) due to a strongly sincular transformation of
the coordinates. Thus, in reality, the described system can not be realized, Morco-
ver, as it will be shown below, the static model of a particle (body) consistins of
a “"dust-like" matter can not also be realized in the pres: wce of onlv aravitational
and scalar fields. (It is impossible to fulfil the cordition like (15) )(Zh’\i-f—)( G-2'= O’
here G’ is the scalar constant, X_. is the gravitational ¢~nstant. Tlis conclusion
can be urderstood from the physical point of view since both gravitational ard
scalar forces are attractive ard, consequently, can not be a basis for the const-

ruction of a steady system,

Thi2 problem of a point source for gravitational and scalar nmassless fields
was also considered byv O,Bergmann and RLeipnik/6/ in 1957, Thew sy in ad-
dition to the Fisher’s solution, some other ones. However, a fraction of thoem ,as the
authors point out, does not obey the condition for the metric to be Galilean at in-
finity, The remaining one does not satisfy the natural conditions of positiveness

Z 2
( > O) of the quantitics Kimi‘ and X G (or the sum )(/Lmil-l')(G).In particular,



the soluhon for which m = O, G k O.does not satisty the Bianchi identity
‘L-P +J— V 0 (comp. below eq. (6)) at the point "= () since at this point we
would have Q= O but J,V;é()

It is clear from the physical point of view that if, in addltion to the gravita-
tional and scalar fields, we introduce the electrostatic one then we may hope to
construct 1+ steady model since the electrostatic forces are repulsive, We first
consider the case of a massless scalar field, We do not introduce phenomenolo-
pical external forces Inside thc body, This picture corresponds to a "dust-like"
body structure,

v v
For the Einstein equations G'r = 8.‘J—\KTr the material tensor consists In

the mentioned case of three parts, The tensor of the matfter is

v e &
T PO g5 ds

here P is the invariant mass density. The eclectromagnetic field tensor {in Gaus-
sian units) is
(elm)
T) =L (R F-L8EF)
B g 4 X ’

here F 3/(AV~DV;4,¢

Py =
The tensor of the scalar massless field is
(sc)
v \%
T.) = & (9 VvV+ 8 vvy)
KT 4

The equations for electromagnetic and scalar fields are

yH Y} s .
Fle=bml® vV =-4bmj,
here J, is the invariant ‘lensitv for the scalar field source., In the considered

(ds)*= g,,d3"ds "= - ey rele)srsmoly)® + EEt),
A=AE), v=v(), det g, = g=- e oo,
(VEEY = 0ve).

The Einstein equations hecome
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here \P the scalar potential of the electromagnetic field and the prime means
the derivative d/dr,

The equation for the electromagnetic field takes on te form

(X - W'\)‘F =—45d, e (1)

)

here jl-[

is the electric charge density, and the equation for the scalar field is

V”+(?. ")")V’———l/ﬁ(//eA , (5)

The contracted Blanchi identity (VG Tf-: O) gives
1 e
> PV 9 I, =0 ©

It retains in the set of equations (1)—(5) only four independent. Note that the sum
of the equations (2] and (3) leads to

b
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which on integration gives
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is a constant of integration.

(0

We first find the asymptotics of the solutions for [0 then we use it as

an "external" solution, In order to construct the solution insidec the body we use

well-known receipts of connecting the internal and external solutions at the boun-
dary.

Outside the body (i.e. for f J 77_0) eqgs. (4) and (8) have the fol-
lowing solutions vanishing at infinity
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A+V
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z G

V =-2 e (9)
here E, is the electric charge.

In this case the problem reduces to a completely definite system of equa-

tions

s -+ ~Z BT e - = € 5 (10)
v 1-¢ w G AV g% A
=t - € —=5€ . (11
I r% rY r )

To find the solution tor this system at [“=00 we use the requirement for the met-
by
ric to be Galilean at infinity (ev—"'i) e —4-1) ard the cordition of correspondance
with the Newtonian approximation (for this the integration constant is chosen so
th v 2xm i
at @ —— i—- = 1. As a result we get the expansions
2 c?
e\’__ 1 2xm 4 RE 4 bem)x

_.{_V_~ ?{ + 3 3 +to (12)

e)«__ 1 2xm KGY'+K£Z+(xm))< Gz+n
- r re r (13)

These expansions if S:O naturally give the asymptotics for the Fisher's solu-
tions, if G =0 transform to the solution for the electrostatic probtem (Nordstrém-
v - 2 Loos .
Reissner/ /, Gv:{ X: 1_2% +)é1§ } and if €=6G=0 ‘ransiorm to the Schwarz-
‘ -
sonild e olation
Usine the asymptotics fournd it is easy to determine the constant i) in lhe

integral (8) of the initial system of equations
< Z
D= wEmF G —rE” (14)

To fuifil the requircement for the netric to be Euclidean if  [“= O it is necessary
A(©) vy o
to have € ( =4 . If the function € is nol too  singuwar in the orisin then

from (8) it follows that the solution of intercst can be derived only if



D= )Lima’-o-KG-Z—KEi:O ) (15)

2, % L
Note that f G =0 this gives the condition X M — K E =0 o etlectrosta-
tic problems obtained in the Papapetrou and Bonnor's models. Thus, we have the
solution for the problem outside the body in the form (12), (13) which is used as

an "external" in constructing the model of the sphere of large radius

2
R>>- xm,xsz KG—. (16)

>

We have also the exact relation which is valid both outside and inside the sphere

_ ry'|2 (1)
<= +)” |

Now we look for the internal solution for V(l") in the form
V(I"): Ar+h5 , A ard B are constants.  (18)

The bourdary conditions on YV ard \)l (see Synge‘la/) require the continuity
of them at f’:R and give:
A= Lxm IrEm*— L we®
- Ri R?’
Axm 4 —4K2m9~+k£ﬁ'+2x(}q°+
R R* " (20

A :
The quantity € is connected automatically owing to (17)., The derivative A has

+ ) (19

B=-

a discontinuity at =R (simultaneously with v ard P ). Then we have to

connect the derivatives of the fields ( V' and ‘F' ). Due to some ambiguity we
choose for QP'(V} elsewhere inside the sphere the value which it takes on at the
boundars :

AR+ V(K]

t & z [
‘F‘—'-Eze -5

7 . (2D

IR
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Then the scalar field is connected automatically due to (2), which gives inside the

sphere




{
Thus, the natural requirement for the quantity (V}Q’ to be positive is satisfied
owing to the cordition (15). Using (17), (18) and (21) from the

stein equation(1)
ve obtain for the mass density
e 2 2N Al 3 A=V 112
8o re™p = Ar(L+ AL) +Ar(1+ A0) 20 r 2 ) P (23)
=~ bmr _ 23 r¥c?
R% R

To provide for the quantity P(f’) to be positive the following restriction

Lxm  we we® (29)

ek

yom

should be fulfilled elsewhere inside the sphere which does not contradict the con-

N Vool
ditions (15) and (16), The behaviour of the functions € € V and ¥  is given
by the graphs of Fig. 1.
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Let us consider the behaviour of the covariant densities of the electric and
{ t 2
scalar charges in this model. Taking \f= COnS‘t)V '—‘A) ex-_—(j+52A) from (4) for the

firat once we have

8T, = (1+4° e“}v hy'<o,

(25)
sincoe Arizxm (" <<i arnd W:COMS‘“L<O,
R (8
Consequently, D‘{((V) has elsewhere the same n (and is positive), For the den
sity of the scalar field source we have from egs. (5) ard (2) '
v, Ll LN 1 1[‘ he A% v .
8mere  Vyi=—wrvle)li+rv-cN)pe) e’ [= o

~ xer W Em¥
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The last equality follows from eq, (15). Consequently, (} has elsewhere the same
sign (and JL(O since V'<O ). Note that from these formulas it follows that the den-
sities Ji and :j‘/ have (integrable) singularities at the origin ( ~ 1/[" )., It is
known that this singularity is specific ard due to our simplest choice Y = const,
If we assume that at least \)'~{" at the origin and the quntities l}” ard V/
vanish at (= () the singularity disappears. The same is valid for f'(r) (From
eq. (29) it follows that at =0, gﬂKPN _Zrﬁ_ ).

The expression for the total electric charge of the system in our metrics
T 2 2 Iy g YRR
2
I'—":IJTfVJ/J’“F e o(r‘z—f(vr e ¥ )dr=
0
e 2tV 00 0
= [virte = ]
0
for the solution obtained gives

I=[-¢"r% %}]/Oi ,% e

= &.

(27)

AR)EVRY , — MR)+V(R) _Y+A
z (re"e T _tmre* /(-;8)
—0

This is in agreement with the electric charge conservation law.

/5]

The total mass of the system according to the Lardau formula
oo
1 A 29
M =2 [r(e*1)]] (29
2 0

is in this case

- [r(z—"r-’ﬂ +,,.)]f 3%1" [F(1+... —1)] =m. (30
2()«;\»“) (r—0)

Thus the construction of the model is completed,

We consider now a possible construction of an analogous model of the
sphere in the presence of scalar field of mass r-b The Einstein equations

and those of the scalar field are

: A 2 -V 12
S )iV H ) 8pet, oy

r (s
V' et LA AYe T (L b 2
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[
'\;,_* v2r>\ +V(vq )~) x(V) Kf‘ +K€(‘f’) .
v/ vEN 2 -
V+(r“+—__z )V—/« Ve ""ZIJIJ_Q (2a)

The electrostatic field equation (4) and the Bianchi identity (6) conservr *he pre-

vious form. The sum of egs. (32) and (33) leads to the equation for € , which

-X: ({_’_%’)__ﬁ r‘?'e_z+%v)—75+2)(/‘(iﬂ/f:%ge\%fi(35)

integrates into

Z) is a constant of integration,
Outside the body (i.e. for P:J: j‘/: O) the system of equations under con-
si‘leration becomes completely definite, We find thce asymptotic expansions of its
solutions for »co taking into account the cordition for the metric to be Galilean

at infinity and the correspondance with the Newtonian approx1mat10n Eor the
Y

clectric field we have as before the exact expression (f...————— e , For the
scalar field represented as
~fwdr
A
V)~ =€ (36)
r )

from eq. (31 we get
{ 2 '__Al 1 2 A
—W+W*%%WW+WC- 67

V] ..
It is natural to look for !he asymptotics of € amd € in the form

me xe® -1 .
1- 575+ 0(e") &0

assuming  that e_ << j_

Then from eq, (37) for the scalar field we obtain
W= ,L«+/f‘—’+—'+ff +
2= Kkm + 31mu — we¥pc X
Br= xm + LK n B E € =3 &

10



Substituting this expression into eq.(36) ard choosing the integration cons-
tant from correspondance with the usual solution without gravitation we get for the

scalar ficld

~pE-xmp -t G —pr-E
V:—CZC# flnpr-E o o T (s
r /"(/ur) I
Note tho pecularitv of this expansion in comparison with the flat-space case (fac—

tor (IL(F) f()\\‘hlch was indicated by Zastavenlko, Now it is possxl)le to find the

first terms of the expansions with the oxponents for € ° and e . They are

2xm K t_,_ﬁﬁ ‘2/“’“""/“"'&«/%4...
1""*?'2' X C [ e

-4 ,‘me (rSL ) _Zﬂr—,?x'nﬂen/mf...

+5F (a1)
where the last dots are followed by the terms with the higher power exponents,
0
The expansions (39)<41) are easily compared with the Stephenson/l / results, who

has obtained the expansions of the same quantities in a power series in M .

Using the asymptotics obtained we find the constant in the exact integral (35)
- 2 2 L2

D= x‘m " —we”. (a2)

It is now obvious that for € not to be singular at the origin when the functions

V ard e\) are not singular there it is necessary to have

WEmE - e +Zk,f<ier9*6“ e;)f’(’“— (43)

Then for € e get

: r
= 1+ %/)ﬁi r'i(1+%yy _%—vzxﬂ?V?z(r%v L

Further in order to construct the model we use the asymptotics as an "external”

solution, This means that the following restrictions 4)(—'3 ng KGZ e_re<<i are to
. g R '"R¥» T

be imposed on the body radius ard, consequently, outside the body the scalar

field will give an exponentially small contribution, Assuming that inside tho spherce

the scalar field remains small we obtain a model which in its physical meaning is

11



vory close to the Bonnor mod~ls involving the gravitational and electrical fields
onlv. This is also seen from egs. (13 and (44) which give immediately relations

~ ~ ne
cl e to the Mapapetrou and Bonrnor formulas Kimz"Ksi': O) ex—‘-‘(j"’%) .

"We take asain for the internal solution
V(F) = Ar+ 6 ) A and 6 are constants,

1
Imposling on \) and \) the boundary conditions, 've obtain

2 2 b
?vm hulm=gns* g _dxm 3= Cx'm?
AR = g =ARE T, RIS 2T TN,
Ri_ ) R RZ ™
. 1 ng ) ZV
Then we have to connect on the houndary the quantity T '—8 V/
A

After letting V arnd V continuously <o insidle the apl)pre by a simple chmce
of V: UL +vi{~ ( L’:t and ULL are constants) we provide simultaneously

/\
t};_o’ continuity botii o: o1+ function (accordin: to eq. (244)) and the expression

le‘ This procedure leads ta the expression V inside the body
—~HR+,,.
V=& ARt G R FE
= R‘- ﬁR"‘/“KM‘Ff'ﬁ‘)e +E(-FR [‘Wm+1+...)€ —’z- .

1
Finally, the function kf trns out to be connected automatically due to oq. (2.
T simplify the analvsis of e mass Aensit Lehaviour -ve =subtract eq. (3[!) from

(31) and it

8 rnu“exf = Nav'- 2oV (15)

Using the values

oy < ", nG KR
Jousl N2 2 e Ve

we ret for the ridht-hand side of (15) an approximate expression

2 _2uR
3 H
9 A—g K& pire >0

2 >

R

i.e. is surely positie, For the electromagnetic field eq. (32) aives everywhere
inside the spliore t - -~«alue

S 2.7

2. wed L m

()= = R

which is alnoat consatnt and clase to that o the bounrtary.



Now it can be shown that the wasity of the electric charge jy heis  the
same sign and the total charge and the total mass of the svstem are E ardm

respectively.

Using the obtained expression for the scalar field we can interpret the con-

dition (43) approximately as follows

~ MR +..
ximz—)(£9”+%—(xcz)q‘( RYe " =0.

This equation is really very close to the Papapetrou cordition )(Zm 2"‘}(2—2:0
since. e TR << 1.

The problem of a possible role of the gravitation in the nature of elementary
particles was considered even by Einstein., Its various quantum ard classic as-
pects are being discussedllo/. Such models may be interesting as applied to cle-
mentary particle theory. We hope to come back to this problem later on,

I am grateful to Acadeniclan M,A,Markov for formulating the problem as well
as for the persistent support and attention. I thank also L.G.Zastavenikto, V.I.Ogie-
vetsky arxd LV.Polubarinov for consultations.
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