C 323.4 R-66 ОБЪЕДИНЕННЫЙ ИНСТИТУТ ЯДЕРНЫХ ИССЛЕДОВАНИЙ

Million and

......

SHITTER ST

1966

Дубна

E2 - 3102

2/1.19671

D. Robaschik, A. Uhlmann

1011111111

# 189w and Meson Decays

E2 - 3102

D. Robaschik, A. Uhlmann

è2

4 752/2 pr.

# 189<sub>w</sub> and Meson Decays



The relativistic generalization of SU(6) for collinear processes leads to the  $SU(6)_w$  group (Lipkin and Meshkow<sup>/1/</sup>, see also<sup>/2/</sup>). One definition of the W-spin group is based on the quarks:

Ŧ

| M= ]= ]+ d | $\forall \pm \bar{q} = -\bar{J} \pm \bar{q}$ |
|------------|----------------------------------------------|
| Ws q = 334 | $W_3 \bar{q} = \bar{d}_3 \bar{q}$            |

 $W_{\pm}$ ,  $W_{3}$ , are V -spin operators and  $J_{\pm}$ ,  $J_{3}$  are J -spin operators. The calculation of the V -spin multiplets for the 35-and 56-plets of

SU(6) is very easy and well-known. To obtain the SU(6)<sub>w</sub>-plet as a function of the SU(6)<sub>3</sub> states for a complicated representation, we define the representation in question in an abstract way. Taking the vector with the hingest weight, we can generate the full representation if the SU(6) generators act on this state in all possible ways. In our case we need only the operators  $N_{\pm}$ ,  $S_{\pm}$ ,  $J_{\pm}$  the SU(3) generators  $I_{\pm}$ ,  $K_{\pm}$  and the Casimir operators  $J^2$ ,  $N^2$ ,  $S^2$ ,  $C_2^{(*)}$ ,  $C_2^{(*)}$  to select the states. Then we can express the SU(6)<sub>w</sub> opreators in terms of U(6) operators and let they act on the state with the highest weight. As result we get the SU(6)<sub>w</sub> states as functions of SU(6)<sub>3</sub> states. It is well-known that the  $189_{w}$ -plet mixes<sup>1/1</sup> the  $1_3$ -,  $35_3$  -and  $189_3$ -plets. To obtain the remaining  $35_w$  and  $1_w$  as functions of SU(6)<sub>3</sub> states, we have to consider in the same way U(6)<sub>w</sub> operators. The results are listed in Table I and II. Another method for calculating the W -spin multiplets is given by<sup>3/3</sup>.

Π

If we consider the decays of the 189-plet mesons into two negative parity mesons, then we have to take into account

$$g_1 489^+ \times (35^- \times 35^-)_{183}$$
  
 $g_2 35^+ \times (35^- \times 35^-)_{35}$   
 $g_3 5^+ \times (35^- \times 35^-)_{35}$   
 $g_5 35^+ \times (35^- \times 35^-)_{35}$ 

as possible couplings invariant by SU(4) and charge conjugation. From these cuoplings, written down for the W-spin multiplets we calculate the coupling constants for the SU(3) couplings for each helicity state separately. We have used the Clebsch Gordan Coefficient table of C.L.Cook and G.Murtaza<sup>/4/</sup> and the relation

$$(185 \times 485)_{4} = \frac{4}{1185} \left[ 15^{4} (4.5)(4.5) - \overline{145} (8.5)(8.5) + \overline{124} ((8.3)_{2}(8.3)_{2} - (8.3)_{1}(8.3)_{1}) + \overline{135} ((10.3)(10^{4}.3) - (10^{8}.3)(10.3)) + (4.1)(4.1) - \overline{18} (8.1)(8.1) + \overline{127} (27.4)(27.4) \right]$$

whereby the usual sign convention is also fullfilled. The results are collected in Table III, IV and V. Their mean feature  $\operatorname{are}^{6/2}$ :

#### 2<sup>+</sup> -Mesons

VV, PV and PP decays are possible, but the VY decay is mass forbidden for the existing  $2^+$  -mesons. The remaining couplings are

$$\begin{pmatrix} -\frac{3}{2} \sqrt{\frac{1}{2}} g_1 + \frac{3}{4} \sqrt{\frac{1}{135}} g_2 \end{pmatrix} \sqrt{12} g^{2^+} (g^{-} g^{-})_{g_1} \qquad \text{for } h = \pm 1$$

$$\begin{pmatrix} \frac{4}{3} \sqrt{\frac{5}{2}} g_1 - \frac{4}{2} \frac{4}{121} g_2 \end{pmatrix} g^{2^+} (g^{-} g^{-})_{g_2} \qquad \text{for } h = 0$$

$$\begin{pmatrix} -\frac{4}{15} g_1 + \frac{9}{5} \sqrt{\frac{1}{21}} g_3 \end{pmatrix} 1^{2^+} (g^{-} g^{-})_1 \qquad \text{for } h = 0$$

We see  $\frac{9_{1^{i+1}} + 1^{i-1}}{9_{1^{i+1}} + 1^{i-1}} = -\frac{3}{2} \left[ \frac{3}{5} \right]$  which is in agreement with  $\frac{1}{5}$ .

### 1<sup>+</sup> - Mesons

Here only the PV and VV decays are possible. For the PV decay we have

| A=0                | R=±1                     |                                                                                      |
|--------------------|--------------------------|--------------------------------------------------------------------------------------|
| (- 1 3, + 4 1 9)12 | 15'8,                    | 8 <sup>1</sup> <sup>4</sup> (3 <sup>1</sup> <sup>2</sup> <sup>6</sup> ) <sup>2</sup> |
| 29,                | (1 12 9, + 3, 13, 32) 12 | \$ <sup>4+</sup> (8 <sup>1-</sup> 8 <sup>4-</sup> ),                                 |
| - T5' 9,           | 15 3,                    | 10 (81-80-)                                                                          |
| - 15 9,            | 15'2,                    | 10* (8" 80")                                                                         |
| -2 35 95           |                          | 82 (80-11)                                                                           |

In agreement with the invariance by charge conjugation the first octet has only the decay  $in(8^{12})_{i}$  the second  $in(8^{12})_{i}$ . We do not list the VV decay here, because they are mass forbidden for the known  $1^{+}$  mesons.

## 0<sup>+</sup> - Mesons

Beside the VV decay we have only the PP decay with the couplings

 $\frac{3}{2} \overline{13}^{2} g_{1} 27^{0+} (8^{\circ} 8^{\circ})_{27}$   $\left(-\frac{13}{12} \overline{12} g_{1} - \frac{4}{4} \left[\overline{\frac{1}{21}} g_{2}\right] 3^{0+} (8^{\circ} 8^{\circ})_{87}\right]_{87}$   $\left(\frac{23}{30} \left[\overline{\frac{1}{5}} g_{1} + \frac{4}{5} \frac{1}{105} g_{3}\right] 1^{0+} (8^{\circ} 8^{\circ})_{1}$ 

IП

The decay probability is related to the invariant  $\tilde{S}$  -matrix element by

 $\frac{1}{L} = \frac{2k}{h^2} \frac{1}{(2j+1)} \sum_{\text{Spin states}} |\langle p| k_1 | k_2 \rangle|^2$ 

$$\tilde{k} = \frac{M}{2} \left[ \frac{1 - 2 \frac{m_i^2 + m_i^2}{H^2} + (\frac{m_i^2 - m_i^2}{H^2})^2}{H^2} \right]$$

M prostive parity meson, m, 5 or 1 meson

whereby  $p \parallel k_1 \parallel k_2$ . So it seems to be that the decay is a collinear process and it is possible to apply the  $SU(h)_{W}$  group. For this reason we develop the lorentz invariant matrix element in helicity state amplitudes of Jacob and Wick  $^{20}$ 

$$Cpik_{1}k_{2} = \sum_{h} h^{k}(H, m_{1}, m_{2}) (albc)_{3}^{h}$$

This expression is invariant under rotations  $SU(n)_1$  and lorentz transformations in  $\gamma$  -direction. On the other hand our  $SU(0)_W$  model gives us relations between different helicity state amplitudes (reduced matrix elements)  $(abc)^n_W$  invariant under the rotation  $SU(v)_W$  and the same special lorentz transformation. If we restrict our space transformations to rotations in the  $X\gamma$  -plane, both expressions would have the same transformation properties and we may connect

so that different matrix elements are connected with the help of their helicity state amplitudes

Unfortunately, two further assumptions are necessary: a) The considerations of couplings with a different number of derivatives leads to different dimensions of the matrix elements  $\langle p \mid h, h_{2} \rangle$ . From the assumption, that the helicity state amplitudes have always the same dimensions follows that the factor  $h_{(n,m_{1},m_{2})}$  has a mass dimension. We get reasonable results, if we assume that all masses are measured in units of the mass of the decaying particle or in units of the average mass of the corresponding Su(3) or Su(6) plets. Another possibility is to choose the mass unit as a free parameter. b) To (ulbc) there correspond many matrix-elements which differs from the simplest one by 2n derivatives (n = 1, 2, ...) in the coupling.

For simplicity we take only the simplest possible matrix element into account. Practically this means: For suitably chosen couplings (with the right helicity behaviour) we can use for G our  $SU(G_w$  coupling constants.

2+->1-0-

$$\begin{aligned}  &= G \ \epsilon_{4\mu\nu\nu\sigma} \ P^{\mu}(k_{1}k_{2})_{5}(k_{1}-k_{2})^{\nu}\left(T^{\mu}_{5}(p) \mid V^{\tau}_{(k_{1})} \ F(k_{2})\right) \\ &= \frac{4i}{12} \ G \ \bar{k}^{2} \ M\left[(2^{+}_{4}\mid 1^{-}_{1}\vec{0}) - (2^{+}_{4}\mid 1^{-}_{1}\vec{0})\right] \\ Phen space \sim G^{2}\frac{2}{5\pi} \ \bar{k}^{5} \\ \frac{2^{+}\rightarrow 0^{-}0^{-}}{4} \end{aligned}$$

$$= 4 \sqrt{\frac{2}{5}} G R^{2} (2^{+}, 10^{-}0^{-})$$
Phase space ~  $G^{2} \frac{4}{15\pi} \frac{\overline{k}^{5}}{H^{2}}$ 

17-71-0

$$\langle p | k_1 k_2 \rangle = G (k_1 - k_2) \mu (A^{(1)}_{(p)} | V'(k_1) P(k_2)) (k_1 - k_2) \nu$$
  
=  $2 \bar{k}^2 \frac{\Pi}{m_1} G (1^+_0 | 1^-_0 0^-)$   
Phose space ~  $G^2 \frac{\Lambda}{6 \pi m_1} \bar{k}^2$ 

$$\frac{1}{2 + 1} \frac{1}{2} \frac{1}{2}$$

$$k_1 k_2 = G(0+10^{-}0^{-})$$
 Phase space  $\sim G\frac{1}{8\pi}K$ 

In the case  $1^+$  we have chosen such complicated couplings because they are easely related to the helicity states. In spite of the difficulties under **a** and **b** we think that this is a natural method to handle

 $SU(6)_w$  calculations. Difficulties as anounced by  $Bokow^{/7/}$  do not ocur here in agreement with Ruegg<sup>/8/</sup>.

We have tried to compare the results with the paper of Kao Ti et al.<sup>6</sup> which calculated the same decay probabilities with  $\mathfrak{U}(\mathfrak{b}_{\mathfrak{f}}\mathfrak{b})$  techniques. In general the results differ by some numerical factors (of order one), esspecially the relation between coupling constants of different dimensions (for example  $\frac{91_{10}}{91_{10}} = \frac{11 + m_1 + m_2}{1 + 2m_1} \frac{m_2}{1 + m_1}$ ) are others. Also we have 5 parameters and they only 3.

īV

The 189-plet or the corresponding plets of W(t,t) and SL(t) are discussed by several authors  $^{6,9,11,12/}$ . At present it is not clear if the 189-plet, the 405-plet or the kinetic supermultiplets  $^{10/}$  are the right description of the positive parity mesons. Some authors believe in the 405-plet  $^{5,21/}$  while other have given arguments in favour of the 189-plet  $^{13/}$ . Now the question arises: what are the particle states? Knowing that this is an approximation, we assume that the particles belong to the states of the unphysical chain, the mixing relations  $^{14,11/}$ . (Table VI, the signs are choosen in agreement with the conventions of 4 and 15) and the SU(3) Clebsch Gordan Coefficients (P.Mc.Namee, Frank Chilton  $^{15/}$ ) allows us to obtain the coupling constants for each decaying particle  $^{12/}$  separately.

2<sup>+</sup> - Mesons

As well-known the  $2^+$  nonet may be fitted into the 189 plet. Pure SU(3) considerations similar to Glashow and Socolow<sup>/16/</sup> Tichonin and Nguen Van Hieu<sup>/17/</sup> (see also **G**. Goldhaber<sup>/18/</sup>) give

| ·<br>                  |                             | ≪<br>({=212°F)     | β<br><u> <u> </u> </u> | B<br>Observed<br>rate [Yi] | r(nev)         | ET        |
|------------------------|-----------------------------|--------------------|------------------------------------------------------------------------------------------------|----------------------------|----------------|-----------|
| f> tt                  | (2F+12G)2                   | 36F2               | 54,7                                                                                           | ~ 100                      |                | 5,8.10-1  |
| -> KK                  | ₹(F-T=G)r                   | 12 F2              | 5,4                                                                                            | 44                         | 112 + 8        | 6.5       |
| 711                    | $\frac{1}{2}(SE - 12E)_{5}$ | 3 52               | 1.6                                                                                            |                            |                | -         |
| اγπ ≪_د                | 8F <sup>1</sup>             | 8 F2               | 23,0                                                                                           | 414                        |                | 1,8       |
| → KŘ                   | 12 F <sup>1</sup>           | 12 Fl              | 7,5                                                                                            | 4,6 ± 1,5                  | 84 + 7         | 4.1       |
| Kers Ka                | 11 F2                       | 48 FL              | 43,0                                                                                           | 50 ±10                     |                | 6.2       |
| → Ky                   | ZFL                         | 2 F2               | 13,2                                                                                           | 2+1                        | 9627           | 7,0       |
| t' → π1                | (2T2F-6)2                   | 0                  | 57,0                                                                                           | Small                      |                |           |
| > KŘ                   | う(TEF+G)                    | 2452               | 25,1                                                                                           | ~~ ~ 60                    | 80             | 8.0       |
| ÷ 11                   | f (215 F+6)2                | ₿ <sub>3</sub> F1  | 15,5                                                                                           |                            |                |           |
| 4, → 5×                | 4 42                        | 442                | 12.3                                                                                           | ~j:                        | 84±7           | 1,5 10-12 |
| <** → K <sup>*</sup> * | 1,5 42                      | 1,5H2              | 11,3                                                                                           | 50±10                      | <sup>-</sup> - | 2.7       |
| ⇒sĸ                    | 1,5HL                       | 1,542              | 3,5                                                                                            | 210                        | SI th          | 41.8      |
| -> w K                 | 0'2 Hr                      | 0,5 H <sup>2</sup> | 2.3                                                                                            | 111                        | · · ·          | 0.8       |
| }' → K*Ř<br>+Ř'K       | <b>૫</b> મુર્ચ              | 4#2                | 1.6                                                                                            | ~40                        | 50             | 5         |
|                        |                             |                    | E [1012 (Mev)5]                                                                                |                            |                |           |

This is essentially the table of Glashow and Socolow, we have chosen  $G=2\Pi F$  (Goldberg  $G=(3,3\pm1)F$ ) some mass values and the mixing angles are changed (unphysical chain). The experimental data are taken from A.H.Rosenfeld<sup>/19/</sup>. Possible average values are

 $\begin{pmatrix} \frac{\varepsilon}{\alpha} \frac{\Gamma}{\beta} \end{pmatrix}_{2^{+} \rightarrow 0^{-} \varepsilon^{-}} = 6.0 \cdot 10^{-8} = \frac{4}{15\pi} F^{2} \qquad F_{2^{+} \rightarrow 0^{-} 0^{-}}^{2} = 7.4 \cdot 10^{-4} (hev)^{-2}$   $\begin{pmatrix} \frac{\varepsilon}{\alpha} \frac{\Gamma}{\beta} \end{pmatrix}_{2^{+} \rightarrow 1^{-} 0^{-}} = 2.3 \cdot 10^{-12} = \frac{2}{5\pi} H^{2} \qquad F_{2^{+} \rightarrow 1^{-} 0^{-}}^{2} = \frac{4}{9} H^{4} = 2.0 \cdot 10^{-12} (hev)^{-4}$ SU(10) gives us

 $F = \frac{1}{1111} \left( \frac{1}{3} \sqrt{\frac{1}{5}} 9_1 - \frac{1}{2} \frac{1}{121} 9_2 \right), \quad G = \frac{1}{212} \left( -\frac{1}{15} 9_1 + \frac{8}{5} \sqrt{\frac{1}{21}} 9_2 \right), \quad H = -3F$ 

The ratio of  $F_{2^* \rightarrow 0^* 0^*}$  to  $F_{2^* \rightarrow 1^* 0^*}$  has the dimension of a mass

$$m_{0}^{2} = \frac{F_{e^{+} \rightarrow 0^{-}}^{2}}{F_{2e^{+} \rightarrow 0^{-}}^{2}} = 3_{1}5 \cdot 10^{5} (HeV)^{2}$$

We use  $\tilde{m}$ , to compare couplings of different dimensions. With F and G = 217 F we obtain

=1

$$g_{2} = -8 \overline{1210}^{1} (EF - \frac{4}{24} g_{1}) E =$$
  
 $g_{3} = -5 \overline{121} (F + \frac{4}{30} g_{1})$ 

Free parameters are now 9, 94, 95.

1<sup>+</sup> - Mesons

Possible particles are  $A_1$ , B, D, E, C, H,  $K_{\tau\tau}$  (133\*) and  $K_{\tau\tau}$  (127\*). If we choose the D-meson as a member of the 189-plet, then the E-meson must be excluded. For all states we calculate the individual coupling constants (Table A). The mixing of the  $\S_2^{t*}(\$^*\$^*)_s$  and  $\$_i^{4*}(\$^*\$^*)_s$  couplings destroys usually fulfilled equalities between coupling constants, for example  $|\P_{K \to K^*\pi}| = |\P_{K \to 3K}|$  We use the decay rates to calculate the remaining parameters. If we look at the table, we see that the  $\P_1$  values show important differences. But taking into account that the  $\P_1$  values are strongly dependent on the mass unit  $\tau_{M}$ . In a complicated way (especially for the 1<sup>+</sup>-mesons), we conclude that the particles do not contradict this plet. (Remark that in 11 the  $\P$ -parity for the I=1 states  $(1,0)^{16}$ ,  $(1,0)^{26}$  is opposite to the values given there).

| и<br>(1.1)+{т                            | ₹8, + \$ [ <u>5</u> , 92                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 0                                                                       | A,-> \$7                               | 3,= ±2,6·10 <sup>-3</sup>                 |
|------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------|----------------------------------------|-------------------------------------------|
| (+1) ~3X                                 | GT281+ 113; 81                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 1.91                                                                    | 1 1 1 1 2                              | 4,2 ±1,4.10"                              |
| (1,9→68<br>¶ →68                         | 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | [-任](代月2+4年24 7) 1235                                                   | Β→ωτ                                   | 9, = = 3, 6 · 10-3                        |
| (6.1) <sup>5</sup><br>(6.1) <sup>5</sup> | TF1/34 a)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | -[]                                                                     | T=123                                  | 1 0 +> 4≖                                 |
| * ¢ e                                    | 13                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 日 (- (たの、+う けたの、)- 、 11もの                                               |                                        | $b_1 = 1.5 \cdot 10^{-3}$<br>B = dx (11m) |
| (1,1)→k <sup>*</sup> k                   | -4 (1 9,+ 2) 3, 82                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | - 1. 9,                                                                 | D                                      | letri tusheld                             |
| (≱-()→K <sup>‡</sup>                     | -1 ] FA                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | -1                                                                      | لا مرد با                              |                                           |
| ויער ה<br>יוצר ה                         | -4)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | -1 +7E 2-                                                               | П = 120                                | 19,15 1,2.10"                             |
| C→Ki                                     | 3 91                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | -1231                                                                   | C-> K"1-15% 3                          | 9, = 10,9.10.3                            |
| # >9K                                    | ÷91                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | - + 9,                                                                  | 58 457.<br>P=60                        | edwither                                  |
| (1,3)+6K<br>+Kŋ                          | · 15 ) (1115 (419)3, + 1 1 2 2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | -13) (1211-91)+ 11 ] - 91 - 1<br>+ 5 [ ] 12                             |                                        |                                           |
|                                          | 1<br>2412 (1277) 9, ± 4 15<br>16 35 32                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 312(-1+2)),-115,92                                                      |                                        |                                           |
| ( <u>4,1</u> )→wu<br>∽k'n                | -序】<br>1 】 [註 [ (273)3, 平分系3]                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | - FF ) (FF (1 7 2) & + 2 (FF 2) * )<br>1 ) (FF (1 7 2) & + 2 (FF 2) * ) |                                        |                                           |
|                                          | 1<br>1217 (611) 9,7 1 1 15 22                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | + 1 12 (-172) 9, - 1 1 135 82                                           | (12 [1] W.W. (13 20) M.W. (14 20) M.W. |                                           |
| (۲,۶) <sup>۲</sup> ۵۵×<br>۲۰۰۰           | $ \begin{pmatrix} -\begin{bmatrix} 1 \\ 1 \\ 1 \\ 1 \end{pmatrix} \begin{pmatrix} \frac{1}{2} \\ $ | -F3)(#1(1±11)),+1,135,02 +7<br>1)+1,155,02                              | X X                                    |                                           |
| → jK<br>→ K*x                            | 1/12 (-1±5) 3,±1 ) 1 35 32                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | - 1, 15, 9,                                                             |                                        |                                           |
|                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                         |                                        | ٤. [ <u>اش</u> ر]                         |
|                                          | h=±1*                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | h=o                                                                     | Particles                              | result                                    |

J=1 Particles Table A

11

#### $0^+$ – Mesons

Here the situation is more complicated. Possible particles are (if they exist at all)  $\sigma$ ,  $\varsigma_{i}$ ,  $k_{i}\overline{k}$ ,  $\kappa_{i}\overline{k}$ ,  $\kappa_{i}$ . A fit into the representation is very douptful (look at the Table B).

It is us a pleasure to thank Drs. U.Kundt, Kao Ti and P.Winternitz for many stimulating discussions.

### References

1. H.Lipkin and S.Meshkov, Phys.Rev.Lett. 14, 670 (1965). D.Horn. Lectures on SU(4), Preprint (Argonne).

2. V.I.Ogievetzky, I.V.Polubarinow. Preprint Dubna E-2826.

3. H.Harari et al. Phys.Rev. 146 1052 (1966).

4. C.L. Cook and G.Murtaza. Preprint ICTP/65/7.

5. D.Horn et al., Higher symmetries and the 2<sup>+</sup> mesons. Preprint (Argonne).

6. Kao Ti, Nguyen Van Hieu, Bronislav Sredniava. Preprint, Dubna P-2400.

7. O.G.Bokov. Preprint Dubna P-2513.

8. H.Ruegg, W.Rühl, T.S.Santhanam, Preprint CERN 66/1106/5 TH 709.

9. Dao Vong Duc, Pham Ouy Tu. Ядерная физика <u>2</u>, 748(1965). R.Delbourgo et al., Preprint IC/65/57. R.Delbourgo. Phys.Lett. 15 347 (1965). G.Costa et al., Nuovo Cim. 39 352 (1965).

10. R.Gatto, L.Maiani, G.Preparata. Nuovo Cim. 39 1192 (1965).

11. D.Robaschik, A.Uhlmann, Preprint Dubna E-2557.

12. L.Enkovsky, V.V.Kuchtin, Nguyen Van Hieu. Preprint Dubna P-2701.

13. V.I.Ogievetsky, I.V.Polubarinov, Preprint Dubna P-2696.

14. Chia Hwa Chan, Nguyen Huu Xuong. Preprint (Univ. Calif.) Mass Formulae for the 189-plet of Su(6)

15. P.Mc.Namee, Frank Chilton Revs. Mod. Phys. 36 1005 (1964). V.G.Kadyshevsky, R.M.Muradjan. Preprint Dubna P2124.

16. S.L.Glashow, R.H.Socolow, Phys.Rev.Lett. 15 329 (1955).

17. Nguyen Van Hieu, F.F.Tikhonin, Preprint Dubna P-2568.

| $(1,1) \rightarrow K\bar{K} = \frac{1}{23} + \frac{1}{2} + \frac{1}{2}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | и<br>1                                            | K, K, 2 Ag, 1 > 0, (311-3)<br>RT 37-62<br>K, K, 19, 1 = $\frac{27}{72}$ 10 <sup>-3</sup> 42<br>So (19, 1 = $\frac{27}{72}$ 10 <sup>-3</sup><br>So (19, 1 = $\frac{27}{72}$ 10 <sup>-3</sup> |
|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| $\begin{array}{c c} (t_{11}) \rightarrow K \hat{k} \\ \hline \\ & \uparrow & R \hat{h} \\ \hline \\ & \uparrow & R \hat{h} \\ \hline \\ & (t_{12} \rightarrow R \hat{h} \\ \hline \\ & (t_{12} \rightarrow R \hat{h} \\ \hline \\ & (t_{12} \rightarrow R \hat{h} \\ \hline \\ & \vdots \\ \hline \\ & (t_{12} \rightarrow R \hat{h} \\ \hline \\ & \vdots \\ \hline \\ \\ \\ & \vdots \\ \hline \\ \\ \\ \\ & \vdots \\ \hline \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | K,Ř, → KR<br>™≥57                                 | 19,1 \$ 1,9·10 <sup>-3</sup> , 49 omall                                                                                                                                                     |
| · (2) +× · - + 1 + 1 - + 1 + 2 2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | ₹ <b>κ</b> → K <sub>1</sub><br><sup>17</sup> < 12 | 19,1 < 0.5 · 10 <sup>-3</sup>                                                                                                                                                               |
| (J-2Y=0)<br>→ 3 R<br><sup>3</sup> 2, <sup>3</sup> -2, | . М <sub>е</sub>                                  |                                                                                                                                                                                             |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | Particles                                         | 9, [ <del>10</del><br>Resulti                                                                                                                                                               |

7=0 Particles Table B

18. G.Goldhaber, Preprint Pictorial atlas of boson resonances.

19. A.H.Rosenfeld et al. Preprint UCRL-8030 (Rev.).

20. Jacob and Wick, Ann. of Physics. 7 404 (1959)

21, M.Resnikoff, R.R.Silbar. Phys.Rev. 148 1341 (1966).

Received by Publishing Department on January 5, 1967.

W= 1 (10 - plet) <sup>(11</sup> (1 = C) -110-C) -- (2-1)45 w=0 (27-rlet) W=1 (10-plat) err(1=6) (1 = E) (11 (1=() - \$ (3=2) + \$ \$ \$ (3=0),0- 15 -±٤(۱=۲)-(2=2) 1)(1=0)2 + 3((1=0) 1 (3+1)(1) + 1 (3+1) V=0 (sing let) 1 (1=1) ... - T (1=1) + w=1 (octet), - f (3=2) + T (3=0),185 - f (3=0)33 - 2 ( 2 =1) 25 + T ( 3 =4) (1) A (1=1) (1) + 1 (1=1) 4 (3±1)(1) + 12 (3=1)35 ± (1=1)<sub>29</sub> - 1<u>5</u> (1=1)<sub>(1)</sub> (1)(1=6)-W= 1 (octet)1 w=0 (octet) (z-ĉ)

W=2 (singlet)

189 ~ (225)

TABLEI

W=2 (octet)

(2=6)

V= - 2

7- =

5

3~

يد ج 3~

0 V2=1

, 3

H

,н З

(3×2) (J=1)<sub>35</sub>

-()-0)

1.5

|        | <u> (1000) 1 = 1</u>  | (1-2)<br>(1-2)<br>(1-2)<br>(1-2)<br>(1-2)<br>(1-2)<br>(1-2)                  |                       | <u> </u>      | (3=0)_<br>-(3=0)35                           | •                     |        |
|--------|-----------------------|------------------------------------------------------------------------------|-----------------------|---------------|----------------------------------------------|-----------------------|--------|
|        | W= 0 ( ortek)         | - 4(0=4) - 11 (0=4) -                                                        | ),es- ±[ð=0,₄         | V=0 (edit)    | s:((, = E)                                   |                       |        |
| TABLEI | W= 1 (octet)          | {(3=2)+坚(3=4)0<br>- <u>4</u> (3=1)35 + 坚(3=4)0<br>- <u>4</u> (3=2) + 坚(3=1)8 | <u>-12 (1114)</u>     | w = 4. (edit) | (1=0) <sub>35</sub><br>- (1=4) <sub>35</sub> | weo (myth)<br>(3=1)3= | Α<br>Ο |
|        | 35 <sub>w</sub> (225) | 1 = 4<br>V = 4<br>1 = 4<br>V = 4                                             | 1 <sup>m</sup> (22.5) | 35 ( 36)      |                                              | 1m (31)               | •      |

16

| (CLES)  | ` |   |
|---------|---|---|
| Ē       |   |   |
| 543     |   |   |
| 0       |   |   |
| 70      | ĺ | I |
| . J     | ſ |   |
|         |   |   |
| ř       | - |   |
| ٢       | Ì | ĺ |
| S       |   |   |
| 5       |   |   |
| 2       |   |   |
| ,<br>L  |   |   |
| 500     | I |   |
| Ŭ       |   |   |
| 5       | ļ |   |
| ົຈ      | I |   |
|         |   |   |
| 121     | l |   |
| Ľ       |   |   |
| ر.<br>ھ |   |   |
| 4       |   |   |
| ۲       |   | l |

. .

| 8,1,1, B,                                                                     |                                                                    | 1 III 3                                     |         | [añ                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 5 5 °                                                                |
|-------------------------------------------------------------------------------|--------------------------------------------------------------------|---------------------------------------------|---------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------|
| 1 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4                                       | - 43 1 43 1 43 1                                                   |                                             |         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 1                                                                    |
| 10, 10,                                                                       | 15 15 3,<br>45 15 3,<br>- 보 165 3,<br>165 3,                       | 5                                           |         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 45 45 40 40<br>                                                      |
| 3~10-+1-8 c_                                                                  |                                                                    | - <u>10</u> 15 3,<br>- <u>11</u> 1 3,       |         | - 2 (1)<br>- 2 (1 |                                                                      |
| ۶- ع - ۶                                                                      | 화王王<br>5 년 5, 9,<br>5 년 9, 9,                                      | - 1 15 9,<br>- 1 15 9,                      | 1517 +  | 1 1 1 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 11 11 11 11 11 11 11 11 11 11 11 11 11                               |
| -8-+8+4                                                                       |                                                                    | 2. 15 9,<br>3 2 VII. 1,                     |         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                      |
| 1 1- 81 - 1                                                                   |                                                                    | 2. 15. 4<br>5. 15. 4<br>- 2 (1. 1.<br>1. 1. |         | - t (1- ),<br>- t (1- ),<br>- t (1- ),                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                      |
| 81-81-<br>81-<br>19-                                                          | -21 [王 명<br>5 [동 명<br>5 [16] 93                                    | -4129,<br>-41 <u>5</u> ,02                  | 6-<br>E | -2139,<br>-2439,                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 1<br>111 111<br>111 111<br>111<br>111<br>111<br>111<br>111<br>1      |
| ( 8' <sup>-</sup> * <sup>-</sup> * <sup>2</sup> ' <sup>-</sup> ) <sub>5</sub> | 11日<br>11日<br>11日<br>11日<br>11日<br>11日<br>11日<br>11日<br>11日<br>11日 | 12 12 9,<br>34 15.2                         | 는 13 a, | 12 12 1<br>12 12 12<br>12 12<br>12<br>12<br>12<br>12<br>12<br>12<br>12<br>12<br>12<br>12<br>12<br>12<br>1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 에 (고)<br>(고)<br>(고)<br>(고)<br>(고)<br>(고)<br>(고)<br>(고)<br>(고)<br>(고) |
| -1-                                                                           | * ÷                                                                | 3°t                                         | 17      | ÷<br>12<br>90                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | ž                                                                    |

SU(3) COUPLING CONSTANTS (3=1 PARTICLES) TABLE IV

|                  | (8, 2, + 8, 8, ) (8, 1, +, 8, ) (8, 1, + 1, 8, | (8"6"-8"5")                 | (8°'8'+8''8°') <sub>5</sub> | (8'8'-8'8')       | (8"1"+1"8")   | (8,1,4,1,8)     | ( 1,1+1 ] |
|------------------|------------------------------------------------|-----------------------------|-----------------------------|-------------------|---------------|-----------------|-----------|
| R(1.)            |                                                | 1200                        | 18 91                       | # 11 8.<br>11 8.  | •             | 5               |           |
| 61)<br>8         | 후 속 110 %, 주 순 9,                              | - 4 [2] 9,<br>- 4 [2] 9,    |                             |                   |               |                 |           |
| 0                |                                                | - 12 3,                     |                             | ± 1 5 9.          |               |                 |           |
| ×01              |                                                | - ا <u>چ</u> ا کا           |                             | ± 1 5 91          |               |                 |           |
| 8 <sup>1,4</sup> |                                                |                             | -15 21                      | ·도 <u>[</u> ] エ   | -215 9.       | 15 2,           |           |
| 111              |                                                |                             | 1품 9,                       |                   |               |                 | 17.3.     |
|                  | ا (فريد بناريس) (اريقار بالاين)                | ( <b>*</b> **************** | <sup>5</sup> (8,_8+8,8)     | "<br>(,1,1,-,8,1) | ( هرار+ ارقو) | (\$،ياه او \$،) |           |
| 8(tr)            |                                                |                             | - E.a. + 4 12 9.            | 4 Tr 9, + 3 VL    | ب<br>ب<br>ب   | -1.4117         |           |

|                                                        |                   |              |      |               |                |        | 1 |
|--------------------------------------------------------|-------------------|--------------|------|---------------|----------------|--------|---|
| (8,10,+10,8,)                                          | - + + + + + + = 3 |              |      |               | - 13 - 4 13 32 |        |   |
| ( الأراقار - الرقرر) الأن ( الأربار - الرقار )         | ±1€9,+३1€32 -(⊊35 |              |      |               | ±143,-2,1253,  |        |   |
| <sup>2</sup> (1,2,4,8,2,1)                             | - 旺 a, + 4 平 a    |              |      | -             | -130, -4 150,  | 15. s. |   |
| <sup>2</sup> ( 1, 2, 1, - 1, 2, 1)                     |                   | - 12.9,      | 12.9 | 1 <u>5</u> 3, |                |        |   |
| ( i, i, i, i) ( i, |                   | - 31 - 21    |      |               |                |        |   |
| -                                                      | <b>3</b> (1)      | <b>e</b> (*) | 0    | 10            | *:8<br>35      | 135    | L |



214.35

-+ 12 32

|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | لم<br>ا                                                                                                                                                                                                                                                                                                                                                                                         |                                            |                     | لم<br>۱۱<br>۲                                                                                                                                                                                                                                                                                                | J = 2                                                                                                                                                                           |                           |
|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------|---------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------|
| $ \begin{array}{c} \left( \begin{array}{c} 1\\ 1\\ 0\end{array} \right) \\ 0= \begin{array}{c} 1\\ 0\end{array} \end{array} \\ \left( \begin{array}{c} 1\\ 1\\ 0\end{array} \right) \\ \left( \begin{array}{c} 1\\ -\frac{1}{2}\\ -\frac{1}$ | $\begin{pmatrix} h, \eta \\ \eta, \eta \end{pmatrix} = \frac{\Lambda}{15} \begin{pmatrix} TE & TT \\ -TT & TT \end{pmatrix} \begin{pmatrix} 8 \\ 2T \end{pmatrix}  J = 1  Y = 0 \qquad \begin{pmatrix} (1, \Lambda)^{\mu} \\ (1, \Lambda)^{\mu} \end{pmatrix} = \begin{pmatrix} 1 & 2 \\ 1 & -1 \end{pmatrix} \frac{\Lambda}{15} \begin{pmatrix} 8 \\ 2T \end{pmatrix}  J = \frac{1}{2}  Y = E$ | (1, 0) = 8<br>0 = 1, 0 = 0<br>0 = 1, 0 = 0 | J=1 Y=0<br>J=2 Y=11 | $ \begin{pmatrix} 1, 0 \\ 0, 1 \\ 0, 1 \\ 0, 1 \\ 0, 1 \\ 0, 1 \\ 0, 1 \\ 0, 1 \\ 0, 1 \\ 0, 1 \\ 0, 1 \\ 0, 1 \\ 0, 1 \\ 0, 1 \\ 0, 1 \\ 0, 1 \\ 0, 1 \\ 0, 1 \\ 0, 1 \\ 0, 1 \\ 0, 1 \\ 0, 1 \\ 0, 1 \\ 0, 1 \\ 0, 1 \\ 0, 1 \\ 0, 1 \\ 0, 1 \\ 0 \\ 0, 1 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\$ | $\begin{pmatrix} 2, 0 \\ 4, 4 \end{pmatrix} = \frac{\Lambda}{12} \begin{pmatrix} 1 & TE \\ TE & 1 \end{pmatrix} \begin{pmatrix} 0 \\ 0 \end{pmatrix}  \exists = 0  \forall = 0$ | TABLE VI Mixing Relations |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | ۳                                                                                                                                                                                                                                                                                                                                                                                               |                                            |                     | · · ·                                                                                                                                                                                                                                                                                                        |                                                                                                                                                                                 |                           |

Notations "d dimension of the Silius refer. D dimension of the Silius refer

(NS)<sup>d</sup> = 01 (D)

1