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i, Introduction

When the parity nonconservation was discovered in 19561 the serious fault
of the theoretical conception of the space-time symmetries was exposed, Indeed,
till 1956 the invariance under the discrete space-time transformation (the space
reflection and the time reversal) was thought to be the evident consequence of
the most. general pfoperﬂes of the space-time, which are described by the pos-
tulates of the special theory of relativity (see e.g.z). The observed violation
seemed therefore to be inconsistent with the basic, well established properties of
the space-time, . .

There was found however. a beatiful way around this difficulty. Landau, Lee
and Yang And Wigner3—5 have suggested, that the time operation of the space
reflection is not P but the combined inversion CP and thus all interagtions
were CP invariant, In virture of CPT theorem, the breaking of which would lead
to a thorough revision of the basis of the relativistic quantum mechanics (see
e.g,fG/) all interactions appeared to be T-invariant and the symmetry of the space
time was restored. ’ '

The hypothesis of CP-invariance agreed with numerous experiments and soon

everybody considered it as one of the fundamental laws of Nature, So the dis-

covery in 1964 of the decay K, » ﬂ+n- , which is forbidden by CP-invariance,

was a sensation, Simple ways to save CP were rejected after the detailed expe-

rimental Investigation of the K-decays (see rewiews&lz). It became clear, that

our conception of discrete symmetries of the space-time needs a substantial
10 -,12

change (see, for example, and~ ),

It may be noted, however, that thére are, in principle, some possibilities of
going around this difficulty, One of .these bears a resemblance to the CP-hypo-
thesis and was indicated by Lee and Yang in 1957 in connection wit;h discussions
of possible T-violation, They supposed, that our world is "doubled" with respect

to some new quantum number, which corresponds .to some new degree of freedom



of particles, Thus each particle has its counterpart, & "mirror particle", which
differs from the former only in this new quantum number, Then the symmetry of
the world is restored if one admils that the true operation of space reflection
(or time reversal) is the product of CP {(or T) and the operation of transition
from the usual particles to the "mirror" ones. The recent detailed discussioh of
this hypothesis 14 has led to a conclusion, that the usual particles may interact
only very weakly with the "mirror" ones, f].‘hérefore this simple way to save
the habitual notions may prove quite imaginary,

Another possibility of the new interpretation of discrete symmetries was
considered by T,D.Lee and Wick15. They introduce different definitions of the
discrete transformations in different interactions and in fact they give up the
geometrical interpretation of- discrete symmetries, considering them as dynamxca.li
ones, In addition there is some ambiguity in the definition of the new operators
and general principles to avoid this ambiguity, seem to be lacking,

Thus, if even we consider these ways to be open, we can say without
exaggeration that the problem of discrete space-time symmetries is now in’al-
most the same position as it was in 1957. Therefore any attempts of the geomet-
rical interpretation of the discrete symmetries seem to be quite in good time,
Such attempts were not numerous (we found only several work516 about geomet-
ric interpretation of P—\riolaﬁonx). '

One possibility was pointed out in 17 and was discussed later 'm18’19
In these ;;apefs the geometric approach to the theory of weak interaction was
considered, in which the weak interaction appears as a consequence of the
space-time curvature "inside" the particles, P-nonconservation arises then in
virtue of simple geometric assumption, In subéequent papers 20-22 we tried to
find a similar geometric interpretation of CF violation, In the ground of this in-
terpretation rests a conjecture of some link between the electromagnetic field
and the space-time torsion, Some additional physical hypothesis on the form of
this connection were admitted by us to predict several effects in weak-electro-
magnetic interaction (with the coupling constant = Ge , Gnﬂ;s is the weak
interaction constant, and e is the elementary electric charge)?ﬂn the works,
mentioned above, we discussed in detail the possibilities of the detection of such
effects and the difference in predictions of geometric model and other models
of CP wviolation (see e.g., 23—26) but the geometric mterpretntlon itself was only
mentloned

*See also 45, where a mechanical model of P-violation in spaces with torsion
is sketched,



The present paper is devoted to an attempt to construct a consistent geo-
metric theory of electromagnetic (EM) field, which is based on the interpretation
of EM field as a torsion of the space-time , Of course, our final intention is to

understand the connection between weak and electromagnetic interaction ( seela’

19'22) but this time we shall not take into account the space-time curvature, and
therefore, shall not try to construct the unified theory of weak interaction and
electromagnetismx. Note that in what follows we widely exploit the methods which
were used by Einstein in his attempts to create the unified. theory of gravitation
and electromagnetismxx, but we totally give up the idea of the link bétween EM
"field and gravitational field,

It is worth noting that the mathemntical formalism which we use here, dif-
fers from the one used in20—22. In fact the introduction of the nonsymmetric’
metric tensor is a purely formal proceaure and throws quite a pure light on the
geometry of the space-time, The geometry is uniquely determinéd if one define

Lo 29
the curvature and torsion tensors (see e.g. 9 35),

which may be expressed in
terms of the affine connexion, In the general theory of relativity the Euclidean
space is generalized up to Riemannian space with the symmetric connection
which defined the zero torsion, Howevér we think the simplest generalization of
the notion of Minkowsky space is the space with zero curvature, pseudoeucli-
dean metric and the torsion different from zefo ( nonsymmetric connexion), We
shall show that the investigation of such spaces leads to the geometric interpre-
tation of the free electromagnetic field. The simple geometric restriction imposed
on the torsion give the generalized Maxwell equations which reduce to the.usual
Maxwell equations in the limit of the weak field, Then we consider the Dirac
equation in this space and show that it automatically contains the CP-odd inter-
actions of the form which we have postulated earlierzo_zz. It is possible that the
detailed form of this interaction for different particles may be found only in the

unified theory of the weak and electromagnetic interactions,

2, The basic properties of the space’ with absolute parallelism

In this section we briefly describe the theory of the spaces’ with absolute
parallelism following mainly. Cartfanzg, who first considered these spaces, and
7,28 R ser .
Einstein2 72 who used these spaces in one of the variants of the unified field
theory, We concentrate our attention on the facts which will be essential in what
*Some connection between these phenomena will be always kept in mind,

howevrer,

2 . .
see 7. In the book28 one may find other works devoted to the same problem,



.

follows, The mathematical details may be found in the mentioned works by Cartan
and - 'in the books by Eisenhart30

1, x
' 7, We stress once more

and Sch.roedinger3
that the model under consideration has nothing to do with the unified theories

of gravitaion and electromagnetism, and is based rather on the attempt to unite
the phenomena of electromagnetism and weak interactions on the geometric
grounds,

The space with absolute parallelism is defined locally by the condition that
the result of the parallel displacement of the vector from any point x to
the other arbitrary point y is independent of the path by which the displace-
ment goes, This condition is equivalent to the possibility of constructing the sys-

tem of linearly independent vectors h;( x) (a is the number of the vector,

h: (x) is the projection of a-th vector on the i-th axis of some given
system of coordinates in the point «x H a,i=0,1,2,3 xx) and the
system h in the point y is obtained from the one in the point x in the
way of paralle! displacement (see 27—34). The parallel displacement is expressed
in terms of the affine connexion F’:‘ . The contravariant components of any
vector Al (x) get the following increments while paralle! displacement from

the point x® to the nearly point x“+& x*

1 1 i) k
SA (x)=—1"’k (x)A (x)&x
(2.1)

and the covariant ones A,(x)

SA,(x)= T, (x)A,(x)5x" : (2.2)

(the repeated indices are supposed to be summed up),

Thus, we obtain the following equation for vectors of the ennuple

' =d hi = 9 h' =—h’ F‘ (2,3)

h(u).k k (a) Ix

[
a
2
"

*Some information concerning the s-paces with torsion and, in particular, the
spaces with absolute parallelism may be found in the well known books on dif-
ferential geometry(see e.g.32_ 35).

e shall always consider the four- dimensipnal space-time although the method
may be usgd in the case of the spaces having any number of dime;qsions and

any metrics,



Introducing the normalized minors h(u) f of the matrix h’( , which are
a

defined by the equat.ionsx

bl ()87 (x) =8} (2.2)

we get from (2,3) the expression for

1 1 (a) (a)
T = by by ==by b

. v
(a), & (2.5)

(the last equality follows from Eq, (2.4)). In the space with the absolute paral-
lelism Eq. (2.3) should be integrable, so it follows

4
ta)

¢
(a)

1

i i i
0"h(u).sk"h(a).u'ak(rfq Biay) =9, Ty Big) -

(2.6)

i
Using once more Eq,(2.3) we find that the Riemannian curvature tensor R )

vanishes
s 1 ' s 1 s 1 :
Rppe==Ty o+ Ty ~T T+ Ty Ty (2.7)
. 1
*tere and in what follows 8, denotes the usual kroneker symbol, whereas
13 o I . . ;
8§ = 8” is the diagonal matrix with the elements & , = 1,8“ =Z§22 =8,, ==L

We rise and lower the indices .(a) with the aid of the metric tensor s9b

For instance h(;"-= 5%

(b)) etc.



One may show (see e.g.ao'al) that the last condition is also sufficient for Eq.

(2.3) to be integrable, Thus, the affine space has the absolute parallelism if
and only if its curvature tensor is indent.ical.ly'zero( Sc:hroendinger:‘:L calls such

spaces integrable), The existence of the ennuple h: which gives the
a)

affine connection by Eq.(2.5) is equivalent to this condition, Without loss of ge-
nerality, we may consider in the following all the ennuples to be orthogonal and
normalized ones

1 (b) b, y1 - . pla)igtb)_ gab
bty =83 Bighim Bap » TR, . (2.8)
Then, from the geonetric sense of the quantities h:u) and h(c” we find
the following connection between h and the metric tensor g, f
(a) 1 1
gy = heayhy 5 8" =Bt (2.9)

It should be noted, that the quantities h(’u) v By

ly defined, In fact both Egs. (2.5) and (2,9) do not change under the transfor-

mation

are not uniquel-

1 (b) ¢ (a) (a} , {b)
; L', h
Bay* Loy Doy Pu 2 Lo (2.10)
(b )
where L(u)) is an arbitryry pseudoorthogonal matrix™ independent of

One may get rid of this uncertainty with the aid of the following physlcal
condition, Consid‘er such coordinates which continuously transform Into Cartesian
coordinates in any finite region of the space, when the space ,
becames flat ( switching off the interaction)., Inasmach as in this limiting process,
the axes of all the.ennuples h are always parallel (in the sense of the ab-
solute parallelism), we come in this Cartesian limit to the ennuples with the axes

being parallel to each other (in the usual sense) but in general not parallel to

. - . e ¢
The pseudoorthogonal matrix satisfies the following conditions L(:; L L‘S)mﬁqb ;
ta) ed  (b) ab
L(C)S L (aQ = 3 ,where 8°" is the metric tensor of the pseudoeuclidean space
(see a‘:ove.)



the Cartesian axes, With the aid of the transformation (2.,10) we may always
succeed in choosing the coordinates so, that the ennuple is directed in the same

way as the axes of the basic Cartesian coordinates do, ie. in the limit we have

. i - +
May= e Doy =%y e (2.11)

For the general case we might explolt these conditions to eliminate the ambiguity
in choosing the ennuple, but here we shall use more simple formal devise,
which we describe in the next section,

It is worth noting that the orthogonal ennuple is not quite necessary
for the description of the spaces with the absolute parallelism, All the
theory may be developed without introducing these objects (see e.g.32). We use
the ennuple first because the spaces with absolute parallelism are described in
its terms In the most simple and natural way, and, secondly, because with the aid
of the orthogonal ennuple one may in a simple way introduce spinors in non-
euclidean 5pacesx. By the way, there are other methods, quite convenient, to
introduce the spinors in noneuclidean spaces ( see, in particular 40’41), which
we suppose to consider elsewhere,

In the conclusion of this section we consider the condition, connecting
the affine connexion and the metrix, One may come to this condition by demanding
the metric structure given by the affine connexion to agree with the metrics, de—
fined by the tensor &,, . In other wordys, the distance which is defined by
metric tensor dsla g u dx ' dx! should be the same distance, which
may be defined along any geodeslc line with the aid of the affine connexion only,
As was shown, for example, in the book by Schroedinger31, in the general case,
for this condltion to satisfy it is necessary and sulfficient for the symmetric part
of the connexion to be represented  in the form

1 1

r' S th (e gt
e = 2 mljk it g fyx

where { . } are the Christofiel brackets and the symmetric in j andk

See . The mo%f2 thorough results were obtained by V,A,Fock and were set
forth in his paper .



arbitrary tensor Tt satisfies the condition
’Thk + T]!k +"l‘k ¢ =0,

These conditions do not give any restriction on the antisymmetric part of

the affine connexion

¥
1§ 15 (2.12)

29

which is a tensor and according to ‘Cartan (see a15030-35

)} defines the tor-
sion of the spacex.

It would be more natural, therefore, to lay down in thé ground of our spe-
culations the stronger demand: the metric tensor in the point % should be

obtained from the one In the other point vy by paralle]l displacement i.é.xx

s s
Bygle Egu,l—rsf g”-rﬂ B g . (2.13)

1t is easy to see, that the general conditions of consistency of metrics
with the affine connexion follow from this demand, but the inverse assertion is,
generally speaking, not true, Thus, Eq.(2.13) generally imposes essential res-
trictions on the geometry of the space, However, it is easy to verify, that for’
the space with the absolute parallelism vthe condition {2,13) is automatically sa~
tistfied, Actually, the metric tensor gy is defined'in terms of the ennuple

h(' , by the relation{2,9). The ennuples in different points transform
a

into another ones by paraﬂel displacement i,e,

1 in . = .
heay]e =05 byayee =0 (2.20)

""""""""" 2-34.
. *The geometric meaning of the tensor 0 is described e.g. in30’ 3 .
xx
We denote by the symbol |a the covariant derivative,

10



This condition may be obtained in a formal way, using kqs. (2.4), (2.5) ‘and

the definition of the covariant derivative of th~ vector

1 1 1 _ L4
A” =Ap+ l"gA;Ai|g= Ax,(l"lxl A’ R (2.15)

Thus, we see that in any space with the absolute parallelism metrics agrees with
the affine' connexion and, moreover, the change of a metric tensor by transition

from one point to another may be obtained with the aid of the parallel displacement

3. Pseudoeuclidean space with the torsion and the free

electromagnetic field

Consider now the simplest space with the absolute parallelism, namely the

space, in which we retain the usual pseudoeuclidean metrics

1
gy =8y . ) =57,
(3.1)

We shall call such spaces pseudoeuclidean spaces with torsion, The metric rela~
tions in these spaces are the same as in the usual Minkowsky geometry, but the
parallel displacement is essentially different because of the torsion, We shall not

. rewrite all the formulae of the preceding section, and keep in mind, that one
should always set &' | 5, instead of g!f , 2y, .

Let us write down several significant relations

r ? 4 :
ur =90 Iy s Dy =0y 8p, - (3.2)

Eqs: (2.4) and (2.8) lead to the condition that the matrix LI is

pseudoorthogonal:

(3.3)

h, . 8%h,. . =8, .

{a)
hi b (a)t (b)s~ "t}

ta)i”

11



From Eq, (2.5) we may now find, that

LV =_‘F“k . (3.4)

This symmetry condition may be obtained also from Eq.(2.13) keeping in mind
that 5“’! =0.
From the definition (2.12) of the torsion tensor @ and from the con-

dition (3.4) we may find the useful relation

r = - +Q + (35)

from which, in particular, follows the tensor character of the affine connexion
F“k with respect to the transformations, preserving the metrics (3.1).
Let us count the number of the independent functions, with define the geo~"
metry of the pseudoeuclidean space with torsion, In virtue of the orthogonality

conditions ( 3,3), the matrix has only six independent elements, in

(a)1
terms of which one can express all the geometric quantities, One would take the
antisymmetric part of the matrix L as the independent functions, but in
our case we may proceed in another way. Consider any Lorentz frame of refew

rence and set

; .
Koy ()=l g+ Fyy (g (3.6)

where . !(u“ is the arbitra.ry constant pseudoorthogonal matric, The matrix F“
is evidently a tensor under any Lorentz transformations of coordinates and

does not change' under transformation of the enhuple (2.10). In the limit of the

extreemely small torsion the ennuple bt does not depend on x , so we may

(a) 1
will coincide with the unlquelly determined one (according to section 2), if we

)

ta)1%%ay ¢

From Eq.(2.4) and using the arbitrariness of iays we find the can-

assume, that tensor Wiays becames also very small, The ennuple h
set

dition on the tensor F”

: 14
F, +F +F, 8"7F <0, (3.7)

12



Thus, the matrix 8, ' +vF” is pseudoorthogonal, The symmetric part of this

matrix
5+ )
1.7 Ty 1y T2 1" (3.8)

may be expressed in terms of the antisymmetric part

1
£y "T(Fu uLITRE

Namely - (see Appendix)

B 1 r-__2s 2 kel - gk ] .
F” ST[S-::]‘SIJ'F:z(fua fl;)'s_ﬁk »o=t fu' (3.9)
We may also express S in terms of s and d=det| f,1

(see Appendix) but the corresponding relations are rather involved and we

make here no use of them, For the small torsion we have evidently

. L 1 . [ . k 2
F o=ty fp + 069 (3.10)
It is useful to write down the explicit expression of - r, ™ in terms of F, g

15k e T8 e T
(3.11)

¢ 1 e .
==yt PR - FF L)

In the last expression the validity of the antisymmetry property (3.,4) is evident,

Inserting Eq. (3.9) in Eq. (3.11) we may express the connexion [ .

13



and, consequently, the torsion Q4 in terms of six independent and still

arbitrary functions f 1 . Therefore the geometry of the space-time under con-
sideration is still quite arbitrary, )

To get rid of this ambiguity and restrict in some manner the choice of the
spaces, we shall proceed along the way, which has proved extremely successful
in the Einstein’s general theory of relativity'42. The way of reasoning of Einstein
is in plane words the following. Let us find all the irreducible tensors, which
may be constructed with the aid of the tensor, defining the geometry (in the
Einstein theory it is the Rlemannian curvature tensor R"“‘E . Take the simplest
irreducible tensor and put it to be equal to zero, The simplest nontrivial equation,
really restricting the geometry, is the E ‘Einstein equation, which for the free case
reads R, ——lg“R= 0.

2
In our case the geometry is thoroughly defined by the tensor

(R .
Let us split it into the irreducible tensors™, We can do it easly using the ope-
rations of symmetrization, alternation, contraction and multiplication by metric ten-
sor 5y and Levi- Chivita tensor density, In this way we evidently cannot
construct any irreducible scalars or second rank tensors, but we easily find

irreducible vector V, and pseudovector A,

4

.

ik
L e A e 0

(3.12

In the absence of the mntter (free case) we have not any other vector or

pseudovector and it is natural to assume the following equations.for the torsion

t 1 ’ (3.13)

In the following we shall see, that these equations are the nonlinear equations
for the tensor f, ) which generalize the Maxwell equations and coincide
with the latter for the small values of |f“ ] + This solves the problem

of consistency at least for the case of the small torsion™* .

* The geéaeral device for constructing the irreducible tensors is developed by
xx Cartan . Here we may use simple considerations,
For the full solution of this problem it would be necessary to deduce this
equation from a Lagrangian,

14



From the second equation (3,13) and Eq. (3.5) it follows, that

1
B =7 P (3.14)

Therefore, using Eq. (3.11) wes obtain

1 ' .
Qe =57 IFy Fopo- Fy®Fig (315)
and we may rewite Eqs. (3.13) in the form’
AR St SR LS (
- o 2o 3.16a)
) 1 - o'n ) 'y
f!],k+fjk,l+fkl,j=—2‘[Fl Flax*Fy Bt P Frp -
(3.16b)
L] s *s
_FJ Fln,k- F, Fy-,t _Fx X8,

In the approximation of the weak torsion nonlinear terms in Eqgs. (3.16a) and
(3.16b) may be neglected and we find, that the tensor £y satisfies Max-

well equations

£R =0, il =0 (3.17)

This leads us to a conjecture, that the tensor f“ is proportional to a tensor
of electromagnetic field H,,
To come to the idea concerning the coefficient of proportionality, we note
that the electromagnetic tensor has the dimension that of square mass (in units
h=c=1 ) whereas tensor £y - is dimensionless, We have explained

.

15



in the Introduction, that we think to be natural to seek for the unified theory of
the weak and electromagnetic interactions, Following this line, we may use the

universal weak interaction constant

S L

m (3.18)

to obtain the magnitude of the constant, which connect the tensors f

and H ~ « From the dimensionality consideration we set

f,, =2 (Ge)H, (3.19)

where A is a dimensionless number and the factor e is written
explicitly to stress, that the effects of the space torsion (or, as we shall see,
of the CP- nonconservation) are displayed only in weak electromagnetic interac-
tions ('see20-22). Of course, we may hope to obtain the exact form of the rela-
tions (3,18) Le. the value of the constant only in a more complete theory, con-
sistently taking into account both the curvature and the torsion of the space.
The smallness of the constant G allows us to justify the neglec-
tion of the nonlinear terms in Egs. (3,16). Actually, for this neglection be valid,.

the following condition should be fulfilled

|‘f”|'=>\Ge|H”|'<<1; AGe |E]<«<1, A Ge |H|<<1

where E and H are correspondingly the vectors of the electric and magnetic'

fields, In other words these conditions read

. ss M
EJ<s.10™ Bl ocr?p0 22
cm cm
where € is the density of electromagnetic energy. Thus, it is evident, that

in all the usual cases we can neglect the nonlinear terms in Eqgs, (3.16), having

a numerical estimate for the possibility of this neglection,

16



It is useful to discuss the problem of the uniqueness of our choice of

equations, Inasrrmchés in the theory of the pseudoeuclidean space with the torsion,

| S is also a tensor, it would seem, that we may obtain another set of

equations instead of (3.13), if we change @ by T

» However, one may be
easly convinced, that

(3.19)

and so both the second equations coincide. From the second equation Eq.(3.14)
follows immediately and we obtain |

rt —-n't
.k .k (3.20)

and the first equations are the same also, In the more complicated spaces only

0 is tensor and this question does not arise at all.

4, Spinor ﬁeld in pseudoeuclidean space with torsion.,

CP-violation in interaction of spinor particles

with _the electromagnetic field

In the space with the absolute parallelism the equations for spinor particles

may be introduced quite naturally. The most simple way to achieve the goal is

to use the described above formalism of the absolutely parallel ennuples, While
constructing the spinor equations we shall follow V.E‘ock38’39, who gave elabo-
rated in detail ennuple method for Riemannian spaces without torsion, As we
shall see, the case of pseudoeuclidean spaces with torsion provides an additional
simplification and the introduction of spinors goes without trouble,

Let us define the set of the usual Dirac matrices satisfying the
anticommutation relation

[y @,y eyl y Ryt (@ o g5 er (a.1)

17



In the space under consideration these matrices are not the objects of the
vector nature, because the parallel displacement of Yia
to another point give another set of matrices 7"(5) .However, we can easily construct
from the vector objects, Lising the ennuple c;oefficients h:u, JLet us define the following

matrices Bl which depend cn the point

_Lta
Bl_y h(u)x ..

(4.2)

From Eq, (3.3) it follows, that these matrices satisfy the anticommutation rela~

. tions ' -

{8, B, 1=26
e Y (4.3)

and their vector character is evident,

Consider now bilinear spinor combinations |/7B|/1 where B is
a matrix from the algebra of matrices Ba _and l/'/.=z By . To define
the transformation of the spinors [ and ¢ in the process of parallel
displacement we demand (comparesgj the quantity ;l// to be scalar and
l/_/ Bi 7 to be a vector, Then, if we make the parallel displacement‘ from
the point . to the point PR these bilinear combinations

should aquire the following increments

a.w(x)w(x)=o; (4.4a)

8V (B Y (=T, (¥B,v)sx" (4.4b)

The increment 8y of the spinor is, by definition, equal to _
59 (%)= Cy ()Y (08" (4.5)

18



From Eq, (4.,4a) we find

5U(x)= ¢ (n)C 5x"

(4.6)
and from Eq, (4.4b) we obtain the relation
- - ' x
w[ﬁ‘Ck]¢+¢8_ﬁi¢z-F”(¢ﬁ,¢l)8x (4.7)
where (see Eq, (2.3))
ta) ! k
58,=v' b, =T, B,8x : (4.8)
Inserting Eq; (4:8) into Eq. (4.7), we find
[B,,c,1=0
(4.9)
and come to the following spinor connexion c, x
C, =ielA,
(4.10)
where 1 is the unit matrix 'and A, is an arbitrary real vector, which

has been often identified with tﬁe electromagnetic potential. We also may.adnit
this interpretation of the vector A, to obtain the usual electromagnetic inter-
action, but we note, that this interpretation is not obligatory (see 18’19). If we

do not take Into account this ambiguity, the spinor do not change in the process.

of parallel displacement, The simplicity of this result is due to the fact, that we

*In fact any four-dimensional matrix Cy , which commutes with all the matrices
B, safistying the conditions (4.3) is proportional to unit matrix
(see e.g. *7).

19



really consider the most simple deviation from the pseudoeuclidean case,

Now, the covariant derivative of the spinor reads

¢|k=t/;”-ck¢=(ak-ieAk)w (4.11)

lZl-k=¢7’k+|ZCk=(ak+ieAk)¢_, (4.12)

If one neglect the arbitrary term ieA, the covariant derivative coincides

with the usual one, The Dirac equation in our case may be represented In the
form

iﬁ"¢“-m¢,=.o; ilzl.kBk+‘mJ=0. (£.13)

Eq.(4.13) and the condition Bi|y =0 guarantee the conservation of the current
' B’ 7 of the spinor particles '

(lljﬁl¢)ll=0- (2.14)

'

From the relations (4.11) (4.12) (4.9) it follows also that

(B ), =GB W) =bl ) (i, (4.15)

Taking into account the Maxwell equations (3.,17) we obtain that in our (free)
case

(p8' e , =0,

(4.16)



The problem of the cwreﬁt conservation in . the next approximmtion needs
the account of the current in the righthand side of the Maxwell equations and
goes beyond the framework of the present approach,

Let us take now the limit of the small torsion in Eq. (4.13). Keeping only ‘
the first order terms, we obtain ‘

1yr(9,-16A ) b~ny + 110 (3, ~1eA)ygu=0 (4.17)

10, +1eA Py +my + 1040 (9, +1e4, )T yy=0 (4.18)

where

k

¥ _{a)
v o=la

The last tenﬁs in these equations correspond to the interaction Lagrangian

e --%—X Ge[\z(ak-leAt)yllll-(ak+leAk)EYg‘/’] (4.19)

which we have constructed earlier 20-22 on the basis of intuitive considerations

on the connection between the electromagnetic field and the torsion of the space-
time, This Lagrangian is CP-odd {or I-odd) and C-odd.

This simple Lagrangian cannot however explain the observed CP-violation;
Some generalization should be done for the case of interaction of several spinor
particles, Further, to introduce the terms which do not conserve parity P, one
would demand the interaction (4.19) to be Ys - invariant . We have done this
éanlierzo_ 22 but the hypothesis, which are necessary in doing this evidently
are beyond the contents of the present ‘simple model and are situated in the

field of the conjectural unified theory of weak and electromagnetic interactions,

21



5., Conclusion
‘The main results of this work is proof of a possibility to connect the electro-
magnetic field with the space-time torsion and to deduce the equations fér

the electromagnetic field on the basis of the simple geometric considerations, It
is very important, that this geometric theory of the electromagnetic field does
not contradict the usual Maxwell equations and, qulte the reverse, gives a possie
bility to obtain these equations and the estimate for their applicability, The other
essential result is the derivation of the CP-odd interaction of the spinor particles
with the electromagnetic field, which arise in the éeometric theory quite automati-
cally, without any additional conjectures,

The main problem to be solved is the construction of the unified theory of
the weak and eleétromagnetic interactions. It seems, that for the solution one
should try to unite present deas with the geometric ideas conserning weak inter-
actions1?~ 19. .

There are several interesting problems, however, even in the framework
of this work, The examination of the nonlinear equaﬁoﬁs, generalizing Maxwell
equations seems té be quite interesting. It would be useful to give a Lagrangian formu-
lation of the theory and to construct a vector-potential (or its substitute) in the
general nonlinear case. The difficult task of the global structure of the space-
tine is of great interest, the problem of the possibility to construct the continuous
spinor field being connected with this problem,

The authors appreciate the kind attention to this work of Profs, D,LBlokhintsey;
V.LOgievetsky and AN, Tavkhelidze,
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Appendix

Let us deduce the relation between the symmetric part of the pseudoortho:-
gonal matrix and the antisymmetric one. One may représent any pseudoorthogonal
with the aid of the pseudoorthogonal transformation SLs ™’

matrix ~ . L,
( where s is pseudoorthogonal) in one of the two forms
2 2
chy shy 1+—t——--— L t
0 2 L
tny sh ch ( t/2 1-t%2
L, = X X ; L‘zn i / 2 - tf g

cos ¢ sing t -t 1 (A1)

—sing cose’ 0 1
Let us set

(1,2)) ] (12)4
v =g+ Gy . ‘ (A2)
For the matrix gV the relation is wvalid
w1 2s 2 At el mn
e (= G, &6 G , A3
G, = (3-8, 4 ==(G,, g ) (A3)
where
. L]
- - .l Alk g
saGl=G‘ ;s =6, G, (A4)

- 1 ~ {1
(v 1 ot sty ct2a_ 1 ot )
G“ 2 (Gu +Gn )i Gu 2 (Gu Gu ). . (A5)
From the-equations
: (A6)
d=~-uv, s=2(u-v)
4
Yk g (A7)

where 1
d = det (f) = €yl t‘lf2 s fq
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/ -
one may find the relation connecting s with s and d .

$2)

It is easy to verify, the matrix G satisfies the relation

~(2)k, (2)

-i2) .
y -'_; G, 6, (A8)

G
3]

[ 3
which coincides with Eq, (A.3) if one takes into account, that
s=52=d2=0~. (A9)
Inasmuch as the relation (A.,3) is invariant .under pseudoorthogonal transforma—

tions, we have the proof that the Eq. (A 3) is valid for any pseudoorthogonal

matrix,
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