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1 Intro'dqction ; : -

The existence of unitary particle multiplets/ 1/ - the baryon octet

“(N 2,%,A) with spin 1/2 and parity +1, the. decuplet of baryon reso- %
._'nances ( N*, ...) with spin 3/2 ard panty +1, the octet .of baryon reso-'
,A“'nances w1th spin 1/2 and panty -1 - is now well established/ / 1t leads ‘
to-an effort at an explanation ‘of these multiplets as a consequence of the
dynamlcs of strong,ly mteractlng particles. o . ~v‘
. . For the first time, such a problem was solved In-a slmpl.iﬂed form ",\:

in the scalsar and the pseu.dosca.lar models of the static strong—coupl.ing
““theory by Wentzell 3[ and Paull and Dancoff/ [y in the case of the isotopic
SU (2) internal symmetry group. For pseudoscalar meson they" found a.n )
mfmite semes of the posslble states characterlzed by lsospln 1. and
( .;spm J for which I=J] and a.ssumes the values 1/2 3/2 5/2, e Ima
recent paper by Dothan and Ne eman/ / x/ it was shown that there ls a \, “
,umtary irreducible representatlon (UIR) of the symmetry group [SU(Z) A
x SU(2)] +Ty  of the interaction I—Iamlltonio.n of the Paui.i—Da.ncoff theory con-
‘i‘taining all the states w1th I=1 =1/2, 3/2,"... which represent the solution
‘of the pseu.dosca.lar model in’ the static strong-coupling approximation.‘
Therefore the symmetry group [ su(2) x SU'(Z)] T, of the interaction Ha- -
mlltoruan can be regarded as a dynamical or spectrum generating group:‘f.;;
of the Paui.i—Dancoff strong-coupling theory. }
The static strong—coupling theory for the case of the SU'(S) interna.l =
symmetry group with scalar mesons (without the coupling of =pin) was
partly solved in a paper by Du.ilemond/ 8/ who found the six lowest SU(S)

rotational states and their energies. / / / /
x/For: the approac_:h through the dispersion relations see !
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| The purpose of this work is the following: ’to'use the symmetry
: group su(3d) - Ty of the interaction Hamiltonian of the SU(3)—lm,ar1ant sca-

:, lar strong—-couphng theory as the spectrum generatlng group of the model

: and to determine the UIR of this non-compact g,roup representlng, the

} complete infinite set of posslble SU(3)-mult1plets whlch are the solution

_for this model. 'The band of the isobar states we obtained agrees w1th.

. the results of ref./B/ for the lowest levels.’

2, The Hamiltonian and its Symmetry Properties

The 1nteracting system of a static baryon octet source and an oc- -

tet - of scalar mesons in the statlc strong~-coupling approximation is cles—
oy .
cribed by the Hamlltonlan// : -

. .
Ho= 2] + %plal) 40",

S

where p is the average mass of the meson octet |

LA ~\

8, ' .
H =g Z(aF, + (1-a)D;)q,
i=1

is tlne interaction part of the Hamiltonian, g 'is the .coupling constant

“rand . .2 the mixing parameter, q; are the eomponents of the meson '

E octet q = (g,...q,) in the Cartesian basis, p; are canonically conjugate’

. to them and satisfy'_ordina.ry comr\nutation relations [ql 1Py ] = iﬁu, ,

layvqg, 1 ={p,.,p,1=0 . F e.rn:iD, are the 8x8matr1ces‘
 'w1th thelr elements defined -in terms of Gell-Mann’ s/ 1/ fuk and duk e
_,(,Fl )’ _;.--xt‘”k s D) =d Thelir commutation relations are ‘
F, . F, 1= it Fp o, [F,y ,D,]mf D,

. .

h =c=1

1

4

et S et e el

being "kinetic" and the other one "potential'"

“
v

Harmltonlan H represents on the one ha.nd an openator in the. me-—.

son varlables q; ‘ard on the other hand an 8x8 matrix In the octet . rep-
resentation' space. of the bare baryon states. It Is lnva.riant under the/
group SU(B) generated by the operators’ -
8 3 8

p fﬂk q‘ —= Fl -'-j.,kz-lf”k q’ Py )

1
§, kel qy

e

N B A
! B F‘ -
satisfying

‘A

A A ’
[F, .F,}aif, Fy

A

These .eight operators are easily shown to commute with the Hamiltonian H.-

ADeﬁning a potential energy operator V()

sy

. 8
V(D = %p? S q) +H
ie=1

_the Hamiltonlan H Is expressed as a. sum of two parts, the. first one

H= %3 p2 + V(‘_]’) )
=1 1 }

‘

From the form of V(§) It is seen that it commutes with the ™ " q,and
F’s, i=1, ..., 8 Since )

A N : e
i CFapd=ifay . : O

- (g S
it follows that the symmetry sroup of V()  is the group G-= SU(3) + Ty .

. 'a, semidirect product of the symmetry group SU(B) of the whole Hamll-‘

tonian H and. the abellan group of translations Tg generated by ‘h s,
i=1, ...'8 ( Ty is an lnvariant subgroup of G) Lie a.lgebra of G has
‘the following commutatlon relatlonc. i :

A Y

Py A { i ]0 \
. a = h g
[F,Fl=if, F [F,q,]-—lf”qur‘ 9,-9;4 ~ e

k

6]}

e
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the symmetry group G of V(J) ‘Is broken by the "einetic® term fo the

group SU(B). The basic assumption of the strong-coupling theory Is that i

the coupling constant g is Euﬂcienﬂy great (‘g >“>p’/’) so that the kine-

8 ) .
tic term lepf can be considered as a perturbation, With this assumption

= . .
one can consider the norn—compact symmetry group of v(3) as a spect-

rum. ganerating group of the model under consideration, There is a UIR

‘of G that will contain all the admissible states of the strongly coupled

.system investigated here. It is necessary to determine this UIR from some

.physically reasonable requirements, They will be discussed in the next
paragraph, / ‘ )

+3. Unitary Irreducible Representations of the Group SU(3)

UIR's of the non-compact groups given by a semidirect product of

a semi-simple Lie group and ‘an abelian lrrvarlant subgroup were investi~
gated in the works of \Nigner/ o , Macke;/ 10/ . Hermann/ 11/ , Cook and Sa-
kita and others by the method of so called induced representations.

As follows from these papers a UIR of the group SU(3) - Ty is unam- L
‘blguously determined by fixing the wvatriables characterizing the basic po— 3

smon %

of the little group of this vector ‘c’[ .

Every vector qn( Gy 5 eeey dg ) In the octet space which trans- \
forms according to the adoint representation of the' SU(3) group may be'

transformed into the basic positlon N

-

]
§ = (00,85 ,0,0,0,0,q4).

e
- N -
ThHe basic position 2 of ¢q

- 0 0
- two independent radial variables 9, and q,4
- metrizedg H

of a vector 4 In the octet space ard by chooslng the UIR '

is unambiguously characterized by the S

which can be para=

We assume ¢¥0. Then the little group of g

and Y,

) ' E '
q; = fsing , qy = fcose . : R

g that leaves this vector in-
variant Is the subgroup U(1) 12 u(1), ‘of SU(3) generated by the ktw’o
commuting operators F, and F, o )

An induced representation of SU(3) < Tg * is thus determined by giv-

ing the values of the two radial variables f and ¢ and of the two:-

quantum numbers I, and Y, characterizing the UIR of the-little grou;ra-
U(1):, QU(y « , , L
The values f ' and ¢ determining the physical UIR of G we are

looking for are chosen in such a way that an eigenvalue of the potential
energy operator V(7) (call it E = E(q)=E(f,$) ) would assume its ab-
Eq=Eqfy.bo) and ¢=do. X

Further, there is an eigenvector of V(q)correspondlng to this smallest exgen—

solute minimum for this choice of f= fo

value Eo . It is characterized by the quantum numbers lgp - and: Yo‘.’- .
Now Iz and Y, determine the UIR of the little g:.;'oup. The. éﬁaracteris—»
tics fy . ¢y » Iy, and Y, fix then the induced physic‘ai UIR of the
group SU(3) - Tq l

representations of SU(3) containing the vector with - quantum numbers 1 30

. The ground state of the interacting system is the ioWest

in‘its representation space. The ground state characte‘rizéd .
by o %o - Tso and Yo represents the lowest state that appears in the:

spectrum of the . system,

It is p0551b1e to estab].ish the composition of this . UIR of G w1th res=

pect to the maximal compact subgroup SU(3) by means ~of the exphclt‘r_ef-.:

lation for the matrix elements’ of translation operators q, betweeh diffei ;

rent representatlons of sU(3) contained in the representatlon space of ‘

“the UIR of G, The basis of this space is formed. by the representatlons".

of the max1ma1 compact subgroup SU(3) e

'X/”V(&')ﬂ is irnzariant under G. Therefore, V(3) '~in the space of a
UIR of G is a multiple of the unit operator and -its eigenvalues E are. .
functions of the irrvariant variables f{,.¢ ., E=E(f,é}. The elgenvalues

E(f,¢) of V(T) represent the energy of the system in-the. strong’ coupl—-u

‘mq limit, This energy_ is the same for all states of the UIR of G. Thus it

is natural to find the lowest eigerrvalue of E(f,¢). as a function of {: ‘and ¢
and it will play the role of the ground—state energy. of the svstem ‘in’.
the strong limit. . .
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Matrlx elements of the translatlon operators qp' in this basis are
3 - glven by the equatlon (for denvahon see the Append1x) : !
A 8 - Al

_'<()t’),/vv, |q I()t) Vilg>y \/ “smq’)E
: , °'¢°’3°'Y°) Tolg0Yo 100 1§lg0Ye

+ fcosp X

Aoos Ay P 8 A A8 A%
v op W 7 \elgeY, 000 IgI, Y

v p v

wh
ere qp

mine. the representation of SU(3) and N, ,N,. are their dimensions v, v’

are the spherical components of 4 the numbers (A),(A") deters

are the states in the representations a Q) yrespectively,and
(oo Yo
’I‘he unsymmetmzed Clebsch-Gordan coefficients of SU(3) are denoted ac-
‘cordmg to /12/) A state [V, v, 1>
by Q) , v and the index »Iov " that runs through all the pcssible values

characterize the UIR of the non—compact groups SU(3) .

of isotopic spin characterizing the isotopic spin projection Igo -
O . o N \

4., The Minimum Condition for the Potential Energy Operator V(D

The potential energy operator, V(3) is a matrix in the octet space
‘of baryon states:  ’ ) ' .
N 8 ' ’ 2 8 2 A
V(g) = g T (aF, +(1=-a)D; Vg +%p g, +1 ,
. {=1 : §=1 .
. - v P . . .
.~ where 1 is the 8x8 unit matrix,

For every octet vector q-( Ty 'y eeey q45 ) there exists an SU(3)

transformatlon ~u by means of VV'thh it can be transformed into the basic

Arposmon

_=uq. -7 (2)

(:o,¢0,_.

in the UIR of G is characterized '

. su(3)

To the transformation u there correspondsx/ an SU(3)’tranSforiination
U in the space of baryon states by means of which the-operator 'V,(q-’)
goes over to the form.

ISR ’ ’ o -3 0y 4 . .
v = F 1-a)D % p> «1 . :
T e

from/th'e Cartesian basis in the octet space of baryons used so far to a
spherica.l one., There the matrices Fg . Fg . Dy become diagonai and
Dy may be trivially dlagonahzed afterwards. o

- The vectors _e’i of the Cartesian basis in octet space have the

-components

- : . . 7 - \
(ei ), =_8“ ;i,jnl,...\ﬂ. X v

The vectors :p of the spherical basis in octet space are defined by'

\

Iyep 3°p where F,=1,,
' - . V3
Yep = Y;P where F& = Y, p= (1’,13 ,Y’).

8 A B - y
—lEalFl lEalFl
1=1 Vipe = =v@

This equation can be written in the form

3 % ‘ ; 1 S oa,tr ‘vq’p .
-t S a,F, 1 a, F 1 @ty Py - 2 0y Py
e 1=1 ot V(_c;)e =1 e HEk=1 V(_ci)e 1jke=1 ]

The parameters a; . 1 = 1, ... 8 are chosen in such a way ‘that .
N - : !
8 ¢ 2 ‘ _ T
i % oa;tya -1 3 a; e _ :
“klxukjik MR Bl B2 3 N o
e . q, € =(uq)r =q
- ‘ . . ‘ |
then ' 13 a, Fy B L
. U = e 1=1
i
9

In order to find the eigenvalues of V(3) explicitly. we have to pass.

x| Such a correspondence follows from the invariance of V(§) under
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The transition from the Cartesian basis to the spherical one is. provided Lo o oL : .
‘by & unitary 8x 8. matrix ' ‘

: o 0 0 0 0.0 O 1 o 0 o0 o. .0 o0 O
-\ [ e o ‘ > : 0 0 0 070 0 o0 0 10 0 0 0 0 -0
e1 \ 7 7-12— o . o0 o0 0 0 0 110 , o N
. 1 0 0 1 0 0 0 0 O
RRE y i Lo o 0 .0 0 0 P co ety
N V2 Vz ‘ ” | “1=10 .
R . ) : " 0 0 % 0 0 0 0 s 1 0 0 o % 0 0 0 0
es 0 0 1 o 0 0 0o 0 ¢ 100 D=3
- o 0 1 0 1 0 N 0 0 0 % 0 0 ) 0 0 0 0 -4 0 o [}
. eq | 0 - 0 ey 1 ;
N 72— VE . 0 0 0°0 % 0 o0 0 0 0 0 0 <% 0 0
cs 0 R L S 1 _
. ~ 0 0 0 0 0 4 0 0 0 0 0 0 0 % 0
2 0 o 0. 0 S Lo 0 Pt
8 %%-1
' ‘ o vz ‘ 040 0 0 0 o 0o 00 0 0 0 o0 -1
g o' 0 o0 - 0 =4 i o o - 3
€7 —72-..+J_2_ R v €.14.1 -
~.\-e’é' “\ o7 0. 0 0. "0 -0 0 0 1 060 , , , : /8] -
- L ‘ T Instead of the parameters g, a let us define the new parameters
Then the ’matrit/:eé; F and Dy ) g’ B ’
¢ording to the relations / ' gl—a) _ T dea)? %
j‘ = . / . g'cosﬂ = T ; g’sinfB =ga ; ‘vtgﬁn\/3‘—l—a:;; 8'=8(T+a2‘) i
s + S + :
Fi = Z Fl 4 Di =2 D;2Z .
. ) [ N
I ‘With these new parameters and the parameters { ‘and ¢ of q  the
s . rer : S . . . R
» Dy explicitly: transformed potential energy. operator V(q) ‘can be written inthe form
~ ’ b s . - L . A
0o 0 0 0 0 0.0 0 00 N S Tt s, = e :
' . . [ | o U V{q)U.= g'f(_\/3cosﬁsin¢Da +V3 cospcosBDg + . {
0 .0 fo o 0 o 0o o 0 o D 5 : :
. : A L
0 o 0 0 -0 0 0 0 0 0 ‘ Tl : ' ' : - :
: [ OR ‘ : S 8 . ’ 5 3.2 A -
o o | © 00 3 0 0 o0 0 4 o +sin Bsing F, fsmﬁcpsqSFB)-i-V:y. f 7-1 .
s ! - ’ : .
0 o s %’f{'ﬁ 0 0 0 0 0 0 o - ‘» i ‘
: 3 R ) In the matrix form
. B =h ~
0 o0 0 0 0 0 0 -3 0 0 i
3
Y% o0 [ 000 0. 0 0 0 3 o0 o e
0 0 \0 0 0 0 [V ] 0 0 ‘ ' ~ '
~ N ! ' h K
1
:! A 7 ~
~ - ;"r’
. . p : [
10 . N ' R o 11
. . .
ra
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[ cos(B=) 0 0> o 0 0 0 0

‘ - o ‘ V(D UL, . = {g’icos (B-d+ 2T 23742 -
: - ' Kot t {g’tcos (B~ + -3—) +Xp”f er%_“_l : , R
0 cos(B+d) 0 0 0 0 0 0 o ’ ' o : R [
] 0 cosﬁcoﬁ(ﬁ ] .0 0 0 cosPsing - . ) ' ' ’ !
: . . V(PUS, wi-gTcosB + ¥p? ? ju?
: . €3
0 0 0 cos(Brg- 3D 0 0 o 0 ; o . » 2
R ! . ) 2, A q. 3 N . -, -
N U+V(E)U=g’f 0 VO 0 0 cos(ﬁ-(ﬁ--z—)o 0 0 +%[.l. f.1 . -
) . ) . ; /r' ! . . o
RN : 0 0o - 0 ] ] cos(ﬂ+¢+g§7—)0 ] g - V(;)Ué’s ={gifcos B + Xp.’f’les ,
0 0 0 0 0 0 cos(Bp+ IO . : o
Y 0 cosﬁsin(ﬁ 0 0 0 0 ~—cosfcosh where - .
| $
;8 = co8 5 :000 —s8in -?—45’100 )
- Hence it is seen that the eigenvectors of v{3) ard the eigenvalues cor= ’ .

X neéponding to th‘em’ are given by the equations L P ¢ o

- 3 X . e8 = sin TeOOO + cos o € 100,
I P L 2.3 -+ . o T

VI(q)Ueyp = lg'fcos(B-¢b) + KpTt } Ueygo . The elgenvalues deperd only on the invariant octet variables \

| , ‘and the parameters +858 . Assuming B4 0 the smallest e]genvalﬁe J
V(&.)U;l—m: {g'fcos(ﬁ+¢)+%y2 fz}U;l—‘lO . ot

of VI(3) may be obtained-In 6 different ways,l.e, ‘6 possible choices of - .
SR | i { amd ¢: f=g'/p’ :

2w

: In all cases, the eigenvector corresponding
_ v(a’)uzw1 =_{ gfcos( B+~ 3T )+ %y 218,

to the minimal eigernvalue -~g° /2p® is: _ . '

.

- . : » -
V(;)U:u % {s’fcos(B—B——zgi)+ Y 12 YUey.gq 1 L L : ' $1 =B 7 : Uet1o g
) ~ . ] ¢2'-B 7 Ue, ;0 L S ‘
Co . . , 2 . g - . Y . | . . . . X . . U
I V(E)Ué’% +%-=1{g fcos(B+¢+T)+%p2f 1Uey ) . . . o g :
. 4 . .
by ==B-7 . Uey 1 g L
‘£ . -
b ' d N ~
¢,=B+3 Uey_y 1
L) . i N
\ e d
] b5 =-B+7 Vet l
— . -+ . :
$g =+B -7 Uey -1 -
12




F‘rom these. 6»pos‘sibiv1iti“es we choose for further investigation case ’3,
i.e. we ﬁ/x the variables f=g’/p2 Py =-Bﬂ—% and the quantum numbers
_of the third elgenivector are I, =%, Y = 1 . Let Us denote thls set of
numbers ( fo»¢g + Ty » Yo ) . They fix the UIR of SU(J - T, we_have

been looking for.

5, Structure of the UR ( fo , ¢4, fso, Yo )

The‘ UIR -of sSU(3). T, can be realized in an infinite-dimensional
f‘space Spanned by the'basis vectors of the finite—"-dimensional UIR's of

: the max.lmal compact subgroup SU(3) Explicit knowledge of the matrixi

'elements of ‘the  abelian generators  q in such a basis permits us to

. p )
identify the representations of SU(3) from which the UIR ( f, , $o0 , lao,

Yo ) of 'G is built up. This allows us to deterrmne all the physically

‘admlssxble states of the system,

- From (1). and the properties of the Clebsch—Gordan coefficients of
the- SU(3) group/ / it is_easy to show that the UIR (fo ,Pg » lg0 2 Yo )
contains all representations (A)= (p,q) of SU(3) satisfying the con-
dition - .

"p=q+3m, q=0l.., m=0,4+1, +2,...,p 20

with' the ‘exception of the SU(3) singlet (0O, O) R
Multlphcxty of a UR (A) of SU(3) in the UIR ( fo , 5 , by , Yo )

‘is‘glven by the number of the isotopic multiplets (with hypercharge Y, =1

‘ and contammg a state with the pr'OJection Igo = 1/2) which appear in
the given UIR ( A ) of SU(3) This multiplicity can be determined by ap-
plying a theorem describing the structure of a UIR of SU(3) with res-
pect: to its subgroup of isotopic spin (e.g. 13): ‘
‘Let p-, q be two numbers labelling the UIR ( p ; g ) of SU(3)

' Then to each paxr of integers x , p obeying the inequalities

p+q 2 k-2 q2p 20.

14

" .are contalned in the UIR (q +3m,q) ,

thefe are p +1 possible values of k.

‘sentation  (f, , &,

there corresponds an [sotopfc multiplet contalned once in the UR( p, a)

and characterized by isospin and hypercharge

¢

: ' 2p +4
I =%(x=-p) Y =« +”__p_-;__t_1_'

respectively, ( v v .
We are looking for all the isomultiplets with Y = 1and I, = 1f2 which '
f.e, all the isomultiplets with
I= (2K +1)/2,k=0,1... and Y= 1, contained in (¢ +3m ,q).

AN

From 1= 1/2 ( x —p ) we get k - g = 2k+] and from Y = 1 we -
get Kk+pm2(g+m)+l, hence K=g+m+k+1, p=q+m=k . From the first.
lnequall{y 0L < ¢q

"we obtain

’q$q+>m+k+1 <2q+3m ie. O0<m+k+1 < p, )

The integer k has to satisfy both these inequall’r.les s[multaneously,‘

Consequently for m= 1,2,3 ... there are q+1 possible vaIues of k;

for m= O there are q . possible values of k; and for m = ~1 ..2 ..3

\

i-,’.I.‘hlsA means for m » 1 representation (q + 3m,q)

and for m <=1, q+3m>0 representation (q + 3m,q ) appears (q +3m+1)

times :there. i ' el ‘/

The six lowest representatlons of SU (3) that appear ln fhe repre— ,' :

,1) of: SU(3). T, are placed ln the table.

Multiplicity

(p, q) Dimension N .y Posslble wlues ot 10
' : o Mo . for given UIR( phal)
(1,9 s . B ‘
(3,0) 10 1 3f2
(0,3) - 10* 1 T
(242) 27 2 Y2, 32
(3,1 35 2 32, 5/2
(1,9) 35 2 Yz 3f2

15

we find m<k < q+m; from. q<kK ISp‘A+q’

appears (q +1)f * 
times in (fo . %o » %, 1) ; representation (q , 4. ) appears times ff.’




v

k of the spectrum generatlng group SU(3) T,

f

‘.

f representatlons (p,’ q) ,

. :
\

:In thls ma.rmer we have found the set of all posslble SU(3) -

representatlons whlch appear ‘in our representation, (fo do- % , 1)
LAl these states represent

the physically realizable states of the strongly coupled system with the . ‘

" baryon octet as the grourd state.

6, Discussion

/
/

. We obtained a band of SU(3) rotational excited 'states (isobar states)'

‘ of the SU(3) invariant theory ot‘ scalar mesons strongly coupled to a

N

static baryon. ’ )
* This approach prov‘ldes a simple explanation of the presence of
SU(3) slnglet in the case of pure D’ coupling/ / In thls case B =0 ;

Hence the eigenvalue of the potentlal energy operator V(q) reaches
with 1, = Y, =0,
s arbitrary except some discrete values, As above
0=0) of G so defined consists of all SU(3)
(mod 3) but lncluding the SU(3) singlet

or s
1ts mmlmum values in the states Ue2 or U&,
“to=e /v’ and %
‘the UIR (fo L. Ige= 0,
p=gq
(0 0) now., L

‘The solution of the problem gwen here is not complete, In the point

'_ that we have not a general formula-for the energles of all the lsobar

v

- states™ / It would be necessary to find the dependence of the transformed

‘klnetic energy operator

group (whlch is the symmetry group of H ). However we do not know a

vt % 2 pl U  on the invariant operators of SU(3)

=1

’

convement parametrlzatlon of the octet space that would allow to perform

thls calcu.latlon explicitly.

In conclusion ‘we. would llke to express our thanks to Dr. V.G.Kady-

-k shevsky for turning out attention to the problem and his - constant interest

: and encouragement. We are also grateful ‘to Dr. B, Saklta for serxilng hls

paper to. us before publlcatlon. .

r{S/ The energies of the lowest SU(3) representatlons were calculated
i .

1

- X N
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{ APPENDIX . . .

Derivation of the Matrix Elements of g In the Basxs I()t)vlo'>r
K . 15

Here, the notation of/ /and/12[ is used Let us take a vector"

- . : : .
§ =10 0 sing 0.0 0 0 eo,s‘¢)"f'

g

s - A little group of 'Y ,(¢1‘0)1s the
‘of rotations B

labelling a particular character of T
group ‘U(l)la x: U(l)y

A
about the axes ea ;and_‘
=, BT

In eg

PR

in octet space. Let K be a senufdlrect D,l"OdL,lc_tz"'i e
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K =(U(), @ UM y) Ty -

k » L(x), k&K

- be a‘pa'rticular UIR of K in a Hilbert space H(L,K):
V - ) o 41-;.: ”aod 1Yo B
k=(a,a,B), Lla,a,B)=c¢ e e .

N

H(L,K) which are " L —covariant

i

We consider functions {f} from G to

" along left cosets of G modulo K

* f(gh) = f(@IL*(K), gGG . kGK. (A1)

Thxs property allows ‘us to

: (“ ~modulo . K. which can be. labelled by characters of Ty which are

-‘. \elements of &4n orbit of g ’ E R v y
- \ 3= R '

. . _ , 3

"here R is an SU(3) transformation. in octet space. The orbit of 4

is a 6-dimensional hypersurface . S, ", $) in q-space’ deﬁned by two

78/

SU(3)-invariant functions of q

« emm 8 ' s
IS ' Zf cos3 -
=f ., 3 2 dy 9,9y 9 = cos
Ty 7 v AR LA RERL

- -
G/X by taking in each class 4
- . -

» g T g R 2 § ‘ The
a partlcular rotation Rz leadmg from q . to 9., 9= q -

have a finite norm with respect to the left’ mvanant sca-

We obtam a set ‘of representatlves for

, funchons f(R-q;)
n 'Iar product

Y = [d3,f, (R m,(n ).
! orbltofé‘ 2

consider the functions only on the cosetS ef ’ :

Then the UR ( f, ¢ ,1,0, Y, )  of G induced by the UIR L(K) of g

can be written
‘ i

>
taa 1,0 1Y, B
e e

lu@mirlrgz) = (.,

R "q

where

-1

a,fB) = R+ RRp17.

The functions f(R ») can be formally expanded in terms ef the ‘ir-‘
reducnble representahons of SU(3) :

)} . ) . L

[oY) (8] : A) X * L
HR2)= 2 £ (10D » (R +)= . o (g™ ‘
CRRREE i A q) Afu’f””mpw (R&' ), - - (A2
Y !
where + R) is a matrix element of a fimte SU(3) transformatlon R in-

a UR ( )\/) of SU(3), as defined in/12 /. v=(,I,,Y). It can be denved from
15 :

A. 1) (see /) that we must take fixed va.lues of I and Y. in (A.2):
\Ae2);

Iy =14 , Y-Yo

T—Ie(gtze we should exvard f in term of a comnlete aet of funcﬁnngk
-1 . AN
("soY()-V‘R 2 )} with the additive quantum numbere I30 and . Y,  fikeds

o PRLE - : R
f(Ra) = 3 f 1 .
E Ty W ( )D(HaoYo)-V, (R bd ). o (A.3)

From (A.3) it follows immediately what UIR’s of sU(3) are contalned in
the UIR ( f-; ¢' l » Yo ) of Gy it consists of all SU(3) representations

which contain a vector with Ly =15 .Y=Y, in theu' representatlon space.

We introduce a non-normalizable basis ]q > and states

.

0> = f

-orbit of

-
g dTIRLI|T>
g
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-,

7> =8(3,q, f(n;)=<a’l¢>

" where 38-'(3.;') is ‘the invariant & function on S ( f , ¢ )

oo, 8@ @ de = 1D .
orbit of &~

“We pass to a new orthogonormal basis

K (A)* -1
M, 1, N ¢ D (R ,)]g>
I ¢130 o) -VH, A f ¥ foR 1301{0)1/ 214 .
orbit ofq '
or corrverselﬂr
le s oo™ o
> = .D., R 200 $
9 oy, A v d 127,15 (PIy0Y, )

- with
1y, ¥ y S VLTI, v LT > “¢I VYo =88, '3101& .
To ca.lculaté a mabkix element
M = <(A%), v”, 1/
(A, v lolq [()\)vl ¢180 ¥,)? :

where qp are the spencal components of generators ot' Ts " 'we .sub-

' stitute for the states from (A.4)): :

—_— A - * g :

= N,.N, ., aq” a¢ D, R, D (R,)<q qg.> .

. v ATTA J 44 §f q_ a’r Y).VI a (.(10’33(0)"" q .q7|>qplq; L

orbit of

Using

20

we get

P 2 A -1 * R-: ) : (A.5)
. R ,)D 2)q, . '
M=yN,N- [ , dq D(IO.I oV @ <10130y0).15 T p , .
. orbit of q .

-0. .
It remains to express ; as an SU(3) transformed q :

-1
0
= q: > D (Rs) =
I = Yay™ & Yo Taapw T C
OM -1 @* -1 )
R _)singg + D (R )cos].
= f[Duot‘b,nsw( e ooyt v 4

v

After the substitution of this in (A.5) and using relations (13. 8) ard (13 6) o

~

of/ / we get the resulting formula (2™,

~
N

x/’I‘his formula was given in/7/ for the first‘time. :
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