$$
\frac{C 323.4}{B-36}
$$

ОБЪЕДИНЕННЫЙ ИНСТИТУТ ЯДЕРНЫХ ИССЛЕДОВАНИЙ

Дубна

DYNAMICAL GROUP OF THE SCALAR SU(3) SYMMETRIC STRONG COUPLING THEORY

I. Introduction

The existence of unitary particle multiplets ${ }^{/ 1 /}$ - the baryon octet (N,E, $, \Lambda, \Lambda$) with spin $1 / 2$ and parity +1 , the decuplet of baryon resonances (N^{*}, \ldots) with spin $3 / 2$ and parity +1 , the octet of baryon resonances with spin $1 / 2$ and parity -1 - is now well established $/ 2 /$. It leads to an effort at an explanation of these multiplets as a consequence of the dynamics of strongly interacting particles.

For the first time, such a problem was solved in a simplifled form in the scalar and the pseudoscalar models of the static strong-coupling theory by Wentzel $/ 3 /$ and Paull and Dancoff $/ 4 /$ in the case of the isotopic SU (2) internal symmetry group. For pseudoscalar meson they found an infinite series of the possible states characterlzed by isospin 1 and spin J for which $1 m J$ and assumes the values $1 / 2,3 / 2,5 / 2, \ldots$ In a recent paper by Dothan and Ne'eman $/ 5 / x \mid$ it was shown that there is a unitary irreducible representation (UIR) of the symmetry group [SU(2) x. $\mathbf{x} \operatorname{SU}(2)] \cdot \mathrm{T}_{9}$, of the Interaction Hamiltonian of the Paull-Dancoff theory containing all the states with $I=J=1 / 2,3 / 2, \ldots$ which represent the solution of the pseudoscalar model In the static strong-coupling approximation. Therefore the symmetry group $[S U(2) \times S U(2)] \cdot T_{9}$ of the interaction Ha miltonian can be regarded as a dynamical or spectrum generating group of the Paull-Dancoff strong-coupling theory.

The static strong-coupling theory for the case of the SU(3) internal symmetry group with scalar mesons (without the coupling of spin) was partly solved in a paper by Dullemond $/ 8 /$ who found the six lowest $S U(3)$ rotational states and their energies.
$x /$ For the approach through the dispersion relations see $/ 6 /$ and $/ 7 \mid$.

The purpose of this work is the following: to use the symmetry group $\operatorname{SU}(3) \cdot T_{8}$ of the interaction Hamiltonian of the $S U(3)$-invariant scalar strong-coupling theory as the spectrum generating group of the model and to determine the UIR of this non-compact group representing the complete infinite set of possible $S U(3)$-multiplets which are the solution for this model. The band of the isobar states we obtained agrees with the results of ref. $/ 8 /$ for the lowest levels.

2. The Hamiltonian and its Symmetry Properties

The interacting system of a static baryon octet source and an octet of scalar mesons in the static strong-coupling approximation is described by the Hamiltonian $/ 8 /^{*}$

$$
H=\sum_{i=1}^{8}\left(1 / P_{i}^{2}+1 / 2 \mu^{2} q_{i}^{2}\right)+H^{\prime},
$$

where μ is the average mass of the meson octet,

$$
H^{\prime}=g \sum_{i=1}^{8}\left(a F_{1}+(1-a) D_{i}\right) q_{i}
$$

Is the interaction part of the Hamilonian, g is the coupling constant and a the mixing parameter, q_{1} are the components of the meson octet $\vec{q}=\left(q_{1} \cdots q_{8}\right)$ in the Cartesian basis, p_{i} are canonically conjugate to them and satisfy ordinary commutation relations $\left[q_{1}, p_{j}\right]=i \delta_{i j}$,
$[q ;, q]=,[P, 1 P ;]=0 \quad F_{1} \quad$ and D_{1} are the 8×8 matrices with their elements defined in terms of Gell-Mann's $/ 1 / f_{i j k}$ and $d_{i d k}$: $\left(F_{1}\right)_{j k}=-i f_{i j k}, \quad\left(D_{1}\right)_{j k}=d_{i j k}$ Their commutation relations are

$$
\left[F_{i}, F_{j}\right]=i f i k_{i f} F_{k},\left[F_{i}, D_{j}\right]=\text { if }{ }_{i j k} D_{k}
$$

Hamiltonian H represents on the one hand an operator in the meson variables q_{1} and on the other hand an 8×8 matrix in the octet representation space, of the bare baryon states. It is invariant under the, group $\operatorname{SU}(3)$ generated by the operators

$$
\hat{F}_{i}=F_{i}-\sum_{j, k=1}^{8} \sum_{i j k} q_{i} \frac{\partial}{q_{k}}=F_{1}+\sum_{j, k=1}^{8} f_{1 j k} q_{j} P_{k}
$$

satisfying

$$
\left[\hat{F}_{i}, \hat{F}_{j}\right]=i f_{1 j k} \hat{F}_{k}
$$

These eight operators are easily shown to commute with the Hamiltonian H.

Defining a potential energy operator $v(\vec{q})$

$$
V(\vec{q})=1 / 2 \mu^{2} \sum_{i=1}^{8} q_{i}^{2}+H^{\prime}
$$

the Hamiltonian H is expressed as a sum of two parts, the first one being "kinetic" and the other one "potential"

$$
H=1 / 2 \sum_{i=1}^{8} p_{i}^{2}+V(\vec{q})
$$

From the form of $v(\vec{q})$ it is seen that it commutes with the q_{1} and F_{i} 's $, i=1, \ldots, 8$. Since

$$
\left[\hat{F}_{i}, q_{j}\right]=i f_{1 j k} q_{k}
$$

it follows that the symmetry group of $V(\vec{q})$ is the group $G=S U(3) \cdot T_{8}$, a semidirect product of the symmetry group $S U(3)$ of the whole Hamiltonian H and the abellan group of translations T_{B} generated by $q_{1} s_{1}$.. $i=1, \ldots 8\left(T_{8}\right.$ is an invariant subgroup of G). Lie algebra of G has the following commutation relations:

$$
\left[\hat{F}_{1}, \hat{F}_{j}\right]=i f_{i j k} \hat{F}_{k}, \quad\left[\hat{F}_{i}, q_{j}\right]=i f_{1 j k} q_{k},\left[q_{1}, q_{j}\right]=0
$$

$$
\left[y \sum_{i=1}^{8} p_{i}^{2}, q_{j}\right]=-i p_{j} \neq 0
$$

the symmetry group G of $V(\vec{q})$ Is broken by the "kinetic" term to the group $S U(3)$. The basic assumption of the strong-coupling theory is that the coupling constant g is sufficiently great $\left(g>\mu^{8 / 2}\right)$ so that the kinetic term $1 / 2 \sum_{i=1}^{8} p_{i}^{2}$ can be considered as a perturbation. With this assumption one can consider the non-compact symmetry group of $v(\vec{q})$ as a spectrum generating group of the model under consideration. There is a UIR of G that will contain all the admissible states of the strongly coupled system investigated here. It is necessary to determine this UTR from some physically reasonable requirements. They will be discussed in the next paragraph.

3. Unitary Irreducible Representations of the Group $\operatorname{SU}(3)$

UR's of the non-compact groups given by a semidirect product of a semi-simple Lie group and an abelian invariant subgroup were investigated in the works of Wigner $/ 9 /$, Mackey $/ 10 /$, Hermann $/ 11 /$, Cook and Sakita and others by the method of so called induced representations.

As follows from these papers a UTR of the group $S U(3) \cdot T_{3}$ is unambiguously determined by fixing the variables characterizing the basic position \vec{q} of a vector \vec{q} in the octet space and by choosing the UIR of the little group of this vector \vec{q}.

Every vector $\vec{q}=\left(q_{1}, \ldots, q_{8}\right)$ in the octet space which transforms according to the adoint representation of the $\mathrm{SU}(3)$ group may be transformed into the basic position

$$
\vec{q}=\left(0,0, \stackrel{q}{q}_{s}, 0,0,0,0, \stackrel{0}{q}_{8}\right) .
$$

The basic position \vec{q} of \vec{q} is unambiguously characterized by the two independent radial variables $\quad \stackrel{0}{q}_{3}$ and $\dot{\mathbf{q}}_{8} \quad$ which can be parametrized $/ 8 /$:

$$
\stackrel{\theta}{q}_{3}=f \sin \phi,{\stackrel{0}{q_{3}}=f \cos \phi . ~ . ~}_{f}
$$

We assume $\phi \neq 0$. Then the little group of $\overrightarrow{0} \quad$ that leaves this vector invariant is the subgroup $U(1)_{I_{3}} \otimes U(1)_{Y} \quad$ of $S U(3)$ generated by the two commuting operators F_{8} and F_{8}

An induced representation of $S U(3) \cdot T_{8}$ is thus determined by giving the values of the two radial variables f and ϕ, and of the two quantum numbers I_{8} and Y, characterizing the UTR of the Iittle group $U(1)_{1_{3}} \otimes U(1)_{Y}$

The values f and ϕ determining the physical UIR of G we are looking for are chosen in such a way that an eigenvalue of the potential energy operator $V(\vec{q})$ (call it $E=E(\vec{q})=E(f, \phi)$) would assume its absolute minimum $\quad E_{0}=E_{0}\left(f_{0}, \phi_{0}\right)$ for this choice of $f=f_{0}$ and $\phi=\phi_{0} x /$. Further, there is an eigenvector of $V(\vec{q})$ corresponding to this smallest eigenvalue E_{0}. It is characterized by the quantum numbers I_{80} and Y_{0}. Now 1_{30} and Y_{0} determine the UTR of the little group. The characteristics $f_{0}, \phi_{0}, I_{s o}$ and Y_{0} fix then the induced physical UIR of the group $\operatorname{SU}(3) \cdot T_{B}$. The ground state of the interacting system is the lowest representations of $\operatorname{SU}(3)$ containing the vector with quantum numbers I_{30} and Y_{0} in its representation space. The ground state characterized by $I_{0}, \phi_{0}, \Gamma_{30}$ and Y_{0} represents the lowest state that appears in the spectrum of the system.

It is possible to establish the composition of this URR of G with respect to the maximal compact subgroup $\operatorname{SU}(3)$ by means of the explicit relation for the matrix elements of translation operators q, between different representations of $S U(3)$ contained in the representation space of the UIR of G. The basis of this space is formed by the representations of the maximal compact subgroup $\operatorname{SU}(3)$.

[^0]Matrix elements of the translation operators $q \rho$ in this basis are given by the equation (for derivation see the Appendix)

$$
\left(\begin{array}{ccc}
\lambda & 8 & \lambda^{\prime} \gamma \tag{1}\\
\nu & \rho & \nu^{\prime}
\end{array}\right)+f \cos \phi \sum_{\gamma}\left(\begin{array}{ccc}
\lambda & 8 & \lambda^{\prime} \\
\mathrm{I}_{0} \mathrm{I}_{30} \mathrm{Y}_{0} & 000 & \mathrm{I}_{0}^{\prime} \mathrm{I}_{30} \mathrm{Y}_{0}
\end{array}\right)\left(\begin{array}{ccc}
\lambda & 8 & \lambda^{\prime} \gamma \\
\nu & \rho & \nu^{\prime}
\end{array}\right),
$$

where q_{ρ} are the spherical components of \vec{q} the numbers $(\lambda),\left(\lambda^{\prime}\right)$ deterw mine the representation of $S U(3)$ and N_{λ}, N_{λ}, are their dimensions ν, ν^{\prime} are the states in the representations $(\lambda),\left(\lambda^{\prime}\right),{ }_{2}$ respectively, and $\quad\left(f_{0}, \phi_{0}\right.$, ($I_{30}, \phi Y_{0}$) characterize the UTR of the non-compact groups SU(3) - T_{B} The unsymmetrized Clebsch-Gordan coefficients of $S U(3)$ are denoted according to $/ 12 /$. A state $\left|(\lambda), \nu, I_{0}\right\rangle$ in the UIR of G is characterized by $(\lambda), \nu$ and the index I_{0} that runs through all the possible values of isotopic spin characterizing the isotopic spin projection I_{30}. .
4. The Minimum Condition for the Potential Energy Operator $\mathbf{v}(\overrightarrow{\mathrm{q}})$

The potential energy operator $\mathrm{v}(\overrightarrow{\mathrm{q}})$ is a matrix in the octet space of baryon states:

$$
v(\vec{q})=g \sum_{i=1}^{8}\left(\alpha F_{i}+(1-\alpha) D_{i}\right) q_{i}+1 / 2 \mu^{2} \sum_{i=1}^{8} q_{i}^{2} \cdot \hat{l},
$$

where \hat{l} is the 8×8 unit matrix.
For every octet vector $\vec{q}=\left(q_{1}, \ldots, q_{8}\right)$ there exists an $S U(3)$ transformation u by means of which it can be transformed into the basic position

$$
\begin{equation*}
\stackrel{\overrightarrow{\mathbf{o}}}{\stackrel{q}{\mathbf{q}}}=\mathbf{u} \overrightarrow{\mathbf{q}} . \tag{2}
\end{equation*}
$$

To the transformation u there corresponds $s^{x /}$ an $S U(3)$ transformation U in the space of baryon states by means of which the operator $\mathrm{V}(\overrightarrow{\mathrm{q}})$ goes over to the form

In order to find the eigenvalues of $V(\vec{q})$ explicitly we have to pass from/the Cartesian basis in the octet space of baryons used so far to a spherical one. There the matrices F_{3}, F_{8}, D_{8} become diagonal and D_{3} may be trivially diagonalized afterwands

The vectors \vec{e}_{i} of the Cartesian basis in octet space have the -components

$$
(\vec{e},)_{j}=\delta_{1 j} \quad i, j=1, \ldots 8 .
$$

The vectors \vec{e}_{ρ} of the spherical basis in octet space are defined by

$$
\begin{array}{ll}
\mathbf{I}_{3} \overrightarrow{\mathrm{e}}_{\rho}=\mathrm{I}_{3} \overrightarrow{\mathrm{e}}_{\rho} \quad \text { where } \quad \mathrm{F}_{3}=\mathrm{I}_{3}, \\
\mathrm{Y}_{\mathrm{e}} \overrightarrow{\mathrm{P}}=\mathrm{Y} \overrightarrow{\mathrm{e}}_{\rho} \quad & \text { where } \quad \mathrm{F}_{8}=\frac{\sqrt{3}}{2} \mathrm{Y}, \rho=\left(1, \mathrm{I}_{3}, \mathrm{Y}\right) .
\end{array}
$$

```
\(x /\) Such a correspondence follows from the invariance of \(\mathbf{v}(\vec{q})\) under SU(3)
\[
e^{-1 \sum_{i=1}^{8} \alpha_{1} \hat{F}_{1}} \quad V(\vec{q}) e^{\sum_{1=1}^{8} \alpha_{i} \hat{F}_{1}}=V(\vec{q})
\]
```

This equation can be written in the form

The parameters $\alpha_{1}, \quad 1=1, \ldots 8$ are chosen in such a way that $e^{i \sum_{i j k=1}^{8} a_{i} f_{i j k} a_{j} p_{k}} q_{r}^{-i \sum_{i j k=1}^{8} a_{i} f_{i j k} q_{i} p_{k}}=(u)_{r}=q_{r}^{0}$
then

$U=e^{i \sum_{=1}^{8} a_{1} F_{1}}$
9

The transition from the Cartesian basis to the spherical one is provided by a unitary 8×8 matrix

Then the matrices F_{1} and D_{1} are transformed to the spherical basis according to the relations

$$
F_{i}^{s}=Z^{+}{ }_{F_{i}} Z \quad D_{i}^{s}=Z^{+} D_{i} Z
$$

We give $F_{3}^{S}, F_{8}^{S}, D_{3}^{S}, D_{8}^{S}$ explicitly:
$F_{3}=\left(\begin{array}{cccccccc}1 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\ 0 & -1 & 0 & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 1 / 2 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & -1 / 2 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & 1 / 2 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & 0 & -1 / 2 & 0 \\ 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0\end{array}\right) \quad F_{8}^{s}=\frac{1}{2 \sqrt{3}}\left(\begin{array}{cccccccc}0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 3 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 3 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & -3 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & 0 & -3 & 0 \\ 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0\end{array}\right)$

Hence it is seen that the eigenvectors of $v(\vec{q})$ and the eigenvalues corresponding to them are given by the equations

$$
\begin{aligned}
& V(\vec{q}) \cup \vec{e}_{110}=\left\{g^{\prime} f \cos (\beta-\phi)+K_{2} \mu^{2} f^{2}\right\} U \vec{e}_{110} \\
& V(\vec{q}) U \vec{e}_{1-10}=\left\{g^{\prime} f \cos (\beta+\phi)+1 / 2 \mu^{2} f^{2}\right\} U \vec{e}_{1-10} \\
& V(\vec{q}) U \vec{e}_{i L_{1 / 2}:}=\left\{g^{\prime} \mathrm{f} \cos \left(\beta+\phi-\frac{2 \pi}{3}\right)+1 / 2 \mu^{2} f^{2}\right\} U \vec{e}_{1 / 21 / 2} \\
& V(\vec{q}) \vec{U}_{y_{k-1 / 2}}=\left\{g^{\prime} f \cos \left(\beta-\beta-\frac{2 \pi}{3}\right)+1 / 2 \mu^{2} f^{2}\right\} \vec{U}_{1 / 2-1 / 2} 1 \\
& V(\vec{q}) U \vec{e} \quad \underset{1 / 2}{ }=\left\{g^{\prime}=12 \cos \left(\beta+\phi+\frac{2 \pi}{3}\right)+1 / 2 \mu^{2} f^{2}\right\} U \vec{e}_{1 / 2}+1 / 2-1
\end{aligned}
$$

$$
V(\vec{q}) U \vec{e}_{1 / 2-1 / 2-1}=\left\{g^{\prime} f \cos \left(\beta-\phi+\frac{2 \pi}{3}\right)+1 / \mu^{2} f^{2}\right\} U \vec{e}_{1 / 2-1 / 2-1}
$$

$$
V(\vec{q}) U \vec{e}_{2}=\left\{-g^{\prime} f \cos \beta+y \mu^{2} f^{2}\right\} U \vec{e}_{2}
$$

$$
V(\vec{q}) U \vec{e}_{8}=\left\{g^{\prime} f \cos \beta+1 / 2 \mu^{2} f^{2}\right\} U \vec{e}_{8},
$$

where

$$
\begin{gathered}
\vec{e}_{8}=\cos \frac{\phi}{2} \vec{e}_{000}-\sin \frac{\phi^{4}}{2} \vec{e}_{100} \\
e_{8}=\sin \frac{\phi}{2} \vec{e}_{000}+\cos \frac{\phi}{2} \vec{e}_{100}
\end{gathered}
$$

The elgerrvalues depend only on the invariant octet variables and the parameters $+g^{\prime}, \beta$. Assuming $\beta \neq 0$ the smallest elgenvalue of $V(\vec{q})$ may be obtained-In 6 different ways, l.e. 6 possible choices of
f and $\phi: f * g^{\prime} / \mu^{2}$ In all cases, the eigenvector corresponding to the minimal eigervalue $-g^{\prime 2} / 2 \mu^{2}$ is:

$\phi_{1}=\beta \pm \pi$	
$\phi_{2}=-\beta \pm \pi$	$U \vec{e}_{110}$
$\phi_{3}=-\beta-\frac{\pi}{3}$	$U \vec{e}_{1-10}$
$\phi_{4}=\beta+\frac{\pi}{3}$	$U \vec{e}_{1 / 2 / 1}$
$\phi_{5}=-\beta+\frac{\pi}{3}$	$U \vec{e}_{1 / 2-K 1}$
$\phi_{6}=-\beta-\frac{\pi}{3}$	$U \vec{e}_{1 / 4-1}$

From these 6 possibilities we choose for further investigation case 3, i.e. we fix the variables $f=g^{\prime} / \mu^{2}, \phi_{3}=-\beta-\frac{\pi}{3}$ and the quantum numbers of the third eigervector are, $I_{3}=1 / 2, Y=1$. Let us denote this set of numbers ($\mathrm{f}_{0}, \phi_{0}, \mathrm{I}_{30}, \mathrm{Y}_{0}$). They fix the UTR of $\mathrm{SU}(3) \cdot \mathrm{T}_{8}$ we have been looking for.
5. Structure of the $\operatorname{UR}\left(\mathrm{f}_{0}, \phi_{0}, \mathrm{I}_{30}, \mathrm{Y}_{0}\right)$

The UR of $S U(3) \cdot T_{8}$ can be realized in an infinite-dimensional space spanned by the basis, vectors of the finite-dimensional URR's of the maximal compact subgroup $S U(3)$. Explicit knowledge of the matrix elements of the abelian generators ${ }^{q} \rho$. in, such a basis permits us to identify the representations of $\operatorname{SU}(3)$ from which the $\operatorname{UR}\left(\mathrm{F}_{0}, \phi_{0}, I_{80}\right.$, Y_{0}) of G is built up. This allows us to determine all the physically admissible states of the system.

From (1) and the properties of the Clebsch-Gordan coefficients of the $\operatorname{SU}(3)$ group $/ 13 /$ it is, easy to show that the URR ($\left.I_{0}, \phi_{0}, I_{30}, Y_{0}\right)$ contains all representations $(\lambda)=(p, q)$ of $S U(3)$ satisfying the condition

$$
p=q+3_{m}, \quad q=0,1 \ldots, \quad m=0, \pm 1, \pm 2, \ldots, p \geq 0
$$

with the exception of the $\operatorname{SU}(3)$ singlet $(0,0)$.
Multiplicity of $a \operatorname{UTR}(\lambda)$ of $\operatorname{SU}(3)$ in the $\operatorname{UIR}\left(f_{0}, \phi_{0}, h_{0}, Y_{0}\right)$ is given by the number of the isotopic multiplets (with hypercharge $Y_{0}=1$ and containing a state with the projection $I_{30}=1 / 2$) which appear in the given UTR (λ) of SU(3). This multiplicity can be determined by applying a theorem describing the structure of a UIR of $\operatorname{SU}(3)$ with respect to its subgroup of isotopic spin (e.g. 13):

Let p, q be two numbers labelling the URR ($\mathbf{p} ; \mathbf{q}$) of $\operatorname{SU}(3)$. Then to each pair of integers κ, μ obeying the inequalities

$$
\mathrm{p}+\mathrm{q} \geq \kappa \geq \mathrm{q} \geq \mu \geq 0
$$

there corresponds an isotopic multiplet contained once in the $\operatorname{UR}(\mathbf{P}, \mathbf{q})$ and characterized by isospin and hypercharge

$$
I=1 / 2(\kappa-\mu) \quad Y=\kappa+\mu-\frac{2 p+4 q}{3}
$$

respectively.
We are looking for all the isomultiplets with $Y=1$ and $I_{3}-1 / 2$ which are contained in the $\operatorname{UIR}(q+3 m, q)$, i.e. all the isomultiplets with $1=(2 k+1) / 2, k=0,1 \ldots$ and $Y=1$, contained in $(q+3 m, q)$.

From $1=1 / 2(\kappa-\mu)$ we get $\kappa-\mu=2 k+1$ and from $Y=1$ we get $k+\mu=2(q+m)+1$, hence $\kappa=q+m+k+1, \mu=q+m=k$. From the first inequality $0 \leq \mu \leq q \quad$ we find $m \leq k \leq q+m$; from $q \leq \kappa \leq p+q$ we obtain

```
q}\leqq+m+k+1\leq2q+3m i.e. 0\leqm+k+1\leqp.
```

The integer k has to satisfy both these inequalities simultaneously. Consequently for $m=1,2,3 \ldots$ there are $q+1$ possible values of k; for $m=0$ there are q possible values of k and for $m=-1,-2,-3$, ... there are $p+1$ possible values of k.

This means for $m \geq 1$ representation $\left(q+3_{m, q}^{*}\right) \quad$ appears $(q+1)$ times in ($f_{0} ; \phi_{0}, 1 / 2,1$); representation (q, q) appears q times and for $m \leq-1, q+3 m \geq 0$ representation $(q+3 m, q) \quad$ appears $(q+3 m+1)$ times there.

The six lowest representations of $S U(3)$ that appear in the representation $\left(f_{0}, \phi_{0}, 1 / 1, I\right)$ of $\operatorname{SU}(3)$. T_{8} are placed in the table:

(p, q)	Dimension	$N_{(p, q)}$	MuItiplicity $M_{(p, q)}$	Possible values of 1_{0} for glven UIR(\mathbf{P}, \mathbf{q})
$(1,1)$	8		1	1/2
$(3,0)$	10		1	3/2
$(0,3)$	10^{x}		1	1/2
$(2,2)$	27	\cdots	2	1/2, 3/2
$(4,1)$	35		2	3/2, 5/2
$(1,4)$	35		2	I/2,3/2

In this manner we have found the set of all possible su(3) representations which appear in our representation ($\mathbf{i}_{0}, \phi_{0}, 1 / 2,1$) of the spectrum generating group $S U(3) . T_{8}$. All these states represent the physically realizable states of the strongly coupled system with the baryon octet as the ground state.
6. Discussion

We obtained a band of SU(3) rotational excited states (isobar states) of the $\operatorname{SU}(3)$ invariant theory of scalar mesons strongly coupled to a static baryon.

This approach provides a simple explanation of the presence of $\operatorname{SU}(3)$ singlet in the case of pure D^{-}coupling $/ 14 /$. In this case $\beta=0$ or π. Hence the elgenvalue of the potential energy operator $V(\vec{q})$ reaches its minimum values in the states $U \vec{e}_{2}$ or $U \vec{e}_{B}$ with $I_{B O}=Y_{0}=0$, $f_{0}=g^{\prime} / \mu^{2}$ and ϕ is arbitrary except some discrete values. As above the UR $\left(I_{0}, \phi, I_{30}=0, Y_{0}=0\right)$ of G so defined consists of all $\operatorname{SU}(3)$ representations $(p, q), p=q \quad(\bmod 3)$ but including the $S U(3)$ singlet $(0,0)$ now.

The solution of the problem given here is not complete, in the point that we have not a general formula for the energies of all the isobar states x / It would be necessary to find the dependence of the transformed kinetic energy operator $U^{+} X \sum_{i=1}^{B} p_{1}^{2} u$ on the invariant operators of $S U(3)$ group (which is the symmetry group of H). However we do not know a convenient parametrization of the octet space that would allow to perform' this calculation explicitly.

In conclusion we would like to express our thanks to Dr. V.G.Kadyshevsky for turning out attention to the problem and his constant interest and encouragement. We are also grateful to Dr. B. Sakita for sending his paper to us before publication.

[^1]1. M.Gell-Mann Phys. Rev., 125, 1067 (1962); Y.Ne'emen Nucl.Phys., 26 , 222 (1961).
2. A.H.Rosenfeld. Proceedings of International Spring School for Theorethcal Physics of Joint Institut for Nuclear Research, Yalta, 1966.
3. G.Wentzel. Helv. Phys.Acta, 13, 269 (1940); 14, 633 (1941).
4. W.Paull, S.N.Dancoff. Phys.Rev., 62, 85 (1942).
5. Y.Dothan, Y.Ne'eman Proc. of the 2 nd Topical Conference on Resonant Particles, A thens (Ohio), June 10-12, 1965.
6. T.Cock, C.J.Goebel, B.Sakitá. Phys.Rev.Lett., 15, 35 (1965).
7. V.J. Goebel. Proc. of the 1965 Midwest Conference on Theoretical Physics, Columbus (Ohio), p. 63.
8. C.Dullemond. Ann of Phys., 33, 214 (1965).
9. E.P.Wigner. Ann of Math, (2), 40, 149 (1939).
10. G.W.Mackey, Group representations on Hilbert Space. Appendix to I.R.Segal's Mathematical problems of relativistic physics, Amer.Math, Sac. 1963.
11. ReHermann. Lle groups for physicists, Benjamin, 1966.
12. J.J. de Swart Rev. Mod. Phys., 35 , 916 (1963).
13. N.Mukunda, L.K. Pandit. J.Math. Phys., 6 , 745 (1965).
14. G. Whtzel. Supplement of Progr. Theor phys. Commemoration. H. Yukawa issue (1965) p. 108.
15. J.Voisin. J.Math,Phys., G, 1519 (1959), Syracuse Univ., Syracuse N.Y. 1966 (NYO 3399-57, 1206-SU-57).

> Received by Publishing Department on November $29,1966$.
i
APPENDIX
Derivation of the Matrix Elements of q_{ρ} in the Basis $\left|(\lambda) \nu I_{0}\right\rangle$ Here, the notation of $/ 15 /$ and $/ 12 /$ is used. Let us take a vector

$$
\overrightarrow{0}=f\left(\begin{array}{llllll}
0 & 0 & \sin \phi & 0 & 0 & 0
\end{array} 0 \cos \phi\right)
$$

labelling a particular character of $T_{8} . A$ little group of $\vec{q}_{8}(\phi, 0)$ is the group $\mathrm{U}(1)_{1_{3}} \times \mathrm{U}(1)_{Y}$ of rotations (a, β) about the axes \vec{e}_{3} and in \vec{e}_{8} in octet space. Let K be a semi-direct product

$$
K=\left(U(1)_{I} \otimes U(1)_{Y}\right) \cdot T_{8}
$$

and

$$
k \rightarrow L(k), \quad k \in K
$$

be a particular UR of K in a Hilbert space $H(L, K)$:

$$
k=(\vec{a}, a, \beta), L(\vec{a}, a, \beta)=e^{\overrightarrow{\mathrm{a}} \cdot \overrightarrow{\mathrm{a}}} e^{11_{30} \alpha} e^{i Y_{0} \beta}
$$

We consider functions [f] from G to $H(L, K)$ which are " L-covariant along left cosets of G modulo $K^{\prime \prime}$

$$
\begin{equation*}
f(g k)=f(g) L^{*}(k), \quad g G G, \quad k \in K \tag{A. 1}
\end{equation*}
$$

This property allows us to consider the functions only on the cosets of G modulo, K which can be labelled by characters of T_{8} which are jelements of an orbit of $\stackrel{\rightharpoonup}{q}$

$$
\vec{q}=\mathrm{R}_{\mathrm{q}}^{\mathrm{O}}
$$

here R is an $S U(3)$ transformation in octet space. The orbit of \vec{q} s a 6-dimensional hypersurface $S_{6}(f, \phi)$ in \vec{q}-space defined by two SU(3)-imvariant functions of $\vec{q} / 8 /$

$$
\sum_{i=1}^{8} q_{i}^{2}=f^{2}, \sqrt{3} \sum_{i j k=1}^{8} d_{i j k} q_{i} q_{j} q_{k}=-f^{8} \cos 3 \phi .
$$

We obtain a set of representatives for G / K by taking in each class \vec{q} a particular rotation $\vec{R}_{\vec{q}}$ leading from \vec{q}, to $\vec{q}, \vec{q}=R_{\vec{q}} \vec{q}$. The functions $f\left(R_{\vec{q}}\right)$ have a finite norm with respect to the left invariant scalar product

$$
\left(f_{2}, f_{1}\right)=\int_{\text {orbst of }} \vec{q}_{\vec{q}} f_{2}\left(R_{\vec{q}}\right) f_{1}\left(R_{\vec{q}}\right)
$$

Then the UIR ($1, \phi, I_{30}, Y_{0}$) of G induced by the URR $L(k)$ of k can be written

$$
[U(\vec{a}, R) f]\left(R_{\vec{q}}\right)=e^{l \vec{q} \vec{a}} e^{1 I_{30} a} e^{i Y_{0} \beta} f\left(R_{R^{-1} \vec{q}}\right)
$$

where

$$
(\alpha, \beta)=\underset{\mathrm{q}}{\overrightarrow{-1}} \mathrm{RR}_{\mathrm{R}}-\overrightarrow{\mathrm{q}}
$$

The functions $f\left(R_{\vec{q}}\right)$ can be formally expanded in terms of the irreducible representations of $\operatorname{SU}(3)$

$$
\begin{equation*}
f\left(R_{\vec{q}}\right)=\sum_{\lambda \nu \nu^{\prime}} f_{\nu}^{(\lambda)}(1) D_{\nu^{\prime} \nu}^{(\lambda)}\left(R_{\vec{q}}\right)=\sum_{\lambda \nu \nu^{\prime}} f_{\nu^{\prime} \nu}^{(\lambda)}(1) D_{\nu \nu^{\prime}}^{(\lambda) *}\left(R_{\vec{q}}^{-1}\right) \tag{A.2}
\end{equation*}
$$

where $D_{\nu}^{(\lambda)}(R)$ is a matrix element of a finite $\operatorname{SU}(3)$ transformation R in a UIR (λ) of $S U(3)$, as defined in ${ }^{/ 12 /}, \nu=(1,1, Y)$. It can be derived from (A.1) (see $/ 15 /$) that we must take fixed values of I_{3} and Y in (A.2),

$$
I_{3}=I_{30}, Y=Y_{0}
$$

Hence we should exnand f in term of a complete get of functions

$$
\begin{equation*}
f\left(R_{\vec{q}}\right)=\sum_{\lambda I \nu^{\prime}} f_{I \nu^{\prime}}^{(\lambda)}(1) D_{\left(I_{30} Y_{0}\right.}^{(\lambda) *}, \nu^{\left(R_{\vec{q}}^{-1}\right)} \tag{A.3}
\end{equation*}
$$

From (A.3) it follows immediately what UIR's of SU(3) are contained in the UIR ($\left.I ; \phi I_{30}, Y_{0}\right)$ of $G ;$ it consists of all SU(3) representations which contain a vector with $I_{3}=I_{30}, Y=Y_{0}$ in their representation space.

We introduce a non-normalizable basis $|\vec{q}\rangle$ and states

$$
|\Phi\rangle-\int_{\text {orbit of }} \vec{q} \vec{d} \vec{q} f\left(R_{\vec{q}}\right)|\vec{q}\rangle
$$

with

$$
\langle\vec{q} \mid \vec{q}\rangle=\delta \vec{q}\left(\vec{q}, \vec{q}^{*}\right), f\left(R_{\vec{q}}\right)=\langle\vec{q} \mid \Phi\rangle
$$

where $\delta_{\vec{Q}}\left(\vec{q}, \vec{q}^{\prime}\right) \quad$ is the invariant δ function on $s_{f}(f, \phi)$

$$
\int_{\text {orbit of }} \vec{q}^{\delta} \overrightarrow{0}^{\prime}\left(\vec{q}, \vec{q}^{\prime}\right) f\left(\vec{q}^{\prime}\right) d \vec{q}^{\prime}=f(\vec{q}) .
$$

We pass to a new orthogonormal basis
or conversely

$$
|\vec{q}\rangle=\sum_{\lambda^{\prime} \nu^{\prime} I_{0}^{\prime}} \sqrt{N_{\lambda}}, D_{\left.\left(I_{0}^{\prime} I_{30} y_{0}\right), \nu^{\prime}\right)}^{\left(H_{\vec{q}}^{-1}\right)\left|(\lambda), \nu^{\prime}, I_{0}^{\prime}\right\rangle_{\left(!\phi I_{30} y_{0}\right)},}
$$

with

$$
\left(\phi_{\mathrm{I}_{30} Y_{0}}<\left(\lambda^{\prime}\right), \nu^{\prime}, \mathrm{I}_{0}^{\prime} \mid(\lambda), \nu, \mathrm{I}_{0} \geqslant_{\left(1 \phi \mathrm{I}_{30} \mathrm{v}_{0}\right)}=\delta_{\lambda \lambda} \cdot \delta_{\nu \nu} \delta_{\mathrm{I}_{0} \mathrm{I}_{0}^{\prime}}\right.
$$

To calculate a matrix element

$$
M=\left\langle\left(\lambda^{\prime}\right), \nu^{\prime}, I_{0}^{\prime}\right| q_{\rho}\left|(\lambda), \nu, I_{0}\right\rangle\left(1 \phi I_{30} y_{0}\right),
$$

where q_{ρ} are the sperical components of generators of T_{8} we substitute for the states from (A.4)):

Using

$$
\left\langle\left.\vec{q}^{\prime}\right|_{\rho} \mid \vec{q}\right\rangle=q_{\rho} \delta_{q}^{\vec{o}}\left(\vec{q}, \vec{q}^{\prime}\right)
$$

we get

It remains to express \vec{q} as an $S U(3)$ transformed $\stackrel{\overrightarrow{0}}{q}$:

$$
\begin{aligned}
& \mathrm{q}_{\rho}=\mathrm{q}_{\left(\mathrm{II}_{3} \mathrm{Y}\right)}={\underset{\sigma}{\boldsymbol{V}}}^{\stackrel{0}{q}_{\sigma} \mathrm{D}_{\sigma,\left(\mathrm{II}_{3} Y\right.}\left(\mathrm{R}_{\vec{q}}^{-1}\right)=}
\end{aligned}
$$

After the substitution of this in (A.5) and using relations (13.8) and (13.6) of $/ 12 /$ we get the resulting formula (1) ${ }^{\dot{x} / \text {. }}$

[^2]
[^0]: $x / v(\vec{q})$ is invariant under G. Therefore, $v(\vec{q})$ in the space of a UTR of G is a multiple of the unit operator and its eicenvalues E are. functions of the invariant variables $1, \phi, E=E(f, \phi)$. The eidenvalues $E(f, \phi)$ of $V(\vec{q})$ represent the energy of the system in the strong coupling limit. This energy is the same for all states of the UIR of $G_{\text {. Th }}$ Thus it is natural to find the lowest eigenvalue of $E(1 ; \phi)$ as a function of 1 and ϕ and it will play the role of the ground-state eneray of the svstem in the strong limit.

[^1]: in $/ 8 /$ The energies of the lowest $S U(3)$ representations were calculated

[^2]: $x /$ This formula was given in ${ }^{/ 7 /}$ for the first time.

