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I. Introduction 

We shall investigate the separation of variables in the equation 

( 1) 

where A is the Laplace operator in tWo-: ~ensional spaces with constant posi­

tive, zero or negative · curvature, and demonstrate how the choice · ot the coordi­

nate system is connected with the choice of an operator, diagonalized simultane­

o~..~;sly with the Laplace operator, i.e. with the choice· of certain integrals of motion 

and quantum numbers. (We call an operator L diagonal; if the eigenfunctions 

!='f ( 1) satisfy the equation L¢ - p¢). 

Such a problem is interesting from the physical point of view for several 

reasons. 

Firstly, the obtained results can be applied to construct. representations of 

the Poincare group/ 1•2/ since the groups of rrotions of the considered spaces, 

i.e. the three- dimensional rotation group o( 3), the group of motions of the eucH­

de~n plane E
2 

and the three-dimensional Lorentz group 0(2,1) are litue groups 

·of ·the Poincare group, corresponding to. a time-like, isotropic or space-ilke/ 
3
/. 

vectorx/ •. It follows that we . are actually considering possible parametriiations of 

the relativistic ·spin in the physical or unphysical regions (or on the light cone). 

Such parametrizations should prove useful e'.g. in the the analytical continuation 

'of wave functions. and 'amplitudes for .particles with spir1. 

· Secondly, the representation theory of compact and specially noncompact 

groups finds many applications ·in physics, e.g. in investigations concerning· rela­

tivistic generalizations of the SU ( 6) symmetry, or in the c;>btaining of complete 

sets of functions with definite transformation properties,in terms of which physi­

cal quantities, like reaction· amplitudes, can be expanded. '!he choice of the 

x/ '!he little. group, corresponding to a fixed null-vector is .. simply the hom<>-: 
geneous Lorentz group. The separation of variables on the corresponc:ijng three­
dimensional hyperboloid z~- z~ -z: -z: -1 haS been considered W 10b.nd its 
connecti9n wlith diagonal operators, quadratical in the generators of the Lorentz 
group in! 6, 7 • · · 

,3 



diagonal operator L d-etermines the choice of the basis of the corre~ponding 
group representation. An analogous problem was flrst considered in connection 

with the invariant expansions of relativistic amplitudes in terms of the basis func­

tions of the ucltary representati~ns of the Lorentz grouJ 
4

/ •. It was shown ir/ 
5

• 
6

/ , 

that the diagonaJ.izatlon of operators, which are invariants of the subgroups of the · 

Lorentz group, leads to coordinate systems with one centre. The diagont'lization 

of other operators, quadrati~ in the generato~s of the Lorentz .group/
6

• 
7

/ leads 

to coordinate systems of the elliptical or parabolical type, 
-..J . 

Thirdly, in the investigation of higher symmetries in quantum mechanics, spe­

cifically in a search for all potentlals, having a symmetry grc;mp larger than the 

evident geometrical symmetry group, it also proved necessary to find all operators, 

commuting with the Laplace operator and leadirig to the separ:'ation of variable/3•~/ 
We shall prove the following assertion: 

Theorem. A linear self-adjoint operator Lk 1 being a homogeneous quadratical 

polynomial in . th,e .generators of the group of motions of the considered two dimen­

sional space with constant curvature, corresponds to each system of coordinates 

in which the variables in ~quation .( 1) separate. The operator L k is determined 

by the condition LIt t/1 • ll 1/J 1 where 1/J are · solutions of ( 1), separated in 

K · As K runs through all types of coordinate systems allowing the separa.­

_tion of variables, L k runs through . all types of non- equivalent operators in the -considered class, The operators L and L. are considered equivalent, if the 

relation 
i. - aL'+ f3ll ( 2) 

holds, where IZ , f3 are real constants, and a motion of the space exists, trans­

forming L into L'. 

An analogous theorem for the euclidean space 

Here we shall consider the cases k > 0 , k • 0 and 

E 2 has been proved tJ 61 , 
k < 0 separately. 

2. integrals of Motion on a '1\vo-Dimensional Sphere Rs 

( Case of a Time- Like Vector) 

. 110/ . . 
It has been shown by Olevsky' that two coordinate systems exist in R 2 

in which the variables in ( 1) separate. It can be shown that the operator 

IL 8 ··L:\ (3) 

4 

l 

I 
.·I 

. l 

o·r, 

r 

is diagonal in the spherical system 

l<= sinp 1 sinp 1 y• sinp 1 cosp 2 Z=cosp 1 

and the operator 
I 1 2 · 

L E = La + sin fL 2 

system is diagonal in the elliptical 

1 (p ,-a)(p2- a) 
" ---~----~---- y2 

(p l -b)(p.-b) .. ( 
z =' 

(c-a)(b-a) (c-b)(a-b) ( 

c<p2.<b<p 1 <a 

a a' - b 
Here sin f = ----- , 2f is the distance between fr 

a - c · 
·are the generators of the group . o( 3) and the Laplace 

To prove the theorem stated in the introduction w 

operator of the type 

L- A 11t L 1 Lk .All<- A kl 

( summatio,n from 1 to 3 over rep.eated indices). is equi' 

(or to the: zero operator),_ However, this- is obvious sil 

R1 the generators L 1 transform l~e a Vector 

L' I •· a lk L k , 

where alk are elements of a ·real orthogonal matrix. 

transformed into 

'L' • A;k L 1 L t 

where A;k. • ali A fm 8 mk i.e. ln. matrix form we havo 

A'·a'TAa- T • 
·a a • 1 

(the letter T mearis transposition). 

.; . 
It is well known that aey real symmetrical matrix 

by an orthogonal transformation ( 6), so that we have t 

possibilities. 

1) All three eigenvalues _A 1 of A are different 

ways real). Transformation ( 6) can be chosen so that 

·I· 2 . I 
L'•A 1 L 1 +A 1 L 1 '+AaLa. 

Let us consider the case A 1 >_A 1 > A a (any other 

ponds to an interchange of the axes). We then have 

5 



choice of the basis of the corre~ponding 

amplitudes in terms of the basis tunc­

Lorentz grour/ 4 / • It was shown iJ 
5

• 
61 , 

the subgroups of the · 

systems wi~ one centre. 'Ihe diagoneolization 
/6 7/ ' 

generators of the Lorentz group ' leads 

or parabolical type. 
-.,J 

mechanics, spe­

having a symmetry group larger than the 

it also proved necessary to find ali operators, 

separ"ation of Va.riable/3•~/ 

L k 
1 

being a homogeneous quadratical 

of motions of the considered two dimen­

each system of coordinates 

separate. 'Ihe operator L k is determined 

1/1 are solutions of ( 1), separated in 

coordinate systems allowing ·the separa­

non- equivalent operators in the, 

and are considered equivalent, if the 

czL'+ f3Jj. (2) 

and a motion of the space exists, trans-

euclidean space 

lt>O, It-O and 

E 2 has been proved rJ 61 • 
It.< 0 separately. 

coordinate systems exist in R
2 

shown that the operator 

(3) 

4 

~-
r 

is diagonal in the spherical system 

x= sinp 1 sinp 2 y • sinp 1 cosp 2_ z • cosp 1 

and the operator 
2 2 2. 

L E = L a + sin fL 2 (4) 

is diagonal in the elliptical system 

(p 1 -bXp2-b) .. (p 1-a)(p2- a) 
y2 

(c-b)(a-b) 

2. (p1-c)(p2-c) 
Z• 

(a -c)(b- c) 

2 
X a 

(c-a)(b-a) 

c<p 2 <b<p 1<a 
, 2 a- b 

Here. sin f = -_--, 2f is the distance between the focusses; L· 1 , i • 1,2,3 
a c . . . . 2 2 ,2 

are the generators of the group 0( 3) and the Laplace operator is fj. - I., +L2+Lr 

To prove the theorem stated in the introduction we must show that any 

operator of· the type 

_L = Alt Ll Lk Alk • A kl (5) 

(summation from 1 to 3 over repeated ·indices) is equivalent to L 8 or. L E 

(or ·to the· zero operator). However, this is obvious · s~ce under a motion of 

, R 2 

I 

the generators L 1 . transform lil<:e a Y-ector 

L't •·atkLk, 

where alk are elements of a ·real orthogonal matrix. 'Ihe polynomial L is 

transformed · into 

'L' a A;t L 1 Lk 

where A;k • a fl A fm amk i.e. in matrix form we have 

A'=aTAa T • 
a a = 1 ( 6) 

(the letter T means ~ansposltiori). 
~ . '\ 

It is well known that aey real symmetrical matrix A lk can be diagonalized 

by an orthogonal transformation { 6), so that we have to consider only three 

possibilities. 

1) All three eigenvalues A1 of A are different {they are naturally al­

ways real). Transformation ( 6) can be chosen so that 

-2 2 2 
L''aA 1 L 1 +A 2 L 2 .+AaLa. ( 7) 

Let us consider the case A 1 >A 2 > A a (any other inequality simply corres-

ponds to an interchange of the axes). We then have 

5 



~ 1 . . ' 
L • -_--(L'-.\ 1 ~)-LE. .\a-.>.1 

2) 'l'wo of the eigenvalues coincide (A1 -.>.2 .f. "-ai the operator L' can 

be written as 

:II .. 2 
L'• .\I(LI +Li)+AaLa ( 8) 

and - 1 L• --(L'-.\ ~)·L .· 
x.-"-1 I • 

·.J 

3) All three eigenvalues coincide ( "- 1 •"-2 •"-3l · 

·Thus 

2 2 2 
L' • .\1 (LI + L2 + La,) (9) 

and .. 
L- L'- .\ 1 ~ • 0 

This completes the proof of the theorem for R 2 • 

3. Integrals of Motion on. the Euclidean Plane E2 (Case of an Isotroplcal 

Vector) 

The variables in equation ( 1) . can be. separated in four coordinate systems 
I E. /11/ . . . in the space 2 • Let us denote the generators of the group of motions 

P
1 

,P2 (infinitesimal translations) and M (an infinitesimal rotation). The Lap-
2 2 . 

lace operator is l'i.- P1 +P2 • The separable coordinate systems and correspond-

ing diagonal operators are: 

.1) Cartesian.system x , y with the operator 

I LD·- p~ -P:J .. (10) 

2) The polar system x •rO>S rp , Y • r si.nrp with the operator. 

~ • (11) 

3) The elliptical system x . 'I y- l v<e -1X1-'1
2

) ( l > o Is the focal 

distanc~) with the operator 
2 t

2 
2. 2 . 

LE- ~ +y(PI -P2) 'I (12) 

4) 'The parabolical system x • ~(e 2 - f1
2
),y-§/ with the operator 

I Lp - MP2 + p2 M I· 

6 

( 13) 

l 

1 

It has. been. proved u/ 6
/ that the 

type 
2 . 

L-aM +b
1

(MP
1

+P1'M)+b 2 (!. 

is equiv8lent (in the sense of equation 

I 4. Integrals· of Motion on tho 

Like 

Nine types of separable c_oordinat 

space L 2 / 10/ ; Let us denote. the' get 

(infinitesimal hyperbolic rotations) and 
2 2 2 

Laplace operator is ~ •'K 1 + K 2 - M 8 

Let us first enumerate these coor 

gonal operators. As usual we denote 

(for simplicity we set .k • - 1). 

1) Horocyclic system 

P1 -p 1 2 
x-!He +e (p 2 -1)] y~1 

l L 0 ·= (K 1+M 8 

2) Equidistant system 

x = chp 
1 

shp 2 y =. shp 1 

I LEq- E 

3) Spherical system 

x_-chp 1 cosp2 
y- shp 1 s 

ILs- M 

4) Elliptical system 

where 

2 
X • 

(pi -b)(p2 -b) 2 
y 

(a-b) (b -c) 

·c«b<p 

sh2 f .. a- b 1>=C"" and 

I LE- M: . 

2f is thE 



1 . . . 
-<L' -A ,1'1>- LE . 
A1 -A1 

coincide ( A1 -A2 .;. A a) 

2 ... 2 
• >.,(L, +L2·)+Aal..a 

coincide ( A1 ->.2 - A8l . 

2 2 
+L2 +La.) 

- 0 

the theorem for R2 • 

on. the Euclidean Plane E2 

Vector) 

the operator · L' can 

(a) 

.;.,.; 

(9) 

( 1) can be separated in four coordinate systems 

denote the generators of the group of motions 

) and M (an infinitesimal rotation). The Lap­

The separable coordinate systems and correspond-

' y with the operator 

I Ln·· P~ -P: I• (10) 

•tcos~t/J , y • t slnt/J with the operator. 

' ( 11) 

:i . ,., y- tv<e- 2
-IXt-,.,

2
) ( f >O is the focal 

2 f 2 
2 2 

LE • A + y (P
1 

-P
2
), 

( i2) 

1 2 2 • "- ~<e - '1. ), y ~~ wtth. the operator 

[ Lp - MP2 + p2 M I· ( 13) 

6 

! 

l 

It has been. proved ·tr/ 6/ that the most general operator of the considered 

type 
2 . . • . 2 • 2 

L-aM + b
1

(MP
1 
+ P1 'M) +b 2 (MP2 +P2 M) +c 1 P 1 + 2c~P 1 P2 +c 8 P2 (14) 

is· equlviuent (in the sense of equation { 2)) to one of these four types. 

J 4. Integrals· of Motion on the Hyperboloid · L 2 ( Case of a Space­

Like Vector) 

Nine types of separable coordinate systems exist in .the two-dimensional 

space L2 f 1 of. Let us de~ote the' generators 'of the group 0( 2,1)- K 1 , K2 

. ( infmlteslmal hyperbollc rotations) and M a .. (an infinitesimal space rotation), the 
. 2 2 2 

Laplace operator is 11 •'K 1 + K2 - M 8 

Let us fl.rst enumerate these coordinate systems and the corresponding dia­

gonal operators. As usual we denote the Weiers!rass coordinates " , y , t 

{ for s!mpllcity we set . k • - 1). 

1) Horocyclic ;;yste~ 

Pt -p, 2 . -p, Pt -p, ; 2 
t-~[e. +e (p 2 +1)] z-J4[e +e (p 2 -1)] y-p 2 e 

2 2 2 
L'0 a(K

1
+M

8
) -K 1 +M 8 +K 1M 8 +M 8 K 1 , 

2) Equidistant system 

z • chp 1 shp 2 

3) Spherical system 

" • ch p 1 cos p2 
I 
' 

4). 'Elliptical system 

y •,shp
1 

t.- chp
1 

chp
2

· 

., LEq- K: I ' 
y • shp

1 
sinp2 t • ch.p 1 

IL 8 ·M:j. 
2 

"·-
(p', -b)(p2 -b) 

(a-b) (b -:c) 

2 
. (p -a)(a-p2 ) 

y = . 
(a-b)(a -c) 

c ~ b < p 2 <a < p1 

2 a -b 
where sh f • ~ 

I LE • M: + sh
2
fK2

2 .1 
and 2 f is the focal· distance 

7. 

2 
(p

1
-.c)(a-p

2
) 

t - ..,----,-..,.---
(a-c)(b-c) 

(15) 

(16) 

(17) 

(18) 



where 

'•. 

5) Hyperbolic system 

(p 1 -cXc'-f 2 ) 

" • (:--a-.;...-c'"')-:(-:-b-,..-c""")-
2 (p 1 -a)( a -. p 2 ) 

y - (a-b)(a-c) 

p 2 <c<b<a<p 1 

2: (pl-b)(b- p 2) 
t = ..:.(_:a -'--:-b '""'H"'"b---_;_c_:) :.;_ 

2 2 2 ~
--- I 
Ln•K 2 -s.inaL 8 

. :i./b-e 
stn a---­

a-c 
and 2a is the angle between. two foCal lines. 

6) Semihyperbollc system 

2 
(p

1 
-a)(a- p 2 ) 

" =- 2[(a-y)2 +821 

. [( 2 2 2 2 
-1{+_1_ y P1 -y) +8 J[(p 2 -y) +8 1 

28 ·. (a-y)2 + 8" 

2 (p 1 -a)(a-p2) 
y - ·=---=--...--~ 

(a-r>" + 8-
p 2 <a.< p1 

2 (pi -a)(a- p2 
t a 2 2 

2[(a -y) + 8 1 
+ ~ + ir ,;[<p; -r>2 + 82H(p2 -r>2~821 

(a-y)2+82 

2 
L 8 H"' M8 K 1 + K 1 M8 + sh2fK 2 

(19) 

(20) . 

a-y 
where sh2f - -r and 2 f is. the distance between the foc:Us of the semi-

hyperbolas and the basis line of their equidistant curve; 

7) Elliptic- parabolica.l system 

2 
• (p 1 -a)(a-p2 ) [ a- b 

1
!i [(p 1 -b)(p 2 -b) l-1 

" a a/ ).1 + - - . . . 1 
(a-b) lCp

1
-b)(p

2
-b)1 (p 1 -b)(p 2 -b) .• · a-b 

. . ! 

2 (p 1 -a)( a - P 2 ) 

y - b<.p
2 

<a< p
1 (a-b) 2 

(p 1 -a)(a-p 2 ) [' a-b 
1

).1 ·[(p1-b)(p2-b) ]~ 
2t = 3/2 K + + 

(a-b).[(p 1 -b)(p
2

-b>l (p 1 -:bHp2-b) ,a-b 

I 2 2 2 - I 
LEP'"(a-b)K 2 +.K 1 +M 8 +K 1 M8 +M 8 K 1 (21) 

· 8) Hyperbolic-parabolical system -

8 

.,', 
. I 

) 

i 

'l) 
'·, 

·(p 1 '-a)(a-p 2 )· [ 
2x- 8/2 l-1 + -

. (a-b) [(p 1-b)(b-p 2 )1 . ( 

2 (p I -a)(a - p 2 ) 

y a (a-b)2 

2t • (p .-a)(a-p2) + [~ 
(a-b)8n[(p

1 
-b)(b-p2 )1li (p 1 -b) 

I 2 2 LHP=-(a-b)K 2-+K 1 +!. 

9) Semicircular- parabolica.l system 

][a (pl-p2)2 

S[(p 1 -a)( a -p
2 

>fi2- ~[(p 

2y. [~]l-1-[~-lK 
a- p2 pI -·a 

2 

(p 1 -P2) +li(pl -• 
t - >f/2 8[( pI -a) (a-p2 . 

I LOP -KI K2 + K2 Kl + K~ 

We have introduced names for the co 

the fonn of the coordinate lines. The defini 
. . 112/ . . . 

be found e.g. in' · • 

As in the cases considered above w 

type 

2 . 2 
L =aK1 + b(K 1 K2 +K2 K 1 ) +cK2 +d(JC, i 

is equivalent ( cf. equation { 2) ) to one of I 

Proof. 

Let us consider the symmetrical matri 

9 



1 -a>Ca -Pa> 

(a-b>Ca-c) 

a: (p 1 -b)(b- P a> 
t = 

c<b<a<p 1 

2 2 
-sin a~ 1 1' 

(a-b)(b·- c) 

between. two foCal lines. 

. 2 a a y£<P, -y> +8 J[Cp 2 -y> +8al 

· (a -y)2 + 8 • 

p2<a.<p,· 

1 [(p. - )2 . 2 2 +""iF"..; , r + a U<Pa -r> +82 1 
(a-y)2+8a 

2 

1 + K 1 M8 + sh2fK
2 

(19) 

·-..I 

(20) . 

is. the distance between the focus of the semi­

their equidistant curve; 

+ [ a-b 1!i_ [(p 1 -b)(pa- b) ] !i · 

(p 1 -b) (p 2 - b) a-b 

a)(a-p2) 

a-b)- b<p
2
<a<p

1 

[ a- b !i (p 1 -b)(p 2 -b) I{ 
+ ] + [ ] 

(p 1 -b)(p 2 ·-b) a-b 

2 2 
+. K 1 + M 3 + K 1 M a + M 3 K 1 (21) 

8 

I 

l 

2 
= ·(p 1 ;...a)(a-p 2 )· [ a-b l!i-[(p 1 -b)(b-'-p 2 ) ]!i 

J: 8/2 . !i + 
(a-b) [(p 1 -b)(b-p:j)] (p

1
-b)(b-p

2
) a-b 

2 (p I -a)(a - p 2 ) 

y = (a-b)2 p
2

<b<a<p
1 

2t- (pl-a)(a-p2) [ a-b ]!i [(pi -b)(b-p2) ]!i 
8/2 . . ~ + . + 

(a-b) ·[(p
1 

-b)(b-p2 )] (p 1 -b)(b-p 2 ) a-b 

ILaP=-(a-b)K:·+K~ +M: + (K 1 M
8 

+M
8

K
1
),, (22) 

9) Serniclrcutar- parabolica.l system 

z= Cpl-p2)2 . . 
B[(pl-a)(a-pa>f/J-l{[(p, -a)(a-p2)]!i 

2y • ..!:..l..__:_ - ___ 2_ p2 <a <pi 
[ 

p -a ] !i [a- p . ] !i . 
a- Pa pI -a 

2 !i 
(p,,-pa) . +l{t(pl-a)( a-pa>l 

t a f/2 
8[( p 1 -a)(a-p2 ) . 

ILcP~-Ya +KaK! +Ka~~MaKa I (23) 

We have introduced names for the coordinate systems, corresponding to 

;the fonn of the .coordin:l.te lines. The deflnltions of the corresponding curves can 
. . 112/ . 

be fol.!lld e.g. lrl • • 

As in the cases considered above we must prove that any operator . of the 

type 

2 2 2 
L aaK1 + b(K1 K2 +K2 K1 ) +cK2 +d(K, M8 +M8 K1 )+e(K2 M8 + M8 K2 ) +fM8 (24 ) 

is equfvalent { cf. equation { 2) ) to one of the operators { 15 )- ( 23). 

Proof. _ . . 

Let us consider the symmetrical matrix 

9 



X a, 

(

a b . d ) 

b c e 

d e . f 

(25)' 

and the. characteristic equation 

._,;J ~ xc,>{ 
.e 

a-p. b 

,:.,) (26) b - 0 c ~p. 

d 

Under a motion of the space L2 (hyperbolic motion) .the operator .L 

transforms into L' , determined by the matrix X' ·' where 

X''-= aT Xa (27) 

and a is the matrix of a hyperbolic motion i.e. 

( 
1 0 0) I = 0 1 0 
0 0 -1 

aT Ia = I (28) 

Hyperbolic motions are investigated e.g. in/ 12•13/ in connection with the 

classification of second order curves ( conics) on, the Lobachevsky pl~ne. 1: is 

shown that the hyperbolic motions leave the foliciwing ·.set ~f quantities invariant: 

titles 

1) Roots of the characteristic equation (26): P.. 1 •.P. 2 , P. 3 

s-a+~·-£,;,; 1'1 +P.a +P.a 

T =.A +C -F =-(p.IP.a+P.aP.a +,P.aP.1J 

R = detX-- P.1fla.P.a • 

· ; or the quan-

·where A C and F are the minors· of X corresponding to the elements · 

a,c and 

2) 'The quantities 

r 1 • rank .of X(p. 1 ) 

< 
1 

,;. sgn [ A ( p. 1 ) + C ( p. 1 ) + F ( 1': 1 ) ] 

K 1 a ri[A(p.l) + C(p.l) -F(p.j )] . 

3) For r 1 · ~ 1 an additional irlvariant exists 

'I I = sgn [p. I (a + C + f - p. I)]. 

10.· 

'; 

It is p~ved ul 12/ that the '\1 

the class, to which a considered c 

this classification and establish a c 

tors ( 15 )- ( 23). 

Let us first enumerate all "c< 

be reduced by hyperbolic motions i 
X. 

1. All characteristic numbers 

' 2 
L 1- !La.Ka 

2. One real characteristic num 

2 2 
La=fla(Ka+Kal 

a a !La+ q 

3. A simple characteristic nun 

a)£ 1 --1, < 2 =1 

ll 2 ( ' La• fla(KI +Kal- 2P.a-P.a• 

b) <1 =-1, r 2 --1 

2 2 
L4 = (2p.2 -P.a )KI +P.a (K2 -M, 

c) f s~ • 1 , £ 2 - o 

2 
L~=p.2(KI 

d) < 1 • - 1 l 2 -0 

L6-p.2(K~ 

4. A triple characteristic numl:: 

a) f···-1, 
2 2 2 

L, •·K 1 +Ka-Ma +F 

b) . •a -0. 'II -1 

2 
L8 -2K 1 +K 



b 

c 

e 

b 

-p 

e 

: ) 

. J - 0 

Lo (hyperbolic motion) .the operator 

the matrix X' 1 whe_re 

aT Xa 

i.e. 

(25) 

(26) .,..; 

L 

(27) 

(28) 

e.g, In/ 12•13/ in connection with the 

(conics) on the _Lobai:hevsky plane:. It is 

following set ~f quantities invariant: 

( 26) : P 1 • P 0 • Pa 

f..;p,+po+Pa 

-Fa -(pt/lo+Poila +Pailt.) 

• - ilt 1'2 Pa • 

; or the quan-

of X corresponding to the elements 

exists 

C:+f-JL.)]' 

10. 

It is proved rr/ 12
/ that the values of these invariants completely determine 

' the class, to which a considered conic belongs. Here we shall briefly recapitulate 

this classification and establish a correspondence with the classification of opera­

tors ( 15 )- ( 23). ~ 

Let ·us first enumerate all · "canonical" fo~s to which the operator ( 24) can 

be reduced by hyperbolic motions in dependence on the invariants of the matrix 
X . 

1. All characteristic numbers 1' 1 •~'•• Pa are different ·and real: 

. 2 2 2 
Li = p,·.K, + P2K2 -paKa · (29) 

2, One reeil. characteristic number P 1 and two complex ones P 2 , 8 =a ± i fJ : 
2 • . . 2 . • 

L 2 a ilt (K I + K2)- (p f +2 q)M a + p(KI M a+ Ma K I ) 
( 30) 

a= ilt + q 
. ' 2 2 2 fJ-p-q >0 

3. A simple characteristic number 1'1 and a. double one p 2 = p 8 

a)ir 1 =-l, r 2 =1 

a 2 · . • . 
La • PI (K1 +K 2 ) -(2p 2 -p 1 )M 8 + (p 2 -p 1 )(K1M8 +M 8 K1 ) ( 31) 

b) •,--1. ··-~1. 

.• 2 2 
L

4 
a{2p 2 -p 1 )K 1 +p 1 (K 2 -M 8 )+(p 1 -p 2 )(K1M3 +M3 K1 ) (32) 

c) f 1 .• 1 , ( 2 = o 

2 • 2 
L

8 
=p 2 (K 1 + K 2 )-p 1 M8 

(33) 

d) < 1 • -1 f 2 -0 

. 2 2 2 
L

6 
= p 2 (K 1 -M 8 )+p. 1 K 2 

(34) 

4, A triple characteristic number p 1= p 2= P a 

!Et) f I • - 1 , 
2 2 2 

L 7 =·K 1 + K 2 -M 3 +K 1 K2 + K 2 K 1 -K 2 M8 -M 8 K 2 , (35) 

b) .<1 -0, '11 =1 

L 8 ~ 2K~ + K~ -K1M8 -M8 K 1 , (36) 
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·c) fj .o, '11 --1 

~ 2 
La • K 2 -2M 3 +K 1 M3 +M3K 1 

·(37) 

d) f I • '11 = 0 · 

(38) 
2 2 2 

L·IO • K I + K 2 - M a 

. .J 
Let us discuss the forms ( 2 9 )- ( 38). 

Geometrically five different types of curves correspon~ to ( 29 ), depending 

on· the possible values of. p. 1 However, with the help of the transformation -L- aL +fJil ( 39)· 

and an interchange of the coordinate axes they car;t be reduced to the cases 

1. p. 1 > p. 2 > p. a L 1 ··reduces to L E 

2. p. 1 > P.~ >-p. 2 L 1 reduces to La 

3. A single curve corresponds to ( 30), It is easy to see that ·all the in­

variants corresponding ·to L2 = -~-L2 +(p. 1 +q)ll] and L8 a coincide, so that 
: v p -q 

L 2 can be reduced to L 8 H. 

. p.l fll 
4, Two curves correspond to ( 31) (different for -- > 1 and for -- < 1 ) , 

/ 1'-2 1'-2 
however, the corresponding . operators are connected by ( 39). The operators La 

• ~l-fl2 I 
and LEP• -;::))LEP·+p. 2 /l have the same invariants, so that La reduces to LEP" 

5, Three curves c~rrespond to ( 32) but in all cases L 4 can be reduced 

to L HP in complete analogy with the ,previous case, 

6. Formula ( 33) describes three types of curves, but can always 

be reduced to L 
8 

7, Formula ( 34) describes two types of curves, but can always be reduced 

to LEq 

8, · Formul..;, ( 35) describes a single curve, The operators L 7 and 

LCP ;" LCP + ~ have the sanle invariants, so that L 7 can be reduced to L CP . 

9. Formulae (36) and (37) describe different curves, but La and La 

can both be transformed using (39) into (K 1 ~Ma)
2 connected with' L 0 by a 

hyperbolic motion, so that they both reduce to L 0 • 

10. ·Formula ( 38) describes a single curve and • L 10 is equivalent to the 

zero operator, 

· Thus although there are 20 types of nondegenerate curves ( det X .f. 0 ) 

12 

in the_ Lobachevsky pla~e ( 12 re. 

we have sh~wn that they corresp 

nerate case detX = 0 need no 

always be transformed into nonde. 

~ompletes. tne proof, 

5 . 

We have investigated the g1 

allowing the · sep~ration of varlabl 

·:L2 

Let us recapitulate the mair 

1. . The diagonallzation of a 

nerators of the group of motions 

tern, 

2, All different types of co 

ing ali operators of the consider .. 
operators L and L belong 

formation ( 2), A coordinate syst 

of operators. and systems of the 

to each other, correspond to diff 

3, Operators that are invar 

respond to coordinate systems w 

cal or parabolical). Different typ 

arid unequivalent subgroups ( spt 

coordinates in 'E 2 , horocyclic 

According to our opinion, t 

operators of a given group can 

ber of equivalency classes, is c 

the choice of the basis for the 

mechanics this fact severely lim 

invarlance group ( this has beer 

and an investigation of three- din 

From the point of view of 

is only possible to measure qu!­

tion" of the spi-n, if the total sp 



. ( 37) 

(38) 

curves correspon~ to ( 29 ), depending 

with the help of the transformation 

( 39 )· 

-.J 

axes they ca~ be reduced to the cases 

reduces to L E 

reduces to L H 

It is easy to see that ·all the in-

2+(p1 +q)~] and L8H · coincide, so that 

llt Ill 
for -->1 and for -- < 1), 

,... ll2 
are connected by ( 39). The operators L 8 

12 

'L 8 requces to LEP" 

in all cases L 4 . can be reduced 

case. 

of curves, but can always 

of curves, but can always be reduced 

L 7 and 

L 7 can be reduced 'to L CP. 

different curves, but L 8 and L 9 

( K 1 -M 8 )
2 connecied with 'L 0 by a 

. Lo . 

and • L 10 is equivalent to the 

nondegemerate curves ( det X f. 0 ) 

•. 

in the Lobachevsky pla~e ( 12 real, 2 irilaginary, · 5 ideal· ones and the absolute), 

we have . shown that they correspond to our 9 classes of operators. The dege­

nerate case detX - ·o need not be considered, since degenerate curves can 

always be transformed into nondegenerate ones by the transformation ( 39). This 

~ompletes tne proof. 

5. Conclusions 

We have investigated the group theoretical origin of coordinate systems, 

allowing the.· sep~ration of variables in ~quation _ ( 1) for the spaces R 2 , E 2 and 

·:L2 

Let us recapitulate the main results. 

1 •. The diagonalization of a homogeneous quadratlcal polynomial in the ge­

nerators of the group of motions corresponds to each separating coordinate sys­

tem. 

2. All different types of coordinate systems can be obtained by classify­

ing all operators of the considered type into classes of equivalency, where two 

operators L and L belong to the same class, if they are related· by trans-

formation ( 2). A coordinate system of a certain type corresponds to each class 

of operators and systems of the san1e type, but shifted or rotated with respect 

to each other, correspond to ditferent."pperators in the same class. 

3. Operators that are invariants of subgroups of the group of motions, cor­

respond to coordinate systems with one centre (i.e. systems that are not ellipH­

cal or parabolical). Different types of coordln_ate systems correspo~d to different 

cmd unequivalent subgroups ( spherical coordinates in R2 , cartesian arid polar 

coordinates in · E 
2 

, horocyclic, equidistant and spherical coordinates in L 2 ) • 

According to our opinion, the fact that operators, . commuting with the Laplace 

operators of a ·given group can be distributed into a finite and quite definite num-
. L 

ber of equivalency classes, ' is of great physical lrlterest. Mathematically it Units 

the choice of the basis for the group representations. In non- relativistic quantum 

mechanics this fact severely limits the number· of potentials, allowing a dynamical 

invariance group (this has be.en· considered for the two-dimensional case u/ 8 •
9

/ 

and an investigation of three- dimensional potentials is now under way) • 

From the point of view of relativiStic spin theory our results mean that it 

is only possible to measure quite definite quantities, . characterizing the "projec­

tion" of the spin, if the total spin ls fixed, For physical particles with non- zero 
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mass it is either possible to -measure the u~ual .~ompo~ent ( e,g, La) or the 

eigenvalue of the operator LE = 

9:uantity, The situation is similar, 

particles, or unphysical particles 

2 . 2 2 
La + sin fL , but no .other independent 

but more sophisticated in the case of zero mass 

with m
2 < 0. 

\ 
The group 0(2,1) describes particles with .imaginary mass, but is physi-

cally important in the study of scattering· problems, in which the synimetry proper-

ties of amplitudes, not of single-particle wave functions, are considered. The 

group o( 2,1) is the symmetry group related to a reaction in a given channel, 

consi<tered from the cross- channel (it describes the amplitude • !n the non- physf.:.· 

cal region). 

It would ba interesting to consider possible experiments determining the 

quantity L: + sin
2 fL: f~r physical particles with m

2 
>0 , to clarify the role 

of the focus distance in the corresponding experimental device and to coO-

sider the connection of the found operators for m 
2 

• 0 with the Stokes polariza­

tion parameters, A· discussion of these problem·s, as well as an investigatidn of 

the pra'perties of cross- channel amplitudes connected wlth the '.'components" enu­

merated in § 4 wlll be presented separately, Although the representation theory 

of the ,groups 0(3), 0(2,1)· and E 2 is well known, explicit representations have 

only been 'constructed in the polar coordinate, system, thus corresponding to the 

diagonalization of a space rotation generator; It would be of interest to construct 

representations, corresponding to" the diagonalization of. all other independent ope­

rators, found in ·this paper, i.e. to· giw ~~essions for the basis functi.:,ns, mat­

rix elements of infinitesimal and finite -transformations etc, and to find the opera­

tors, connecting these quantities .in various systems. Stich an investigation, spe­

cifically concerning the relation between the results of this paper and the repre­

sentation theory of the group 0( 2,1), developped by Bargmann, will be published. 

elsewhere, 

It should be noted that the results of this paper can be generalized to 

spaces ,;,ith higher dimenSions, ' however in such cases it is necessary to class~ 

fy sets of commuting operators, quactratical and s~etrical in the generators 

.of the corresponding group, instead of a siilgle operator, as in the case of. the 

groups of rank I, considered in the present paper, 

v .tv 1 
In conclusion we thank R,N,Fyodorova., I. Fris, M.Uhur and l,Ulehla for inte-

resting discussions. 
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