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I Infroduétlon

We shall investigate the 'separation-of vaﬂnbles in the equation
U BN
where A is the I.aplace operatox' in two—dhnenslona.l spaces with consbant posl—
tive, zero or negatlve curvature, .and demonsirate how the choice .of the coordi-
nate system iz connected with the choice of an operator, diagonahzed si.mu.ltane—
.ously with the Laplace operatox', i.e. with the cholce’ of certain integrals of motlon

‘and quantu.m numbers. (We call an operator L d.lagona.l, if- the eigenfunctlonsA
of (1) sau,sty the equation Ly = pyll) ’ "

Such a problem is interesting Irom the physlca.l polnt of view for several
reasons. :

Firstly, the QBtalned results can be applied to' construct, representations of

1,2/

the Poincaré group/ slnce .the  groups of motions of the considered spaces,
Le, the three-dimensional rotation group - 0(3), the - grbup of motions of the eucl-
dean blahe E, “and the three-dimensional Lorentz group 0(2, k1) are little groups -
" of the’ Poincafe group, cox'respond.lng to a time-like, isotropic or - space-uke/ 3/ )
vector ™, 1t follows that we are actua.lly consldering possible parametrizations of
the relativistic spin in ,the’physlcal or unphysical regions ‘(’oxj on the light cone),

Such parametrlzations should prove useful e,g. in the the analytical continuation

of wave functions and amplitudes for ’parﬂc.les with spin,

"Secondly, the i-epresentatlon theory of éompae_:t and speclauy nonéompact
groups finds many applic;ations ‘in physics, e.g. in imiestlgatléhs coﬁcernir\g rela-
tlvistic generalizations of the: SU (6) symmeiry,or in the obtaining of complete
sets of functions ' with defmlte transformauon properties, in terms of whlch physk- -
cal quantltles, like reactlon«amplitudes,- can be expa.nded ’Ihe cholce of the

x| The llttle group, correspondir\g to a fixed null-vector is. simply the homo— :
geneous Lorentz group, -‘The separatlon of variables on the correspon

_ dimensional hyperboloid x’o -x} -x, -x, =1 has been considered ln/ 10and lts

connecltrljn wlt.h diagonal Operators, quadratlcal in the generators of the Lorentz
group
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dlagona.l operator L deteml.nes the choxce of the basls of the correspond.i.ng

l group representatlon. An analogous problem was first considered in connection
with t.he invariant expansions of relauvistic amplitudes 'in terms of the basls func-
tions of the unltary representations of the Lorentz groupj 4f . It was shown lnl 54 6/
that the dlagona.uzatlon of operators, ‘which are Invariants of the subgroups of the '.
- Lorentz group, ieads to coordmate systems with one centre. The dlagonelization

of other operators, quadratical in the generators of the Lorentz group/ 6,7/ leads

to coordinate systems. of ﬂ}e elliptical or pa.rabollcal type.

’I‘hu‘dly, in the investigation of higher symmefrles ‘in quantum mechanlcs, spe— e

cifically ln a search for all potentials, having a symmetry group larger . than the
evident geometrical symmetry group, it also proved necessary to find all operators,
commuting with the i.aplace operator ‘and leadmg to the separauon of varlab1e£ of

We shall prove the following assertion:

Theorem, A lineaf self-adjoint operator' L, -, being a homogeneous quadratlca.l
polynomial in'the generators of the group of motions of the considered two dlmen—
sional space with constant curvature, correSponds to each system of coordinates
in which the variables In equatlon (1) separate. The operator Ly  is determlned
by the condition “L_¢'= Mlﬁ )  where W are solutions of (1), separated in
K. As K runs through all types of coordinate” systems allowing - the’ sepat'ar-
tion of wvariables, L, runs through all types of non- equwa.lent operators in the
considered class, The operators L .- and’ L. are considered equlvalent, if the

rejation

L = aL’+ 8A X . (2) ;

hoids, where a, B are real constants, and a motion of the space exists, trans-

forming L into L’.

/6l

An analogous theorem for the euclidean space E, has been proved in" .

Here we shall consider the cases k>0, k=0 and k<0 separately.

2 Integra.ls of Motion on a Two- Dimenslional Sphere Ry
(Case of a Time-Like Vector)

It has been shown by Olevskyl 10/ that. two coordinate systems exlst in’ R2
in which the varlables In (1) separate. lt can be shown that the operator

L

8 "Ls ‘ (3)




is diagonal in the -spherical  system

x= sinp, smp, iy e sinp léosp, E z'-=cospl

and the operator .

- B N : ‘ R
LE=L8+78“1 fLa | - - . o @

is dlagonal in the elliptical system ce k
' Cao(py~a)py ~ 8) ‘9 (py -bXpy-b) 2 y=c)pg—c)

X B eee————— y = Z= [
"(c -a)(b~a) - (c-b)(a=b)’ (a=c)(b=c)
o T e<py<b<p,<a : ‘
a a-b ; :
Here Cosin f = T 2f is the dlstance between the focusses, L, 1 - 1,2 3

are the generators of the group 0(3) and the Laplace operator is A 1.l +L,+L

o To prove the theorem stated in the introduction we must show that any .
operator of the type '

L=aA,L L, Apm Ay 0 (s) 1

summatxon from 1 to 3 over repeated 1nd1ces is e ux\m.lent to L or, L .
q s 'E

(or to the:zero operator), However, this is obvlous ‘since’ under a motlon of

R, - “the generators L, transform like 'a vector ‘
S R .
- - Ly =a,, Ly,

- where a.,; L. are eiements of a real orthogonal matmx. ’Ihe polynomlal L is
transformed lnto KN
R “'L‘;'A;kL'LL,

where A;kk,- ap Ag, ﬁmk t.e. in matmx form we have

A‘-ETAA>‘ aTaml. -~ o (6)

3

(the letter T means transposltlon)

. It Is well known that ‘any real symmetrlca.l matrix Ay kcan be dlagonauzed
by an orthogonal tra.nsformatlon (6), so that we have to conslder only three
posslbllltles. : =

1) Al three elgenvalues - Ay - of A .. are different (they are naturally al-
ways real), Transformation.(6) ‘can be chosen so . that

. . e g . . ' o
L "\1Ll +AgLg+ AgLy . ‘ -~ (?)

‘Let us -consider the case A, >Ay > Ay (any other inequa.hty sunply corres-
ponds to.an 1nterchange of the axes) We then have



L~ (L” =X, A=, .
: ! b"\x AR el e
: 2) Two of the elgenva.lues colnc.lde (4\ =X, ;‘4\,) the operator L’ can

. be writien as

Lom A (L) +Ly)# 0Ly : . (8)
and P . - 1
- S : L= (L’-A A)- N
= : .
3) Al three ‘eigenvalues coincide (')‘l =A, =A,) L
: ’ ; . Tl PR . . )

AT L Lom A (L +L, +Ly) o e)
and

L=L'=A;A =0
" This completes the proof of the theorem for Ry .-

‘3. lntegra.ls of Motion on. the Euclldean Plane Ej (Case of an Isotroplca.l

Vector)

The varlables In equatlon (1) can be separated in four coordinate systems
in t.he Space Eg 11/ . Let us denote the generators of t.he group of moﬂons
P, Py (lnﬂrutesima.l tx'ans.latlons) and M - (an Infinitesimal rotation) The Lap~

lace operator is. A= P +Py The separable coordlnate systems a.nd correSpond—

ing diagonal operators are:

1) Cartesian_system x , y  with the operator

- 2 z g : e
2) The polar system x-:cna:ﬁ ,- Y-tsuuﬁ with " the operatoxj;.
i LsuM . : (11)

3) The elliptical system ‘x -2371\. y=EV(€ -le %) ( >0 Is the focal

distancd) wilth the operator

2 .
- 3 ¢ 3. .3 S . :
L -A +T(_P1 “P,)"‘ ; : ERS ‘: (12)

B

4) The parabolical system X= %(f’—n?).y-&] with the operator

L, =MP, +P,M | (13)




It has been. proved 1n/ 6/ that the most genera.l operator of the eohsldered

type

(L waM "+ b, (MP, 4+ P'M) +b,(MP, +P,M) +c P, + 2(:2-l’ll’n+¢:al’,2 - (14):
Is equivalent (in the sense of equation (2)). to one of these four types.

g, Integrdts~ of Motlon on the Hyi)erbeloid ‘L, (Case of a Space-

Like Vector)

Nine types of separable coordlnate systems ex.lst Ln the two—d:.menslonal

'space L, [10] . Let us “denote’ the generators ‘of the group 0(2 1)— K,,X, _‘

'(lnfimteslma.l hyperbolic rofatlons) and M, .(an infinitesimal  space rotation), the
. 3 v : .
Laglace operator is ‘A = K, +Kg - My ) ‘

Let us: ﬂ,rst enumerate these coordlnate systems and the correspondlng dla—-

gonal operators. As usual - we denote the Welerstrass coordlnates xo,'y Lt
(for simplicity we set k- - 1) o . .
1) Horocycllc system S ' - ’
’ pr P -p, P P13
x=Yle +e (p’2 -1} _y-='p,e""l c=tle - +e . (p,+1)]
e e et : :
Lo = (K +My) = Ky + My +K, My + MK}, ~ (19)
: 2) Eqﬁldlstant system . . DR S .
x = chp shp, y —.sh‘pl' : t'mchp c'hp; !
Lgoa= Xaf» . . ) : (16)
-+3) .Spherical system . - : FEE Coln
' Vxnct:hp,cospn Y a shp, sinp, e =chvpl,
t, v 2 ‘," . . )
. : ; Ls = M; |, Ca - (17)
4). 'Elliptical system ) '
2 (py =b)py=b) ', (p =aXa=p,) , (py~c)a=py)
- — = ;
Gen oo T TG o T ame e
) e <b <p, <a<p : - :
L= M, + sh’fK, , R et

a=-~b

where ~sh’f = F—=+ and 2f is the focal distance



5) Hyperbouc system

(pl—c)(c Pn) ) nj (p, -“5(3 -.Pa)rl ’tﬂi— (Px"b)‘“’ -Pa)
"Gratkro 7 Tta-Bla-e) - (a-b)(b-e)

p,<¢c <’b‘<-<pl‘

R Ly =K, —sin all|, S (19)

g e L ol
where sinﬂd{-ﬂ_c and 2a is the angle between.two focal lines.

6) Semihyperbolic éystem ,

(e me-py) \,[(p,—w +8" Moy +8°1

A Bl DA .
2[(&-—)’)24-8] 2’ o (a—y)’+8’
2 (py=a)a=p,) :
Yo e p,<a<lp
a-ptes® T
2 (py ~a)(a.= py ). Sy \/[(p,-—y) +8° ll(p, -y) +81
Way)’ s 8] T et
Lo = MK '+ K M, +3sh2fK, o SRR (20) -

SRS i al B I PR S : SRR - ;
where - sh2f ‘= _8_)'_ “and 2f . is the .distance between. the focus of the semi-

hyperbolas and the basis line of their equidistant curve. )
7) Elliptic~ parabolical system

(py-a)a=p,) . asb (p,—b)(P,fb) %

21 = + - [ ]
“(a=bMp, b p, - bN® (P, =BY(py=B)  a=b ,
s pi=Ga-py)
I e —— ————— a
T (a-byr Pt TRe
. | ) R
2en (P;/2 a)(a=p,) it b g%, fea-b)ea-b) ]/5
(a~b) " [(p, -b)(p, ~b)] (py=bXpy=b) " ria=b o v
| LEIV,A- (é—b)K:—tKnl + M3 +K M, +VMaKl . (21) :

'8) Hyperbolic- parabolical system .-



(p,-a)a=p,)

a-b K (p,bXb=py )
273 % -
(a=b) [(p,-b)(b-p,)]

1’
(p,=b)b=p,) ~  a=b '

2=

(p —a)(a—p,) '

<b<a<p.
(a—b) Pa 2ol

~b)(b- Py ]%

o il ]“4.[
(p: -B)b-py) T et

(py=a)a=p,)

-
(a=b>"?I(p, ~b)(b=p, )N

. - 2. 3 B - '
Lpp==(a=b)Ky + K, + M, + (K4 M, +M,K,)|, L (22)
9) Semicircular-parabolical system

: 2
: (py=py) ;
x= %[(p -a)(a—p )1
8[(p, -a)(a—p, )]n/z ‘ :

2y = | P12 | 2P :
, a-p| p,~a

, S
(py=ps):

W
"Pq <a <p,

tm +/ﬁ(p —a)(a—p )]
o [(p,—a)(a—p,)j; ! kn

LCP

- KK, +K:K| ",K:Ma +M K,

Do |  3((23) -

We have lntroduced names for the coordlnate systems, corresponding to
‘the form" of t.he coordinate lines, - ’I‘he ‘definlfions  of the correspondlng, curves can

befound eg. 1.nl12

As ln t.he cases consldered above we must prove t.hat any Operator of the

type .

2 " : : ’ ! ‘ 3
L =K + b(E, K, + KK, ) +cKj +d(Ky My + My K, ) + e(Ky M, + M, Ky ) +£M,

e

is equivalent (ef. equ.a/tion (2)) to one of the operators (15)-(23). .

Prookf : X
Let us consxder t.he symmetrxcal matrlx



(25)

' a-p b d
det X(u)=| P erp s =0 oo (26)
d e f+p ¥
Under a motion of the space Ls (hyperbolxc motlon) the operator L
transforms into L” , determined by the matrix X’ ,where
B X’ = a’ Xa - . ) . (27)
and a is the matrix of a hyperbollc"motlon ie,
B 1 0-0) = S
a Jaml I=a|0:1:0 R ! S ‘(28)
Uy {0 0. -1 : [
’ o " 12, 13/
Hyperbollc motlons are Investigated .e.g. In in connectlon with the

classification of second order curves, (conlcs) on, the Lobachevsky plane. It is
shown that the hyperbolic. mouons leave the followlng set of quantitles lnvarxant‘
1) Roots of the characterlstxc equation (26) : #; . #y "a : “; or the quan-
Hties Lo A .
S=atc—f = py +py +iy
. TmA4+C- F"—(Flﬂn*’#al‘a +I‘al‘1)
. R= dctX = = HFikaky

~where A, C and F . are the‘minors of X ,corre‘spor’ldfng. to the elements ' -
ca,c cand . f o N . Lo 1 7

2) ‘The quanﬁtles
vy = rank of X{pg,)
't‘ = sglA(p) +C(#,) + F(u, )]

K = e [A(p )+ C(;q)-F(u‘,‘ )i

3) For f, <1 an additional invariant exists
7, = sgnlp (atc+ f=p.
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R is proved J.n/ 12/ that the values of these mvanants completely determme
the c.lass, to which a considered’ conic belongs. Here we sha.Ll bneﬂy recapltulate

this classification and establish a correspondence “with the classxfxcahon of opera~:
tors (15)-(23)." o S ‘

Let'us flrst enumerate all”
.be reduced by hyperbohc motions in dependence on the m\mnants of the matr:.x
X. . E .

canonical"'forms to which the operator (24) can

1, All characteristic numbers ;il Bas Mg ‘ are different and real:

.. .2 2 2 :
Ly= HI‘KI + Ha Ky —pg Ky - © (29)

2, One real characteristic ‘number #; and two complex ones Bga=axif:
2 2 ' : N o | ; B .: . -
L,-pl(Kl+K2)—(pi~r+2q)Ma+p(K1M3+M3Kl) (30>,_
4 2. g P § : L
aspy+q " B=pi-q >0

3. A simple. characteristic number ¢, . and a_double one By = pg -t

a) .(l =.—1 s (3 = 1
Sl 2 P . . : L ,
Ly mipy (K4 Ky ) =(2p5 =y )My "'(I‘q —py JE My + MKy ) (31)~

b) ¢i=-1, €y=-1_
L, “(zﬂnv*F;)Kx +q (Ky “Ma‘)f(l‘x—l‘n)(KxMa +M;Ky ), T (32)
c>,tl_-l?v(2=0 N L . : . .~ MR . SRR S
3.y L o - ‘
S - (33)

R ] g
Ly =k (Ky+ Kg)—p My

L) ermol, gm0

L, “LH 2(1;:4'“:)*'!{1 K: S " (34)
4, A trl%:le d@;‘deteri;tic number ;i,-,p,n By
&) el e ; |
L, =K +Kj ~M; +K;K, + K, K, -K, M, =M, K; , = (35)
b) =0, my =l |

- 2 . . : -
Ly = 2K; + K3 —K,M; =M, K, ", (36)



variants corresponding ‘to L,
La.

to

o « e T (38).
L,=K?+K) =M o
10 = 1]*’ 3 —-Mg

Let us dxscuss the forms (29)- (38)

Geometrically five different” types of curves correspond to (29), dependlng

- on the p0551b1e \mlues of . p, . However, with the help of the transformatlon '

L-aL +ﬁA Ll v k} : (39)

and an mterchange of the coordinate axes they can be xeduced to the cases

1. ‘ I‘1>I‘2>I‘a oLy reducestoL
2, L B> By >y L, reduces to Ly
3. A single curve corresponds to (30) It is easy to see that all the in-
L l—[—L2 +(p+9Aland L

3T Ve s
can’ be reduced to | S ’ ' . :

+ colncide, so that__

[ T .
4, Two' ¢urves correspond to (31) (dl.fferent for T>1 and for — <1),

however, the correspondlng operators are connected by (39) The operators ’ Ly
rand L

#1#2L

P e L +I.¢,A have the ‘same lmmrlants, so that -"Ls reduces toLgp

5. ’I‘hree curves correspond to (32) but in all cases L, can be reduced:

p In complete analogy with the prevlous, case,

6. F\)rmula (33) descrlbes three types of curves, but can always

be reduced to L

to

cP

"L

7. F\)rmula (34) describes two types of curves, ‘but can always be reduced~

. . ‘,
| T
8, - F\)rmula (35) describes a. slngle curve, ’I‘he Operators Ly. and ' -

= L+ A have the same imra.rlants, so that 'L

cp can be neduced to L.,

T

9. Formulae (36) and (37) 'describe'di.fferent curves, but L, and Lg

can both be transformed using (39) into " (K, M ,)?  connecied with "L, "by a - .

hy'perbollc motlon, =To} that they both reduce to Lo

“10. F\)rmu.la (38) descrlbes a slngle curve and L,, is equivalent to the

zero operator,

" Thus although there are 20 types of nondegenerdte curves (det X £ 0)

12 ’ ‘. 7 .




in the Lobachevsky plane { 12 real, 2 unaginary, 5 ideal  ones and the absolute ),
we have shown that they correspond to our 9 classes of operators. ‘The deg&
- nerate case detX =0 need not be consxdered since degenerate curves can
a.lways be transformed into nondegenerate ones by the . transformation (39) ‘This

\_ompletes the proof,

5. Conclusions
- - <
We have mvestxgated the group theoretxcal origm ot coordinate systems,

and

a.llowmg the - separatlon of varxables in equatlon ( 1) for the spaces R, ,E,

Ly
Let us recap1tu.late the main results,

1. The diagonallzation of a homogeneous quadratxca.l polynormal in the ge-
nerators of -the ‘group 'of motions corresponds to each separating coordinate sys~
tem. : ’ B . R

2, All different types of coordinate systems can be obtained by classify-
ing all operators of the considered type into classes of’ equivalency, where two -

" operators . L and L belong to the same class, if they are related by trans-
formation (2). A coordinate system of a’certain type corresponds ‘to each 'classd
of operators and systems of the same type, but shifted or rotated with respect

to ‘each other, ‘correspond to dlff'erentf_pperators in the same class,"

3. Operators that are invariants of suhgmups ot the group of motions,‘ cor-
respond to coordinate systems with one centre (i.e. systems that are not e].lipti- '
cal or parabollcal) Different types of coordmate systems correspond to different
and unequxvalent subgroups (spher1ca1 coordmates ‘in R, , carteslan and polar

coordinates in ‘E, , horocychc, equldlstant and spherical coordinates in L ).

Accordmg to our opinion, the fact that operators, . commutxng with the Laplace
operators of a given group can be dxstmbuted into a fmxte and quite defmxte num-
ber of equnralency classes, is of great physxcal mterest. Mathematically it limits k
the ch01ce of the basxs for the group representatxons. In non-relativistic quantum
mechanics this fact severely limits the number’ of potentxals, allowing -a dynamical
invariance group (this has been’ considered.: for the two-dimensional case - in 8,

and an investigation of thre&dimensxonal potentxals is now under way ),

From the point of view of relativistic spm theory our resu.lts mean that it
1s only posstble to measure quite definite quantlhes, .characterizing the "projec—-

txon of the spm, if the total spln is fixed, E‘or physical particles w1th non- zero

13
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‘ mass it is elther possible to measure the usual component (e.g. ‘Ly) or the ;
eigenvalue of the operator L= La + sin? fL L but‘no_other independent '
quantity.  The  situation issinﬂlar, but more sopnlsucated in the case‘ of zero’ mass
particles, or unphy51ca.1 partlcles with m? <0. ‘ :

The group 0(2 1) descnbes particles with lmagmary mass, but is physt—
cally in'lporl:ant in the study of scattering’ ,problems, in which the symmetry proper‘-
ties of ”amplitudes, not of slngle-partlcle wave functions, are considered, The :
group 0(2,1) is the symmetry group related to a reaction in a glven channel,
,con51dered from the cross-channel (1t describes the amphtude in the non—physx-;

cal region).

It would be 1nterest1ng to’ conslder possible experunents determmmg the
quantlty L, + sin” ng for physical particles with >0, to clarify the role
of the focus distance ~ f in the corresponding experimental device and to con-
sider the connection of the. found. operators for m> = 0 with the Stokes polariza~

- tion parameters, A’discussion of these problems, as well as an imestlgaﬁo'n of
the properties of cross-channel amplitudes connected with the "components" enu-
merated.in -§ -4 will . be presented eeparately. Although the representat.ion'theory
of the groups 0(3), 0(2,1) and E, is well known, expliclt representations ha.ve; )
only’ been ‘constructed .in the polar coordinate system, thus corresponding to the
diagonalization of a space rotation generator, It would be of interest to construct -
representations, correspondlng to” the dlagona.lxzat.lon of all other 1ndependent ope-
rators, found in this paper, l.e. to give ngq;essmns for the- basls funchons, mat-"
rix elements ‘of 1nf1nites1mal and finite transformations etc,and to find ‘the opera-
tors, connecting these quanhtles in various systems. Such an mveshgatlon, spe- )
cifically concerning the relation between the results of this paper and the repre- ’
sentation theory of the group 0(2,1), developped by  Bargmann, will be published

elsewhere,

It should be noted that the resu.lts of this paper can be generalized to
spaces w1th higher dimensions, however in such cases it is necessary to classx—- :
fy sets of commuting operators, quadratxcal and symmetrica.l in the generators
.of the correspondlng group, instead of a single operator, ‘as in’ the case of. the )

groups “of rank I, cons1dered in the present _paper,

In concluslon we thank RNF‘yodorova, L Fris, M.Uhlfr and IUlehla for inte-

" resting dJscussmns. ’
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