D-19
ОБЪЕДИНЕННЫЙ ИНСТИТУТ ЯДЕРНЫХ ИССЛЕДОВАНИЙ

Дубна

Dao vong Duc, L. Jenkovszky, V.V. Kuhtin, I. Montvay, Nguyen van Hieu ON THE THEORY OF RELATIVISTIC SL(6,C) SYMMETRY

I. Montvay, Nguyen van Hieu

ON THE THEORY OF RELATIVISTIC SL(6,C) SYMMETRY

§ 1. Introduction

In order to construct the relativistic scheme of the SU(6) symmetry, Budini, Fronsdal $/ 1 /$ and wichel $/ 2 /$ proposed the symmetry group

$$
G=P \cdot S
$$

Which is the semidirect product of the Poincare group P and the group of internal symmetry S, P being the group of inner automorphisms of the group S. The noncompact groups $S L(6, f)$ and $U(6,6)$ containing a subgroup $S L(2, C)$ can be chosen as internal symmetry groups S. The elementary particles are classified according to unitary representations of the group S and thus form infinite multiplets. In the present paper we study some special unitary representations of the group $S L(6, C)$ which oan be used for the classification of the known mesons and baryons. We investigate also the structure of vertices and scattering amplitudes.

These problems were already treated $1 n^{3-7 /}$. But in all these papers vertices and the matrix eiements of scattering processes are considered in the framework of the so-galled $\quad S$-matrix approach where the connections between matrix elements for atates with definite values of momenta, spins etc. are investigated, the spin operators being
generators of Wigner's little group of the Lorentz group and no use is made of the usual relativistic spinors, 4-vectors, i.e. finite dimensional representations of homogeneous Lorentz group. The wave functions transform according to certain finite dimensional representations of the homogeneous Lorentz group and in the framework of the quantum field theory the scattering amplitudes and vertices are usually expressed by means of the wave functions of particles and by scalar functions possessing definite analyticity properties and crossing symmetry. Therefore it is highly desirable to get expressions for the matrix elements in terms of the wave functions. This is intended to be done in our paper. In order to establish the connecticn between the symmetry and quantum field theory we shall follow a method proposed in our previous papers $/ 8,9 /$.

Before considering the possibility of classifying particlez and investigating the structure of vertices and scattering amplitudes it is necessary to study the irreducible unitary representations of $S\left(l_{, ~ i}\right)$ and the splitting of these infinite dimensional representations into irreducible representations of $S U(6)$ as well as into multiplets of the little group $S U(6)_{p}$. This latter contains the little group $5 u(2)_{p}$ of the Lorentz group (for the definition of the little group $S U(6) p$ see $/ 3,5,8 /$). Gelfand, Graev and Vilenkin/lo/, Fronsdal $/ 3 /$ and $\mathrm{Runl} / 5 /$ has shown, that the unitary representations of
$S L(n, c)$ may be realized in Hilbert spaces of homogeneous functions. But, investigating the splitting of unitary representations of $S L(n, C)$ into i.r's of compact subgroup
$S U(h)$ Fronsdal applied the method of analytical continuation of the nonunitary finitedimensional representations in the number of indices. Following a paper of Rthl/5/ and our papers/ll,12/, we apply homogeneous functions consistently, and we shall introduce generalized tensors for the description of infinite multiplets as it was proposed in/12/.

Section $\mathcal{E} 2$ has an introductory character. It contains a brief description of tre technique of constructing uritary representations of $S(\bar{G}, C)$ - In particular, the connection between the method of homogeneous functions and the method of Gelfand and Naimark is established. The baryon and the meson multiplets are studied in $\mathfrak{j} 3$ and $\{4$. In $\$ 5$ the structure of the vertex is investigated.

§2. Unitary Representations of $\operatorname{SL}(6, C)$

The unitary representations of $S L(6, C)$ will be realized in functional Hilbert spaces on some sets z. Gelfand and Naimark $/ 13 /$ has shown that these sets z may always be identified with some subsets of the space L of all complex unimodulary matrices of 6-th order. Nore precisely, it is possible to realize z as the manyfold of cosets of the group $S L(6, C)$ with respect to cortain subgroups K. Refore studying these spaces
let us consider the space $L \quad$ itself. Let η denote an element of this space. η is a complex unimodulary matrix of $6-t h$ order:

$$
\eta=\left(\begin{array}{lll}
\eta_{4 i} \eta_{12} & \cdots & \eta_{16} \tag{1}\\
\cdots & & \\
\eta_{65} & & \\
\eta_{66}
\end{array}\right)
$$

We shall denote the elements of the last row $\eta_{6 A}$ by $\Delta_{A}^{(t)}$,

$$
\begin{equation*}
\Delta_{A}^{(4)}=\eta_{6 A} \tag{2}
\end{equation*}
$$

and the minors of order n with the elements from the last n rows well denote by $\Delta_{A_{1} \ldots A_{n}}^{(n)} \quad$:

$$
\Delta_{A B}^{(2)}=\left|\begin{array}{ll}
\eta_{5 A} & \eta_{58} \\
\eta_{6 A} & \eta_{6 B}
\end{array}\right|, \quad \Delta_{A B C}^{(3)}=\left|\begin{array}{ll}
\eta_{7 A} & \eta_{48} \\
\eta_{4 C} \\
\eta_{3 A} & \eta_{38} \\
\eta_{5 C} \\
\eta_{6 A} & \eta_{68} \\
\eta_{6 C}
\end{array}\right|, \ldots .
$$

$$
\Delta_{A B C D E}^{(5)}=\left|\begin{array}{lll}
\eta_{2 A} & \cdots & \eta_{2 E} \tag{3}\\
\vdots & & \vdots \\
\eta_{6 A} & \cdots & \eta_{G E}
\end{array}\right|
$$

Performing the transformation

$$
\begin{equation*}
\eta \rightarrow 2 g . \tag{4}
\end{equation*}
$$

$g \in S L(6, C)$, these polynomials transform like spinous of the representations $\Psi_{A}, \Psi_{[A B]}, \ldots$, $\Psi_{[A B C O E}$ (for spinor representations of the group SL($6, C$) see /14/,). We shall realize the unitary representations of the group $S L(6, C)$ in Filbert spaces of homogeneous functions of the variables $\Delta_{A}^{(0)}, \ldots, \Delta_{A B C O F}^{(0)}$. First we consider the case, when these functions depend on all the $\Delta_{A_{1} \ldots A_{i}}^{(i)} i-1, \ldots, 5$. The corresponding representations form the so-called nondegenerate series. As it was
shown by Gelfand and Naimark/13/, almost all matrices η can be written in the form:

$$
\begin{equation*}
\eta=\xi \delta z \tag{5}
\end{equation*}
$$

where the matrices ξ, δ and \mathcal{Z} have the form:

$$
\xi=\left(\begin{array}{cccc}
1 & \xi_{21} & \cdots & \xi_{16} \tag{6}\\
\vdots & 1 & & \\
\vdots & \ddots & 1 & \xi_{36} \\
& & & 1
\end{array}\right), \quad z=\left(\begin{array}{cccc}
1 & & & \\
z_{21} & 1 & & \\
z_{31} & z_{31} & 1 & \\
\vdots & & \ddots & \\
z_{61} & \cdots & & 1
\end{array}\right), \quad \delta=\left(\begin{array}{lll}
d_{1} & & \\
& \ddots & \\
& & d_{6}
\end{array}\right) .
$$

It can be shown, that polynomials $\Delta_{A_{1} \ldots A_{i}}^{(i)}$ do not depend on ξ and can be expressed by means of the matrix elements $\delta \quad$ and \mathcal{Z} in the following way:

$$
\begin{align*}
& \Delta_{A}^{(1)}=d_{6} z_{6 A}, \quad \Delta_{A B}^{(2)}=d_{6} d_{5}\left|\begin{array}{l}
z_{5 A} z_{5 B} \\
z_{6 A} \\
z_{6 B}
\end{array}\right|, \cdots, \\
& \Delta_{A B C B E}^{(5)}=d_{6} d_{5} d_{4} d_{3} d_{2}\left|\begin{array}{cc}
z_{2 A} & \cdots \\
\vdots & z_{2 E} \\
z_{6 A} & \cdots \\
z_{64}
\end{array}\right| \tag{7}
\end{align*}
$$

Let $f(\eta)=f\left(\Delta^{(t)} \ldots \Delta^{(5)}\right)$ be a homogeneous function of degree λ_{1} and μ_{1} with respect to and $\Delta^{(1)}$ and λ_{2} and μ_{2} with respect to $\Delta^{(2)}$ and $\bar{\Delta}^{(2)}$ and so on. ruben from (7) it follows, that
$f\left(\Delta^{(c)} \ldots \Delta^{(s)}\right)-\left(d_{6}\right)^{\alpha_{1}}\left(\bar{d}_{6}\right)^{\mu_{1}}\left(d_{6} d_{5}\right)^{\lambda_{2}}\left(\overline{d_{6}} d_{5}\right)^{\mu_{2}} \ldots\left(d_{6} d_{5} d_{7} d_{3} d_{2}\right)^{d_{5}}\left(\overline{d_{6} d_{5} d_{4} d_{3} d_{2}}\right)^{\mu_{5}} f(z)=$ $=\left(d_{6}\right)^{\lambda_{4}+\ldots \lambda_{3}}\left(\bar{d}_{1}\right)^{\mu_{2}+\cdots+\mu_{5}}\left(d_{3}\right)^{\lambda_{2}+\ldots \lambda_{5}}\left(\bar{d}_{5}\right)^{\mu_{2}+\cdots \mu_{3}} \ldots\left(d_{1}\right)^{\lambda_{5}}\left(\bar{d}_{2}\right)^{\mu_{5}} f^{\prime}(z)$,
where $f^{\prime}(z)$ is a function of the matrix elements of the triangular matrix z. Thus in this case the unitary representations of $S(6, C)$ are realized in the Hilbert space of the functions $\quad \varphi(z) \quad$ on the manifold of matrices z. The scalar product for the space of homogeneous functions under consideration is defined in the following way:

$$
\begin{equation*}
\left(f_{1}, f_{2}\right)=\int \bar{f}_{1}(\eta) f_{2}(\eta) d \sigma(\eta) \tag{9}
\end{equation*}
$$

where $d \sigma(\eta)$ is an invariant measure. The functions $f(\eta)$ depend effectively only on $z_{A B}$, $A>B$, thus $d \sigma(\eta)$ can contain only the differentials $d z_{A B}$. It is possible to show, that $d \sigma(\eta)$ is of the form:

$$
\begin{equation*}
d \sigma\left(\eta j=\left|d_{2}\right|^{4}\left|d_{3}\right|^{8}\left|d_{4}\right|^{12}\left|d_{5}\right|^{16}\left|d_{6}\right|^{20} \prod_{A>B}\left(\frac{i}{2}\right) d z_{A B} d \bar{z}_{A B}\right. \tag{10}
\end{equation*}
$$

From formulae (8) and (10) it follows that the definition of the scalar product (9) makes sense only when the degrees of $f(\Delta)$ plus the degrees of do(Δ) give zero, i, e. when λ_{i} satisfies:

$$
\lambda_{i}+\bar{\mu}_{i}+2=0, \quad i=1,2, \ldots, 5
$$

On the other hand, (8) makes sense only if $\lambda_{i}-\mu_{i}, i=1,2, \ldots, 5$, are integers. Thus we have:

$$
\begin{equation*}
\lambda_{i}=\frac{i \rho_{i}}{2}-1+v_{i}, \quad \mu_{i}=\frac{i \rho_{i}}{2}-1-v_{i}, \tag{11}
\end{equation*}
$$

Where the V_{i} are integer or half integer numbers. We define now the operators representing the internal symmetry group $S=S L(6, C h$ Let g be an element of this group and let us introduce the corresponding operator Tg :

$$
\begin{equation*}
T_{g} f(\eta)=f(\eta g) \tag{12}
\end{equation*}
$$

It can be easily proved that the correspondence

$$
g \rightarrow T g
$$

gives a representation of the group S in the Hilbert space of homogeneous functions $f(\eta)$ - Moreover, the invariance of the measure $\alpha \sigma(\eta)$ guarantee that the operators Ty are unitary with respect to the scalar product (9). Thus we have unitary reprosentations of $S L(6, C)$. They are irreducible, as it was shown by Gelfand and Naimark/13/, and form the so-called principal nondegonerate series.

Those cases, when the functions $f(\Delta)$ do not depend on all $\Delta^{(i)}, i=1, \ldots, 5$, but only on subsets of them, can be considered in a similar way (the degenerate series). In the following paragraphs two series will be considered which can be applied to the classification of baryons and mesons.

§3. Baryon Multiplet

Following many authors we assume that the baryons belong to the maximal degenerate series. More exactly, we assume, that baryons are described by a unitary representtaction corresponding to the homogeneous functions of $\Delta_{A}^{(x)}$ only. In this case for the matrix η we make use of the decomposition (5) with matrices ξ, Z and δ of the form:
where D^{5} is a matrix of the 5-th order with nonvanishing determinant and I^{5} is a unity matrix of the same dimension. For the sake of convenience we put $\xi_{A}=\eta_{6 A}$. From the definition (2) we have:

$$
\begin{equation*}
\Delta_{A}^{(1)}=\xi_{A}=Z_{G A} d_{G} . \tag{14}
\end{equation*}
$$

Therefore the homogenesus functions of degrees λ and μ^{μ} in $\Delta_{A}^{(t)}$ have the form:

$$
\begin{equation*}
f\left(\Delta^{(1)}\right)=f(\xi)=d_{6}^{\lambda} \bar{d}_{6}^{\mu} f_{i}^{\prime}=1 \tag{15}
\end{equation*}
$$

It can be shown that the invariant measure for the product (9) equals ${ }^{143 /}$:

$$
\begin{equation*}
d \sigma(\xi)=\left|d_{6}\right|^{12} \prod_{A=\{ }^{3} \frac{i}{2} d z_{6 A} d \bar{z}_{6 A} . \tag{16}
\end{equation*}
$$

Similarly to the case of nondegenerate series it follows from (9), (15) and (16) that λ and μ are equal to

$$
\begin{align*}
& \lambda=\frac{i \rho}{2}-3+v, \\
& N=\frac{i \rho}{2}-3-v, \tag{17}
\end{align*}
$$

Where V is an integer or half-integer and $\quad \rho \quad$ is a real number. ine given
infinite-dimensional representation of the group $\quad S L(6, C) \quad$ splits into the
following representations of the compact subgroup $S U(6)$:
$\Phi_{A_{1} \ldots A_{2},}, \Phi_{A_{L} \cdots A_{2 v+1}}^{A_{1}}, \ldots, \Phi_{A_{1} \ldots A_{\tau+1}}^{B_{1} \ldots B_{c+\psi}} \ldots$; we note that these generalized tensors can be explicitly constructed. To fix the idea we assume $V>0$. Then
$\Phi_{A_{1} \ldots A_{\tau+},}^{B_{1} \ldots B_{\tau-\nu}}=C_{\tau}\left(\xi_{A} \bar{\xi}^{A}\right)^{\frac{i \rho}{2}-3-\tau} Z_{A_{1} \ldots A_{\tau+\nu}}^{B_{1} \ldots B_{\tau-\nu}}, \quad \tau \geqslant y$,
where $Z_{A_{1} \ldots A_{\tau+V}}^{B_{1} \ldots B_{\tau-\downarrow}} \quad$ can be obtained from the products $\xi_{A_{1}} \ldots \xi_{A_{\tau+v}} \bar{\xi}^{B_{1}} \ldots \bar{\xi}^{B_{\tau-v}}$ by substracting traces:

$$
\begin{equation*}
Z_{A_{1} \ldots A_{\tau+v}}^{B_{1} \ldots B_{\tau-v}}=\sum_{s=0}^{\tau-v} \alpha(\tau-v, S, 2 \nu)\left(\zeta_{A} \bar{\zeta}^{A}\right) \int_{\left(A_{1}, B\right)} \delta_{A_{1}}^{B_{1}} \ldots \delta_{A_{S}}^{B_{S}} \zeta_{A_{S+1}} \ldots \xi_{A_{\tau+\nu}} \bar{\xi}_{\cdots}^{B_{S+1}} \bar{\xi}^{B \tau-v} \tag{19}
\end{equation*}
$$

Here

$$
\alpha(\tau-0, s, 2 v)=(-1)^{s} \frac{(\tau-v)!(\tau+v)!(2 \tau+4-s)!}{s!(\tau-v-s)!(\tau+v-s)!(2 \tau+4)!},
$$

and C_{τ} is a normalization constant (see also $/ 12 /$). We note that the spinurs (18) transform among themselves in the transformations from $S U(6)$ only. With respect to this group dotted and undotted indices do not differ, therefore upper indices can be written without dots.

Putting $V=\frac{3}{2}$ we find that the first $S U(6)$ multiplet $(\tau-\nu)$ containe in the infinite multiple of $S L(6, C) \quad$ under consideration is just the 56plat. Since we intend to classify the well-known baryons forming the 56 -piet of $\mathrm{SU}(6)$, we assume that $V=\frac{3}{2}$.

Let us now turn to the transformation properties of the considered multiplet of $S L(6, C)$ with respect to the space reflection P. For this purpose the transformation properties of he $S L(6, C)$ generators under space reflection should be utilized. Let us introduce the matrices ℓ_{B}^{A} and $\tilde{\ell}_{B}^{A}$:

$$
\begin{equation*}
\left(l_{B}^{A}\right)_{D}^{C}=\delta_{B}^{C} \delta_{D}^{A}-\frac{1}{6} \delta_{B}^{A} \delta_{D}^{C}, \quad\left(\tilde{l}_{B, D}^{A}, C\right)=i\left(\delta_{B}^{C} \delta_{D}^{A}-\frac{1}{6} \delta_{B}^{A} \delta_{D}^{C}\right) \tag{20}
\end{equation*}
$$

The elements of the grown can be written in the form

$$
\begin{equation*}
q=e^{i\left(\alpha_{A B}^{ \pm} n \eta_{A B}^{ \pm}+\beta_{A-}^{ \pm} n_{A B}^{ \pm}\right)} \tag{21}
\end{equation*}
$$

where $\alpha_{A B}^{ \pm}$and $\beta_{A B}^{ \pm}$are real parameters and $m_{A B}^{ \pm}$and $M_{A B}^{ \pm}$are:

$$
\begin{array}{ll}
m_{A B}^{+}=l_{B}^{A}+l_{A}^{B}, & m_{A B}^{-}=\tilde{l}_{B}^{A}-\tilde{l}_{A}^{B} ; \\
n_{A B}^{+}=\tilde{l}_{B}^{A}+\tilde{l}_{A}^{B}, & n_{A B}^{-}=l_{B}^{A}-l_{A}^{B} . \tag{22}
\end{array}
$$

The matrices s $M_{A B}^{ \pm}$ar* hermitian; they are the generators of the compact subgroup $S U(6)$. On the other hand, the matrices $\mathrm{KI}_{A B}^{ \pm}$are antiherinitian and are the noricompart generators. Let us denote the corresponding generators in the representations of $M_{A B}^{ \pm}$ and $N_{A B}^{ \pm}$. For the sake of striplicity the indices A and $B \quad$ will be omitted sometimes.) The former commute, the latter (like in the case of the Lorentz group) anti commute with the inversion

$$
\begin{equation*}
P M-M P=0, \tag{23}
\end{equation*}
$$

$$
\begin{equation*}
P N+N P=0 . \tag{24}
\end{equation*}
$$

as P imputes with the ieneraturs of $S U(\bar{b})$, we can put

$$
\begin{equation*}
P \Phi_{A_{1} \ldots A_{\tau+v}}^{B_{1} \ldots B_{\tau-v}}-\psi_{\tau} \oint_{A_{1} \ldots A_{\tau+\nu}}^{B_{1} \ldots B_{\tau-v}} \tag{25}
\end{equation*}
$$

where $\eta_{t}= \pm 1$ is a common constant for the whole SU(6) multiples. Let us now conside the consequences of the condition (24). Vising the explicit expressions (18) and (29) for $\Phi_{A_{1} \ldots A_{\tau+v}}^{B_{1} \ldots B_{t-v}}$ and the transformation rule for the homogeneous functions in the given Hilbert space

$$
T_{\gamma} f(\xi)=f(\xi g)
$$

one can show that the generators $N_{A B}^{ \pm}$act on the spinors $\Phi_{A_{1} \ldots A_{r+M}}^{B_{1} \ldots \theta_{t-1}} \quad$ in the following way:

$$
\begin{equation*}
\left(N^{ \pm}\right) \Phi_{A_{1} \ldots A_{t+1}}^{B_{1} \ldots B_{t-\psi}}=\sum_{\tau^{\prime}=\tau-1}^{\tau+1} \Phi_{C_{1} \ldots C_{\varepsilon^{\prime}+\psi}}^{D_{2} \ldots D_{r^{\prime}-v}}\left(N^{ \pm}\right)_{D_{1} \ldots D_{r^{\prime}-1} ; A_{1} \ldots A_{t+1}}^{C_{1} \ldots C_{\tau^{\prime}+1} ; B_{2} \ldots B_{t-v}} \tag{26}
\end{equation*}
$$

where

$$
\begin{align*}
& \left(N^{ \pm}\right)_{D_{1} \ldots D_{\tau^{\prime}-y} ; A_{1} \ldots A_{t} \ldots A_{t+v}}^{C_{1} \ldots B_{t-v}}= \\
& =\lambda_{C D}\left(\tau, \tau^{\prime}\right) \int_{(A B C D)} \delta_{A_{1}}^{B_{1}} \ldots \delta_{A_{\tau-\tau^{\prime}+1}}^{B_{\tau-\tau^{\prime}+1}}\left(n^{ \pm}\right)_{D_{1}}^{C_{1}} \delta_{A_{\tau+\tau^{\prime}+1}}^{C_{1}} \ldots \delta_{A_{\tau+v}}^{C_{\tau^{\prime}+v}} \delta_{z_{2}}^{B_{\tau-\tau^{\prime}+2}} \ldots \delta_{D_{z^{\prime}-v}+}^{B_{\tau-v}} \\
& +\lambda_{B D}\left(\tau, \tau^{\prime}\right) \oint_{(A B C D)} \delta_{A_{1}}^{B_{L}} \ldots \delta_{A_{\tau-\tau^{\prime}}}^{B_{\tau-\tau^{\prime}}} \delta_{A_{\tau-\tau^{\prime}+1}}^{C_{1}} \ldots \delta_{A_{\tau+\nu}}^{C_{\tau^{\prime}+\gamma}}\left(n^{ \pm}\right)_{s_{1}}^{B_{\tau-\tau^{\prime}+1}} \delta_{D_{2}}^{B_{\tau-\tau^{\prime}+2}} \ldots \delta_{D_{\tau^{\prime}-\nu}+}^{B_{\tau-1}}+ \\
& +\lambda_{C A}\left(\tau, \tau^{\prime}\right) \int_{(A B C D)} \delta_{A_{1}}^{B_{1}} \cdots \delta_{A_{\tau-\tau^{\prime}}}^{B_{\tau-\tau^{\prime}}}\left(n^{ \pm}\right)_{A_{\tau-\tau^{\prime}+1}}^{C_{1}} \delta_{A_{\tau-\tau^{\prime}+2}}^{C_{1}} \ldots \delta_{A_{\tau+1}}^{C_{\tau+1}} \delta_{B_{i}}^{B_{\tau-C^{\prime}+1}} \ldots \delta_{B_{\tau^{\prime}-\nu}}^{B_{\tau-\nu}}+ \tag{27}\\
& +\lambda_{B A}\left(\tau, \tau^{\prime}\right) S_{\left(A E K D_{1}^{\prime}\right.} \delta_{A_{1}}^{B_{1}} \ldots \delta_{A_{\tau-\tau^{\prime}-1}}^{B_{\tau-\tau^{\prime}-1}}\left(n^{ \pm}\right)_{A \tau-\tau^{\prime}+1}^{B_{\tau-\tau^{\prime}}} \delta_{A_{\tau-\tau^{\prime}+1}}^{C_{1}} \ldots \delta_{A_{\tau+\psi}}^{C_{\tau+\psi}} \delta_{D_{1}}^{B_{\tau-\tau^{\prime}+1}} \ldots \delta_{D_{\tau^{\prime}-\nu}}^{B_{\tau-\nu}} .
\end{align*}
$$

The constants λ in (27) vanish for $\left|\tau-\tau^{\prime}\right|>1$ and for $\left|\tau-\tau^{\prime}\right| \leqslant 1$ they are equal to:

$$
\tau^{\prime}=\tau+1
$$

$$
\begin{align*}
& \lambda_{\mathrm{CD}}(\tau, \tau+1)=(i \rho-6-2 \tau) \\
& \lambda_{\mathrm{BD}}(\tau, \tau+1)=\lambda_{\mathrm{CA}}(\tau, \tau+1)=\lambda_{\mathrm{BA}}(\tau, \tau+1)=0 \tag{28}
\end{align*}
$$

$\tau^{\prime}-\tau$

$$
\begin{align*}
& \lambda_{C D}(\tau, \tau)=-\frac{2 i \rho(\tau+v)(\tau-v)}{(2 \tau+6)(2 \tau+4)} \\
& \lambda_{B D}(\tau, \tau)=(\tau-v) \frac{i \rho}{2 \tau+6} \tag{29}\\
& \lambda_{C A}(\tau, \tau)=(\tau+v) \frac{i \rho}{2 \tau+6}
\end{align*}
$$

$$
\begin{align*}
\tau^{\prime}=\tau-1: & \\
& \lambda_{C D}(\tau, \tau-1)=(i \rho+4+2 \tau) \frac{(\tau-v)(\tau+v)(\tau-v-1)(\tau+v-1)}{(2 \tau+5)(2 \tau+4)^{2}(2 \tau+3)}, \\
& \lambda_{B D}(\tau, \tau-1)=(i \rho+4+2 \tau) \frac{(v-\tau)(\tau+v)(\tau-v-1)}{(2 \tau+4)^{2}(2 \tau+5)}, \tag{30}\\
& \lambda_{C D}(\tau, \tau-1)=(i \rho+4+2 \tau) \frac{(v-\tau)(\tau+v)(\tau+v-1)}{(2 \tau+4)^{2}(2 \tau+5)}, \\
& \lambda_{B A}(\tau, \tau-1)=(i \varphi+4+2 \tau) \frac{(\tau-v)(\tau+v)}{(2 \tau+5)(2 \tau+4)}
\end{align*}
$$

$$
\begin{equation*}
\left(N^{ \pm}\right)_{D_{1} \ldots D_{\tau-\psi} ; A_{1} \ldots A_{\tau+\nu}}^{C_{1} \ldots C_{\tau+\nu} ; B_{1} \ldots B_{\tau-\nu}}=0, \quad \text { if } \rho=0 \text {. } \tag{31}
\end{equation*}
$$

From (25) and (26) it can easily be seen that the condition (24) is equivalent to the equation:

$$
\begin{equation*}
\sum\left(\eta \eta_{\tau}+\eta \tau^{\prime}\right) \Phi_{C_{1} \ldots C_{\tau^{\prime}+\psi}}^{D_{1} \ldots D_{\tau^{\prime}-\nu}} N_{D_{1} \ldots D_{\tau^{\prime}-\psi} ; A_{1} \ldots A_{\tau+y}}^{C_{1} \ldots C_{\tau^{\prime}+\psi} ; B_{1} \ldots B_{\tau-\psi}}=0 . \tag{32}
\end{equation*}
$$

If

$$
\rho \neq 0 \text {, then from (32) we get the relations: }
$$

$$
2 \eta_{\tau}=0, \quad \eta_{\tau \pm 1}+\eta_{\tau}=0
$$

The first one can not be satisfied since $\eta_{t}= \pm 1$. It means that for $\rho \neq 0$ the relations (25) are not satisfied and the given representation of $S L(6, C)$ does not transform into itself under space reflexion. There are two possibilities to obtain states with definite parity: either to introduce two equivalent representations transforming mutually one into the other under P, or to put $\rho=0$. In the first case there will exist always pairs of multiplets with opposite parity. In what follows we shall assume that the second possibility occurs, namely we shall put $\rho=0$. In this case the equation (32) is equivalent to the condition

$$
\eta_{\tau \pm 1}+\eta_{\tau}=0 .
$$

This means that the adjacent $S U(6)$ multiplets contained in the infinite multiplet of
$S L(6, C)$ under consideration have opposite parity. Therefore the spinors $\Phi_{A_{1} \ldots A_{t+\eta}}^{B_{1} \ldots B_{t-v}}$ of the $S L(6, C)$ multiplet containing the baryon 56 -plet have the following parity:

$$
P_{\tau}=(-1)^{T-V}
$$

This result was obtained first b_{i} Fronsdal, who used another method.
For the unitary representation of the group $S L(6, C)$ under consideration formulde (18) and (19) give the canonical basis corresponding to the reduction $S L(6, C) \supset S U(6)$. However, as it wis noted in a number of papers $/ 3,5,8,9 /$, elementary particles are classified according to the i.r's of $S U(6) \psi$ and not of $S U(6)$. Thus for applications in the symmetry of elementary particles it is necessary to consider the
splitting of the given representation of $\operatorname{SL}(6, C)$ into i.r's of the little group
$S U(6)_{p}$, 1.e. we must construct a basis correspondiag to the reduction $S L(6, c) \supset S U(6)_{p}$. It was shown in a series of papers $/ 3,8,9,15 /$ that it is possible to introduce for each particle from the given infinite multiplet the corresponding quantized field which transforms according to some spinor (nonunitary) representation of the homogeneous Lorentz group. For the sake of convenience we shall introduce an auxiliary (following the terminology of Peldman and matthews $/ 16 /$, group $\quad S^{\prime}=S L(6, C) \quad$ containing the homogeneous Lorentz group. This group is isomorphic to the group of internal symmetry S, but it is not identical with S. It may be identified with the group $S L(6, c)$ proposed earlier in a number of papers /14,17-21/. We stress that the new auxiliary group is introduced only to establish the connection between the symmetry and the quantum field theory. We do not require invariance under this new group. For the description of particles we introduce in each multiplet of the internal symmetry group S an infinite number of spinor representations of the auxiliary group S^{\prime}. As it was shown in $/ 3,8 /$ for these spinor fields there exists the usual connection between spin and statistics.

Thus, constructing the basis from $S U(6)_{k}$ spinors it is convenient to supply them with definite transformation properties with respect to the auxiliary group S^{\prime}. The variables ξ_{A} transform under Lorentz transformations like the spinors with a lower undotted index, therefore we assume that they form a spinor with a lower undotted index also under the auxiliary group S^{\prime}. In this case the complex conjugate quantities are spinors with an upper dotted index and will be denote by $\bar{\xi} \dot{A}$.

Constracting the basis for the reduction $S L(6, C) \supset S U(6) \psi$ we shall use the quantity

$$
\bar{\xi}^{\dot{A}}\left(-\frac{i \hat{\gamma}}{m}\right)_{\dot{A}}^{B} \xi_{B}
$$

instead of the $\operatorname{SU}(6)$ invariant

$$
\bar{\xi}^{\dot{A}} \xi_{A}
$$

Here $A=(a, \alpha), a=1,2$ is the spin index, $\alpha=1,2,3$ is the unitary index and

$$
\left(-\frac{i \hat{h}}{m}\right)_{\dot{B}}^{A}=\left(-\frac{i \hat{\gamma}}{m}\right)_{i}^{a} \delta_{\beta}^{\alpha}
$$

Thus the above expression is an $S U(6) p$ invariant. In addition it is invariant also under Lorentz transformations. Instead of the basis defined in (18) and (19) we have thus the following relativistically invariant basis

$$
\begin{equation*}
\widetilde{\Phi}_{A_{1} \ldots A_{\tau+v}}^{\dot{B}_{1} \ldots \dot{B}_{\tau-v}}=C_{\tau}\left(\bar{\xi}^{\dot{1}}\left(-\frac{i \hat{\nu}}{m}\right)_{\dot{A}}^{B} \xi_{B}\right)^{\frac{i \rho}{2}-\boldsymbol{3}-\tau} Y_{A_{1} \ldots A_{\tau+v}}^{\dot{B}_{1} \ldots \dot{B}_{t-v}} \tag{33}
\end{equation*}
$$

Here

satisfy the relation:

$$
\begin{equation*}
\left(-\frac{i \hat{h}}{m}\right)_{\dot{b}_{j}}^{A_{i}} Y_{A_{1} \ldots A_{i} \ldots A_{\tau}}^{\dot{8}_{1} \ldots \dot{B}_{j} \ldots \dot{B}_{t-v}}=0 \tag{35}
\end{equation*}
$$

It is easy to see that the $S U(6)$ spiriors defined by (33) and (34) can be obtained from (18) and (19) by putting $\left(-\frac{2 \hat{H}}{m}\right)_{\dot{B}}^{A}$ instead of δ_{B}^{A}. Analogonsly the relation (35) is a gaperalization of the relation:

$$
\delta_{B_{j}}^{A_{i}} Z_{A_{A} \ldots A_{i} \ldots A_{t+v}}^{B_{1} \ldots B_{j} \ldots B_{t-\psi}}=0
$$

Every vector in the fillbert space of the given representation can be represented in the form:

In what follows, the matrix elements of prooesses and vertices will be represented explioitly in terms of the oomponents $\mathbb{U}_{A_{1} \ldots A_{x} \ldots}^{A_{z-v}}$.

54. Weson Multiplet

Also for the desoription of mesons we can in principle use a unitary representation from the meximally degenerate series. But the meson and the baryon multiplets cannot belong simultaneously to the maximally degenerate series for in such a case there exists no invariant meson-baryon vertex. Therefore we assume that the meson multiplet belongs to the degenerate series which we realized in the Hilbert spaces of homogeneous functions of the variables $\Delta_{A}^{(1)}$ and $\Delta_{A 8 C D E}^{(s)}$. For convenience we put:

$$
\begin{equation*}
\xi_{A}=\Delta_{A}^{(4)}, \quad S^{A}-\varepsilon^{A B C D E F} \Delta_{B C D E F}^{(5)} \tag{36}
\end{equation*}
$$

where
is the fully antisymmetric 6-th rank tensor. We note that

$$
\begin{equation*}
\xi_{A} \zeta^{A}=0 \tag{37}
\end{equation*}
$$

Now we use a decomposition (5) of the matrix η with the following ξ, z and δ :

$$
\begin{align*}
& \zeta=\left(\begin{array}{c:ccc}
1 & \xi_{12} & \cdots & \xi_{16} \\
\hdashline & & & \Gamma^{4} \\
0 & & & \\
& 1 & 1 & \xi_{26} \\
\hdashline 0 & 0 & 1
\end{array}\right) \text {, } \tag{38}\\
& Z=\left(\begin{array}{c:ccc}
1 & 0 & 0 \\
\hdashline z_{21} & & 0 & 0 \\
\vdots & \vdots & & \\
\vdots & & & 0 \\
z_{51} & 1 & & \\
\hdashline z_{61} & z_{62} & \cdots & 1
\end{array}\right), \\
& \delta=\left(\begin{array}{ccc}
d_{1} & & \\
\hdashline i_{1} & \ldots & \cdots \\
\hdashline D^{4} & \\
\hdashline & & d_{6}
\end{array}\right) .
\end{align*}
$$

Here D^{4} is of 4-th order with nonvanishing determinant and $\left[^{4}\right.$ is the unity matrix of 4-th order. It is easy to show that

$$
\Delta_{A}^{(1)}=d_{6} z_{6 A}, \quad \Delta_{A B C D E}^{(5)}=D\left|\begin{array}{cc}
z_{2 A} \cdots z_{2 E} \tag{39}\\
\vdots & \vdots \\
z_{6 A} \cdots & z_{G E}
\end{array}\right| \text {, }
$$

where $D=\operatorname{det} D^{4}$. Therefore similarly to (8), the homogeneous functions of degree λ, μ and $\lambda^{\prime}, \mu^{\prime}$ in ζ_{A} and ζ^{A}, respectively, have the form:

$$
\begin{equation*}
f(\eta)=f\left(\xi_{A}, \zeta^{A}\right)=d_{6}^{2} \bar{d}_{6}^{\mu}\left(d_{6} D\right)^{\lambda^{\prime}}\left(\overline{d_{6} D}\right)^{\mu^{\prime}} f^{\prime}(z) \tag{40}
\end{equation*}
$$

They transform also according to (12).
The invariant measure for the scalar product (9) is now:

$$
\begin{equation*}
d \sigma(\eta)=|D|^{10}\left|d_{6}\right|^{20} \prod_{A=2}^{6}\left(\frac{i}{2}\right) d z_{A 1} d \bar{z}_{A 1} \prod_{B=2}^{5}\left(\frac{i}{2}\right) d z_{6 B} d \bar{z}_{6 B} \tag{41}
\end{equation*}
$$

The unitarity of the representation follows from the invariance of $d o(\eta)$. From these formulae we obtain for the constants λ, μ and $\lambda^{\prime}, \mu^{\prime}$:

$$
\begin{array}{ll}
\lambda=\frac{i \rho}{2}-\frac{5}{2}+\nu, & \lambda^{\prime}=\frac{i \rho^{\prime}}{2}-\frac{5}{2}+v^{\prime}, \\
\mu=\frac{i \rho}{2}-\frac{5}{2}-\nu ; & \mu^{\prime}=\frac{i \rho^{\prime}}{2}-\frac{5}{2}-v^{\prime} \tag{42}
\end{array}
$$

where ν and ν^{\prime} are integers or half-integers and ρ, ρ^{\prime} are real numbers. The splitting of this $S L(G, C)$ representation into irreducible representations of the subgroup $S U(6)$ can be obtained as follows: first we consider the homogeneous functions of the form

$$
\begin{equation*}
\left(\zeta_{E} \bar{\zeta}^{E}\right)^{\frac{i \rho}{2}-\frac{5}{2}-\tau}\left(\zeta^{F} \bar{\zeta}_{F}\right)^{\frac{i \rho}{2}-\frac{5}{2}-\tau^{\prime}} X^{B_{1} \ldots B_{\tau-v} ; c_{i} \ldots c_{\varepsilon^{\prime}+\nu^{\prime}}} \tag{43}
\end{equation*}
$$

where
 Because of (37) the traces in eaoh pair of indices A_{i} and C_{j} (or B_{i} and D_{i}) vanisb. In order to get $1 . r^{\prime s}$ of $S U(6)$ it is necessary to symmetrize in upper and lower indioes scoording to all possible Young tableaur and then substract traces in all pairs of indioes in a symmetrical way.

Far deifniteness let us take the multiplet with $y=y^{\prime}=0$. It contains tise Iollowing Su(6) multiplets:
a singlat

$$
\begin{equation*}
\Phi_{(1)}=\left(\zeta_{A} \bar{\zeta}^{A}\right)^{\frac{1}{2}-\frac{5}{2}}\left(\eta^{A} \frac{\eta_{A}}{A}\right)^{\frac{i}{2}-\frac{5}{2}} \tag{44}
\end{equation*}
$$

two 35-plets
a 189 -plet, a $280+\overline{280}-p l e t$, three $405-p l e t s$ e.t.0. Instead of the $35-p l e t$ in
(45) it 18 convenient to take the symmetrio and antisymetrio combinetions

$$
\begin{align*}
& \Phi_{(35)}^{(4)}=\Phi_{(35)_{1}}+\Phi_{\left.(35)_{2}\right)} \\
& \Phi_{(58)}^{(-)}=\Phi_{(35)_{4}}-\Phi_{(35)_{2}} \tag{46}
\end{align*}
$$

It 1s possible to show that the nonoompact generators aet on the basis veotors (44) and (46) 1n the following way:

$$
\begin{equation*}
N^{ \pm} \Phi_{(1)}=i \frac{\rho-\rho^{\prime}}{2}\left(n^{2}\right)_{s}^{l} \phi_{(s))_{k}^{(4)} s}^{(i)}+\left(i \frac{\rho+\rho^{\prime}}{2}-5\right)\left(n^{ \pm}\right)_{s}^{R} \Phi_{(s)}^{(u) s}, \tag{47}
\end{equation*}
$$

$$
\begin{align*}
& N^{ \pm} \Phi_{(95) A}^{(1) B}= i \frac{\rho \cdots \rho^{\prime}}{2} \frac{2}{35}\left(n^{1}\right)_{A}^{B} \Phi_{(1)}+i \frac{\rho-\rho^{\prime}}{2}\left\{-\frac{1}{48} \delta_{A}^{B}\left(n^{ \pm}\right)_{S}^{R}+\frac{1}{16} \delta_{S}^{B}\left(n^{ \pm}\right)_{A}^{R}+\right. \\
&\left.+\frac{1}{16} \delta_{A}^{R}\left(n^{1}\right)_{S}^{B}\right\} \Phi_{(35)_{R}}^{(4) S}+\left\{\left[\frac{1}{8}\left(i \frac{\rho+\rho^{\prime}}{2}-7\right)-\frac{1}{6}\left(i \frac{\rho+\rho^{\prime}}{2}-\right.\right.\right. \tag{48}\\
&\left.-5)] \delta_{A}^{B}\left(n^{ \pm}\right)_{S}^{R}+\left[1+\frac{1}{8}\left(i \frac{\rho+\rho^{\prime}}{2}-7\right)\right]\left[\delta_{A}^{R}\left(n^{ \pm}\right)_{S}^{B}\left(n^{ \pm}\right)_{A}^{R}\right]\right\} \Phi_{(35)_{R}}^{(-) S}+ \\
&+ \text { tensors with four 1ndices, }
\end{align*}
$$

$$
\begin{align*}
N^{ \pm} \Phi_{(35)_{A}}^{(-)}= & {\left[\frac{2}{3}+\frac{2}{35}\left(i \frac{\rho+\rho^{\prime}}{2}-5\right)\right]\left(n^{ \pm}\right)_{A}^{R} \Phi_{(1)}+\left\{\left[\frac{1}{8}\left(i \frac{\rho+\rho^{\prime}}{2}-7\right)-\right.\right.} \\
& \left.-\frac{3}{16}\left(i \frac{\rho+\rho^{\prime}}{2}-5\right)\right] \delta_{A}^{B}\left(n^{ \pm}\right)_{S}^{R}+\left[1+\frac{1}{8}\left(i \frac{\rho+\rho^{\prime}}{2}-7\right)+\right. \\
& \left.\left.+\frac{1}{16}\left(i \frac{\rho+\rho^{\prime}}{2}-5\right)\right]\left[\delta_{A}^{R}\left(n^{ \pm}\right)_{S}^{B}+\delta_{S}^{8}\left(n^{ \pm}\right)_{A}^{R}\right]\right\} \Phi_{(35)_{R}^{(+)} s}^{s}+ \tag{49}\\
& +i \frac{\rho-\rho^{\prime}}{2}\left\{-\frac{1}{24} \delta_{A}^{B}\left(n^{ \pm}\right)_{S}^{R}+\frac{1}{8} \delta_{S}^{B}\left(n^{ \pm}\right)_{A}^{R}+\frac{1}{8} \delta_{A}^{R}\left(n^{ \pm}\right)_{S}^{B}\right\} \Phi_{(45)_{R}^{(-) S}}^{(-)}+
\end{align*}
$$

Let us find now the conditions that must be satisifed in order to allow the introduction of the parity transformation within the given $S L(6, C)$ multiplet. Utilising formulae $(47-49)$, it 18 quite possible to show that the oommatation relation (24) is compatible with the oonditions:

$$
\begin{equation*}
P \Phi_{(4)}=\eta_{1} \Phi_{(1)}, \quad P \Phi_{(35)}^{(\pm)}=\eta_{(35)}^{(\pm)} \Phi_{(55)}^{(3)}, \quad\left(\eta_{1}\right)^{2}=\left(\eta_{35}^{(\pm)}\right)^{2}=1, \tag{50}
\end{equation*}
$$

only if $\rho=\rho^{\prime}$, and in this case:

$$
\begin{equation*}
\eta_{35}^{(4)}=\eta_{1}, \quad \eta_{35}^{(-)}=-\eta_{35}^{(+)} . \tag{51}
\end{equation*}
$$

When atudying prooesses in whioh partioles with nonvanishing momenta are involed, it is nooessary to pass from the $S L(6, C) \supset S U(6) \quad$ type of reduotion to the $S L(6, C) \supset S U(6) p$ one. This oan be oarried out in the same way as in the oase of the barjon multiplet. B.g. we have for the singlet:

$$
\begin{equation*}
\Phi_{(1)}=C_{1}\left[\xi_{A}\left(-\frac{\hat{i}}{\mu}\right)_{\dot{B}}^{A} \overline{\xi^{B}}\right]^{\frac{j}{2}-\frac{s}{2}}\left[\zeta^{A}\left(-\frac{i \hat{\mu}}{\mu}\right)_{A}^{\dot{3}} \zeta_{\dot{B}}\right]^{\frac{i \rho}{2}-\frac{5}{2}}, \tag{52}
\end{equation*}
$$

Where C_{1} is the normalization oonstant and $\mu(1 s$ the meson mass. Let us desoribe the states of the 35 -plet by the Pinite-dimensional $\operatorname{SL}(6, C)$ spinors $\Phi_{\left.(s 5)_{B}^{(~}\right) \text {. }}^{(1)}$. Then we have:

$$
\begin{align*}
& \left.\left.-\frac{1}{6} \delta_{B}^{A} \xi_{I}\left(-\frac{i \hat{\mu}}{\mu}\right)_{\dot{K}}^{I} \bar{\xi}^{\dot{k}}\right] \pm\left[\xi_{6}\left(-\frac{i \hat{\mu}}{\mu}\right)_{\dot{H}}^{G} \bar{\zeta}^{\dot{H}}\right]\left[\zeta^{A}\left(-\frac{i \hat{\mu}}{\mu}\right)_{B}^{\dot{I}} \bar{\zeta}_{\dot{I}}-\frac{1}{6} \delta_{B}^{A} \zeta^{I}\left(-\frac{i \hat{\mu}}{\mu}\right)_{I}^{\dot{I}} \bar{\zeta}_{\dot{I}}\right]\right\}, \tag{53}
\end{align*}
$$

where C_{35} is the normaliestion constant. In what follows we shall put for the sake of simplio1ty $\rho=0 \quad$.

Before studying the meson-baryon vertex we intend to find the solution of a more general problem:
let $f\left(\theta_{A}\right)$ be a homogensous function from the Hilbert space of the unitary representation considered in §3. We want to construct a trilinear functional, linear with respect to $g\left(\xi_{A}, S^{A}\right)$, bylinear in $f\left(\theta_{A}\right)$ and invariant under $S L(6, C)$. Let us look for this funotional in the integral form

$$
\begin{equation*}
I=\int \bar{f}(\theta) f\left(\theta^{\prime}\right) g(\xi, \zeta) k\left(\theta, \theta^{\prime}, \xi, \zeta\right) d \sigma(\theta) d \sigma\left(\theta^{\prime}\right) d \sigma(\xi, \zeta) . \tag{54}
\end{equation*}
$$

It is easy to prove that the kernel $K\left(\theta, \theta^{\prime}, \xi, \zeta\right)$ has to be an invariant function of its arguments.

Let $f(\theta)$ be a homogeneous function of degree $\frac{i 9}{2} \pm v-3, g(\xi, 5) \quad$ be a homogeneous function of degree $\frac{i g^{\prime}}{2} \pm V^{\prime}-\frac{5}{2} \quad$ with respect to $\}, \xi^{\prime} \quad$ and of degree $\frac{i g^{\prime \prime}}{2} \pm \nu^{\prime \prime}-\frac{5}{2} \quad$ with respect $t o S, \zeta^{\prime}$. Then owing to the fact that the measures $d \sigma(\theta)$ and $d \sigma(\xi, \zeta)$ have the properties:

$$
\begin{aligned}
& d \sigma(\lambda \theta)=\lambda^{3} \lambda^{3} d \sigma(\theta), \\
& d \sigma(\lambda \xi, v \zeta)=\lambda^{\frac{5}{2}} \bar{\lambda}^{\xi} \nu^{5} \overline{V^{3}} d \sigma(\xi, \zeta) .
\end{aligned}
$$

The integral (54) makes sense only if the kernel $K\left(\theta, \theta^{\prime}, \xi, \zeta\right) \quad$ is a nomogeneous function of its arguments too, namely

of degree	$\frac{i 9}{2} \pm v-3$	with respect to	θ	and	$\bar{\theta}$,
of degree		With respect to	θ^{\prime}	and	$\bar{\theta}^{\prime}$,
of degree	$\left.-\frac{3}{2} \mp\right\rangle^{\prime}-\frac{5}{2}$	with respect to	$\}$	and	
of degree	$-\frac{19}{2}-r^{\prime \prime}-\frac{5}{2}$	With respect to	ζ	and	3

$$
\begin{equation*}
(\theta \zeta)=\theta_{A} \zeta^{A}, \quad\left(\theta^{\prime} \zeta\right)=\theta_{A}^{\prime} \zeta^{A} \tag{55}
\end{equation*}
$$

but it can not be expressed by means of these variables only, for in such a oase it would not depend on ξ. We note however that a possible invariant function of three variables is an integral of the form

$$
\begin{align*}
& J\left(\theta, \theta^{\prime}, \xi\right)-\int(\theta \alpha)^{N_{1}}\left(\theta^{\prime} \alpha\right)^{\mu_{1}}(\xi \alpha)^{L_{1}}(\overline{\theta \alpha})^{\mu_{2}}\left(\overline{\theta^{\prime} \alpha}\right)^{\mu_{1}}(\bar{\xi} \alpha)^{L_{2}} d \sigma(\alpha), \\
& (\theta \alpha)=\theta_{A} \alpha^{A}, \quad\left(\theta^{\prime} \alpha\right)-\theta_{A}^{\prime} \alpha^{A}, \quad(\xi \alpha)=\xi_{A} \alpha^{A} . \tag{56}
\end{align*}
$$

This integral makes sense only if

$$
N_{i}+M_{i}+L_{i}=-6
$$

Let us write the kernel in the form of a linear combination of products of invariants (55) and integrals of the form (56). It can be proved that such a kernel exists only if $\rho^{\prime}=\rho^{\prime \prime}$ and $V^{\prime}=V^{\prime \prime}$. In this case it has the form

$$
\begin{align*}
K\left(\theta, \theta^{\prime}, \xi, \zeta\right)= & \sum_{\mu_{1} \mu_{2}} \int d \tau_{1} d \tau_{2} c\left(\tau_{2}, \tau_{2}, \mu_{1}, \mu_{2}\right) f(\theta) f\left(\theta^{\prime}\right) g(\zeta, \zeta) \times \\
& \times(\theta \zeta)^{\frac{i \tau_{2}}{2}+\mu_{1}+R_{1}}(\overline{\theta \zeta})^{\frac{i \tau_{2}}{2}+\mu_{2}+R_{2}}\left(\theta^{\prime} \zeta\right)^{-\frac{i \tau}{2}-\mu_{1}+R_{2}}\left(\overline{\theta^{\prime} \zeta}\right)^{-\frac{i \tau_{1}}{2}-\mu_{2}+R_{2}} \times \tag{57}\\
& \times \int(\theta \alpha)^{N_{1}}\left(\overline{\theta_{\alpha}}\right)^{\mu_{2}}\left(\theta^{\prime} \alpha\right)^{\mu_{1}}\left(\overline{\theta^{\prime} \alpha}\right)^{\mu_{2}}(\xi \alpha)^{L_{1}}(\xi \alpha)^{L_{2}} d \sigma(\alpha)
\end{align*}
$$

$$
\begin{align*}
& R_{1,2}=-\frac{i \rho^{\prime}}{2} \mp \nu^{\prime}-\frac{5}{2}, \quad N_{1,2}=\frac{i \rho^{2}}{2} \pm \nu-3-\frac{i \tau_{12}}{2}-\mu_{1,2}-R_{1,2}, \\
& M_{1,2}=-\frac{i \rho}{2} \mp v-3+\frac{i \tau_{1,2}}{2}+\mu_{1,1}-R_{1,1}, \quad L_{1,2}=-\frac{i \xi^{\prime}}{2} \mp \nu^{\prime}-\frac{5}{2} . \tag{58}
\end{align*}
$$

Now we apply these results to the study of the structure of the meson-baryon vertex. We expand an arbitrary spinor from the Hilbert space of homogeneous functions characterizing the baryon multiplet in the form

$$
\begin{equation*}
\Psi_{f}\left(\theta_{A}\right)=\sum_{\tau=1}^{\infty} \Psi_{B_{1} \ldots \dot{B}_{\tau-v}}^{A_{1} \ldots A_{\tau+v}}(k) \widetilde{\Phi}_{A_{1} \ldots B_{\tau-1}}^{A_{\tau+1}}\left(\theta_{A}\right) \tag{59}
\end{equation*}
$$

Here the $\widetilde{\Phi}_{A_{1} \ldots A_{\tau+*}}^{\dot{B}_{2} \ldots \dot{B}_{\tau}}\left(\theta_{A}\right)$ are determined by formulae (33) and (34). On the other hand the spinors from the Hilbert space of homogeneous functions characterizing the mesons we write as
where $\tilde{\Phi}_{(1)}(\zeta, \zeta)$ and $\Phi_{(35)}^{(t)}(\xi, \zeta)$ are determined by (52) and (53). To obtain the vertex it is sufficient to insert expressions (59) and (60) into the formulae (57) for the invariant trilinear functional putting $V=3 / 2, \rho=\rho^{\prime}=\nu^{\prime}=0$. Extracting the part of the vertex corresponding to the interaction of the baryon 56 -plet and the meson $35-\mathrm{plets}$, we get

$$
\begin{equation*}
\Gamma^{(\pm)}\left(p_{1}, h_{2} ; q\right)=M_{\substack{(\pm) \\ B_{2} \dot{B}_{2} \dot{A}_{3}, D}}^{\dot{A}_{3}, C} \Psi^{(\pm)}(q)_{c}^{D} \bar{\Psi}_{\dot{A}_{1} \dot{A}_{2} \dot{A}_{3}}\left(h_{2}\right) \Psi^{B_{1} B_{2} B_{3}}\left(p_{4}\right) \tag{61}
\end{equation*}
$$

where

$$
\begin{align*}
& \times \widetilde{\Phi}_{B_{2} B_{2} B_{3}}\left(\theta^{\prime}\right) \tilde{\Phi}_{(35)}^{(\pm)}(\zeta, \zeta)_{D}^{c}(\theta \zeta)^{\frac{i \tau_{A}}{2}+\mu_{2}-\frac{\zeta}{2}}(\overline{\theta \zeta})^{\frac{i \tau_{2}}{2}+\mu_{2}-\frac{g}{2}}\left(\theta^{\prime} \zeta\right)^{-\frac{i \tau_{1}}{2}-\mu_{1}-\frac{5}{2}} \times \tag{62}\\
& x\left(\overline{\theta^{\prime} \zeta}\right)^{-\frac{i \tau_{1}}{2}-\mu_{2}-\frac{\Sigma}{2}} \int(\theta \alpha)^{1-\frac{i \tau_{2}}{2}-\mu_{1}}(\bar{\theta} \alpha)^{-2-\frac{i \tau_{1}}{2}-\mu_{1}}\left(\theta_{\alpha}^{\prime}\right)^{-2+\frac{i \tau_{1}}{2}+\mu_{2}}\left(\overline{\theta^{\prime} \alpha}\right)^{1+\frac{i \tau_{1}}{2}+\mu_{2}} \times \\
& x(\xi \alpha)^{-\frac{5}{2}}(\overline{\xi \alpha})^{-\frac{5}{2}} d \sigma(\alpha) .
\end{align*}
$$

In the expressions (33), (34) and (35) for $\widetilde{\Phi}_{A B C}$ and $\tilde{\Phi}_{(35)}^{(1)}(\xi, \zeta)_{D}^{c}$ we must now put $m^{2} \rightarrow-p_{i}^{2}$ or $\mu^{2} \rightarrow-q^{2}$, raspeotively. For the other parts we have analogous oxpressions. These expressions show that the meson-baryon vertex in the theory of SL(6,C) symmetry depends on an infinite number of scalar products $\left(\left(p_{1}^{2}, h_{2}^{2}, q^{2}, \tau_{1}, \tau_{2}, \mu_{1}, \mu_{2}\right)\right.$. As far as now we are not able to prove whether the vertex depends essentially on all these functions or they form in (62) Just a trivial combination. It is quite reasonable to expeot that different functions $C\left(\mu_{1}^{2}, \mu_{1}^{2}, q^{2} ; \tau_{2}, \tau_{2}, \mu_{1}, \mu_{2}\right)$ enter in the vertex (62) in different ways and that this vertex depends effectively on an infinite number of functions. Ihis result of ours differs from that of Fronsdal/3/ and Rahl/5/. From the expression (62) one can derive different relations between physical formfactors.

The expressions of type (62) contain the complete information on the consequences of our symmetry scheme. A piece of this information can be derived without the evaluation of the integrals merely on the basis of transformation properties of the corresponding integrals under the auxiliary group $S^{\prime}=S L(6, C)$ containing the Lorentz group (see §3). We remind that $\theta, \theta^{\prime}, \xi$ and ζ transform aocording to inite dimensional spinor representations of the auxiliary group S^{\prime}.

Let us now introduce certain epinors of this group: $P_{1}^{A}, P_{18}^{\dot{A}}, P_{2}^{A}, P_{i}^{\dot{A}}, Q_{\dot{B}}^{A}$, $Q_{B}^{\dot{A}}$ (we note that these spinors are not necessarily particles momenta). Then we oonsider integrals of the type (62) in whioh momenta

$$
\begin{equation*}
P_{i}^{\dot{A}}=v_{i}^{\dot{a}} \delta_{\beta}^{\alpha}, \quad Q_{B}^{\dot{\dot{a}}}=q_{B}^{\dot{a}} \delta_{\beta}^{\alpha}, \quad i=1,2, \tag{63}
\end{equation*}
$$

are replaced by arbitrary finite dimenaional spinors of the group S^{\prime}. The measures are invariant under S^{\prime} therefore these integrals must have definite transformation properties under S^{\prime} with the numbers of dotted and undoted indioes given in the left band side. On the other hand, these integrals are functions of the spinors P_{i} i
 pressed in terns of the latter. Thus the integrals of the type (62) have to be linear oombinations of the produots of the type $\quad P_{i}^{A_{1}} P_{i_{1}}^{A_{2}} P_{i_{1}}^{i_{3}} \delta_{1}^{c}$,
$\delta_{B_{2}}^{i_{1}} \delta_{B_{2}}^{i_{2}} \delta_{B_{3}}^{i_{1}} P_{i}^{i} P_{j \dot{i}}^{e}, \ldots \quad$, the coefficients being invariunt functions. Replaing in the obtained expressions the arbitrary spinors $P_{i}^{A}, P_{i}^{A}, Q_{B}^{A}, Q_{b}^{A}$ by the momenta of partioles according to (63) *e get the general expression for vertioes of the type (62). Vertioes of this type were already proposed in the "old" theory of the intrinsically broken SL($6, C$) symmetry $/ 6$, $14,22,23$. The situation $1 s$ the same for soattering amplitudes.

We have shown thus that in the developed framework of a theory with infinite multiplots it is possible to derive all experinental oonsequences resulting from the"old" non-unitary theory of intrinsically broken $S L(6, C)$ symetry with finite multiplets.

In contrary to the situation there, in our approach the symmetry and unitarity of the S-matrix/ are compatible.

Our thanks are due to N.N.Bogolyubor and A.N.Tavkhelidze for their interest
in th1s work.

1．Budini and C．Fronsdal，Phys．Fev．T，ett．，14，968．（1965）．
2．L．Michel，Fhys．Rev．，137，B 405．（1965）．
3．C．Fronsdal，Proceedings of the jeminar on High－Energy Physics and Elementary Particles Trieste，1965；High Energy lhysios and Theory of Blementary particles， Nakova Dumka，Kiev，1966；Preprint 10／66／51，Trieste， 1966.

4．G．Eisiacch1 and C．Fronsdal，Muovo Cim．，41，35．（1966）．
5．R．Delbourgo，h．jalam and J．itrathdet，Iroc．Foy．ioc．，2e9a，177．（1966）．
A．Salam and J．strathdee，Preprint IC／A6／5，Trieste， 1966.
6．W．Ruhl，Nuovo Cim．，42A，619．（1966）；fuovo Cim．，43A，171．（1uf6）；Nuovo Cim．， 44h，659．（1966）；ireprint cenN 66／444／5－T4．647；Preprint CERN 66／568／5－IH．662；Invited iaper at the Internationtl aymposium on Weak Interactions，Ralatonvilajos，Iungary， 1956.

7．Н．Т．Тодоров，физуа высокнх энергка и теория элементарных частии，Науковв думқа，Ккев， 1868.
8．Нгуек Ван Хвеу，Физния высоких энергиа и теория элементарнмх частиц，Наукова думка，Киев， 1968. Invited paper at the International aymposium or a＇edk Interactions，

9．Dao vong Duc，Nguyen van Hieu，preprint ，e2－2932，Dubna， 1966.
 сы теорид інедетавлени，РАぇ \therefore ，لルг．
11．Nguyen van Hieu，Lectures given at the jummer jorool，Jakopane，lolind， 1366.

15．C．Fronsdal，Preprint，ICTP Int．Rep．， $10 / 1966$ ，Trieste， 1066.
16．G．Feldman，P．T．Matthews，Preprint IC／66／6，Trieste， 1966.
17．T．F＇山lton and J．Ness，Phys．Lett．，14，57．（1965）．
18．Kadyshevsky，R．M．luradyan，I．T．Todorov and a．it．T．twhelidze，Phys．Lett．，15，182．（1965）．
19．H．Bacry and J．Nuyts，Buovo Cim．，37，1702．（1965）．
20．N．Rthl，Nuovo Cim．，37，301．（1965）．
21．I．M．Charap and ？．T．Nathews，Proc．Roy．joc．，i2366，300．（1965）．
22．Нгуен Зан хьеу，і．А．（＇нородинсииi，А．․ ㄴ，543．（1905）．


```
Received by Publishing Department on September 26， 1966.
```

