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§1l. Introduction

In order to construct the relativistic scheme of the Suiﬁ) symmetry, Budini,

Fronsdal/l/ and Michel/z/ proposed the symmetry group
G=PS

which is the semidirect product of the Poincaré group P and the group of internal sym-
metry S, P being the group of inner automorphisms of the group S . The noncompact
groups SLMand W(66) containing a subgroup SL{2,C) can ve chosen as internal symmetry
4 ps S . The elementary particles are classified according to unitary representations
of the group S and thus form infinite multiplets. In the present paper we study some
special unitary representations of the group SL“,C) which ¢an be used for the classifica-
tion of the known mesons and baryons. Ve investigate also the structure of vertices and
scattering amplitudes.

These problems were already treated 1n/3_7/. But in all these papers vertites
and the matrix elements of scattering processes are considered in the framework of the
so-called S ~matrix approach where the connections between matrix elements for states

with definite values of momenta, spins etc. are investigated, the spin operators being



generators ¥igner*s little group of the Lorentz group and nc use is made of the u
relativistic spinors, 4-vectors, 1.e. finite dimensional representations of hLomogeneous
Lorentz group. The wave functions transform according to certain finite dimensional r
resentations of the homogeneous Lorentz group and in the framework of the quantum field
theory the scattering amplitudes and vertices are usually expressed by means of the wave
functions of particles and by scalar functions possessing definite analyticity properties
and crossing sy try. Therefore it 1s highly desirable to get expressions for the matrix
elements in terms of the wave functions. This 1s intended to be done in our paper. In
order to establish the connecticn between the symmetry and quantum field theory we shall
follow a method proposed in our nprevious papers/B'g/.

Before considering the possibility of classifying particlez and investigating
the structure of vertices and scattering amplitudes 1t 1s necessary to study the irredu-
cible unitary representations of Sl.{6,8) and the splitting of these infinite dimensio-
nal representatlons into irreducible representations of SU(¢) as well as into multiplets
of the 1ittle group Su(e)r. . This latter contains the 1little group Su(z)r, of the Lorentz
group (for the definition of the little group SU&G”, see/3'5’8/).Ge1fand, Graev and
Vilenkjn/lo/, Fronsdal/J/ and Ruhl/s/ has shown, that the unitary representations of

SL{n,¢) may be realized in Hilbert spaces of homogeneous functions. But, investigating
the splitting of unitary representations of Stin,c) into 1i.r's of compact subgroup
SU(n) Fronsdal applied the method -of analytical continuation of the nonunitary finite-
dimensional representations in the number of indices.Following a paper of Rrun1’%/ and
our papers/ll’lz/, we apply homogeneous functions consistently, and we shall introduce
generalized tensors for the description of infinite multiplets as it was proposed 1n/12/_
Section §2 has an 4introductory character. It contains a brief description of
tre technique of constructing unitary representations of SL{&¢) . In particular, the
connection between the method of homogeneous functions and the method of Gelfand and
Naimark 4is established. The baryon and the meson multiplets are studied in §3 and 54 .

In §5 the structure of the vertex is investigated.

§2. Unitary Representations of SL(6,¢}

The unitary representations of SL(6C) will be realized in functional Hllbert
spaces on some sets % . Gelfand and Naimark/lj/has s8hown that these sets & may always
be identified with some subsets of the space L of all complex unimodulary matrices of
6~-th order. More precisely, it is possible to realize ® as the manyfold of cosets of the

group SL(6,0) with respect to certain subgroups K . Refore studying these spaces



let us consider the space L itself. Let b denote an element of this space.

n is a complex unimodulary matrix of 6-th order:
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Performing the transformation
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rows we shall denote

(3

(4)

%6 SL(‘HQ), these polynomials transform like spinors of the representatlons &’A, \E[As]v'

\&{ﬁswﬂ ( for spinor representations of the group SL(6,C) see /14/).
4
Ve shall realize the unitary representations of the group SL(‘#,C) in
o
Hilbert spaces of homogeneous functions of the variables A(“ RPN ST First we

o
consider the case, when these functions depend on all the Ah_

A

(=4, .., 5.

The corresponding representations form the seo-called nondegenerate series. As 1t was



shown by Gelfand and m1mark/13/, almost all matrices lz can be written in the form.

?-gSz,

%)
whers the matrices g , o and 2  have the form:
i
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[t can be shown, that polynomials AA,_A_A,‘ do not depend on E and
‘an be expressed by means of the matrix elements ) and z in the following
ay:
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Let ﬁ(z)-i(lﬁ o A”) bea homogeneous function of degree A:  apa Jee

(t —=(4)
with respect to A and A and X and fa,  with respect to
)
and A“ and so on. Then from (7) 1t follows, that

fuen.. 4= (™ () (dody) (o)™ (d‘dsd‘4,4,\“(“"°’=‘*"’=J*)r’f“" i

_ (d‘)kﬂ...'l, @)hm._or, (d’)\ld.._c}" (I)ho,.,r.,' N (dl)k (Ji){.‘i(z), (8)



'
where {,(i) 1s a function of the matrix elements of thetriangular matrix 2 . Thus 1in
this case the unitary representations of SL(6¢y0) are realized in the Hiltert space of
the functions $(2) on the manifold of matrices Z ., The scalar
product for the space of homogeneous functions under consideration is defined in the

following way:

(J@,t,{1)=Httq){mmu, (9

where JS(Q) is an invariant measure. The functions g(’z) depend effectively only on Zag,
A>B , thus do‘(Q_) can contain only the differentials 0'2,,5 « It is possible
to show, that O{SKQ) 1s of the form:

diy=ldy 1 11t 1o "1 1 1 D (3) 2y d3 g 10y

From formulae (8) and {(10) it follows that definition of the scalar product (9) makes

sense only when the degrees of {(A) plus the degrees of JG(A) give zero, i.e. when A;

satisfies:

)\£+F‘~41=0’ i-i,l,..»,s.
On the other hand, (8) makes sense only if x;*/&.; , U=~4,2,...,5  are integers. Thus
we have:

x;:g\_iA\-\l{’ f“i‘—g:‘i"vi,

(11)

where the Y{ are integer or half integer numbers.
We define now the operators representing the internal symmetry group S=SL(6,C)
Let % be an element of this group and let us introduce the corresponding

operator T% :



‘f('l‘}) (12)

correspondence

¥

ap S in the Hilbert space of homogeneous functions

lance of the measure OIG(YU guarantees that the operators
to the scalar product (9). Thus we have unitary repre-
irreduoible, as it was shown by Gelfand and Naimark/n/,

ondegenerate series.

‘unctions Z(A) do not depend on all AM, (=45
re considered in a similar way (the degenerate series),
'ries will be considered which can be applied to the

ns.

aryon Multiplet

we assume that the baryons belong to the maximal dege—
sume, that baryons are described by a unitary represen—

)
neous functions of A, only. In this case for the

composition (5) with matrices T, 2 and 8  of the

° s 1o
D Vo
o * S' ‘,__l_o )
- - i
1 o...0 d (13

order with nonvanishing determinant and 15 1s a

For the sake of convenience we put ?A’ !2“.



A‘;)’—_s,\: Ze o“ .

Therefore the homogeneous functions of degrees A

- 30

It can be shown that the invariant measure for the product (9) equals

dofg)= 1del* [T5 42t

(14)
W i
and /‘4 1n AA have the form:
(13)
113/
(16)

Similarly to the case of nondegenerate series it follows from (9), (15) and {16) that

A and ,\«. are equal to

]
)\-I—3+\"

‘s
}ye —-3-93,
2
where v 1s an integer or half-integer and

infinite-dimensional representation of the group

(17)

is & real number. The given

SL(e,0) splits into the



owing representations of the compact su oup S (6) :

By

B, Be-v
Aay? Fhy - Agger 2700 (Eh hpay + v - 3 we note that these generalized
- Agy . - Mg

ors can be explicitly constructed. To fix the idea we assume V>0 . Then

e

51.4 B-t,vo - 1_3‘7 8,.. Bp-v -
S 2, T

= |

.. Atay Cr /HE ) Ay Atay !

W

v, (18)

- Be-v —g —
Br -
e ZAL_. Aty can be obtained from the products EAL . .SA“NS t g -V

ubstracting traces

S S s 2NTENS S sk e an

1o PRrev TG 4,9

s (T-9)N(TN AT +4-5)
v 20) = O Seamiee el

ind Cx is a normalization constant ( see also /12/). Ve note that the spinors (18)

sform among themselves in the transformations from SWU(6) only. With respect to this

p dotted and undotted indices do not differ, therefore upper indices can be written

yut dots.
3
Putting V=3  we rind that tne first SU{6) muitiplet (T=Y)  con-
*d in the infinite multiplet of SL(G c) under consideration i1s just the 56—

» Since we intend to classify the well-known baryons forming the 56-plet of SU (6) ,

v=2 .
isume that 9

Let us now turn to the transformation properties of the considered multiplet of
)L(6,C) with respect to the space reflection P. For this purpose the
wosformation properties of - he SL(%C‘ generators under space reflection should

A A
:1lized. Let us introduce the matrices QB and QB

A\ e ichce 4‘c AS"
is)o” 8583“285 b (8 ). 0)

10



The elements of the group cvag be writter in the form

1 x EAN. Y )
L(“Aa Mg Pr. Mas

(21
(}, e/ y {21)
* + 3y 1
where oL, and 15* are resl perumeters and Vi, and g ares
A B ~a B
N - _ .
Mg ™ ot ) M= Loty
A ~B A B
+ 4 -
n,“:—ts*rﬂA . n’n:ea‘l/&‘ (22)

The matrices mi,\,g ars hermitian; they are the generators of the compact subgroup Su(e)
On the other hand, the matrices l’L:;,(S are antihermitian and are the norcompact gene-
rators. Let us denote the corresponding generators it the representations by Mi&g

and Nig . (¥or the suke of simplicity the indices A and B wi11 ve omitted some-
times.)‘l‘he former commute, the 1latter (like in the case of the Lererts group) anti -

commute with the inversiton

-MP=0
PM-M ) (23)
PN,‘»NP:O.
(24
as P ommutes with the generators of SU(®} | we can put
By Beo Bs... Boo
P@1 Y {)1 T-V ()
[V T Ay - Aty 9

11



where f(t— b} is a non constant for the whole SLL(G) multiplet, Let us now con-
sider the consequences of the condition (24). Using the explicit expressions (18) and

QBL Be-v
(19) for Aeay and the transformation rule for the homogeneous functions in the
T

given Hilbert space

Ty#($>=%(‘$?),

+ Bs - Be-v
one can show that the generators NAB act on the spinors 6#;-- in the follow-

CAray
ing way:

(Ni) . Beay _“): l:l,..b‘-‘_, (N 1)::-«~-Ct'u'» By.. Bey

.. Apsy Kl L. . Caley e Py Ag L Ager 9 (26)

where
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+)\CA (e )u;uso)g“ ( )k;

(9 Iy (27)
Bt.t -1, 48 G ~Ctev ~By-tly Be-y
+ABA(.C t )S g Ao vy (h— )hf—'c'u 0“1.‘:‘41.' o OAtw SD,_ B gl)ckv
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The constants A 1in (27) vami  for |T-Tf»y
to:

?\cv(‘th'P 1)= (‘?" ¢-27),

Asp (T‘) T41) = Ry (TyTHL) = ABA (T,e+1)=0

oy 20p(T49)(T-v)
)‘:n("v")‘_(g_t_fg)(lt-ﬂi) !

App (T,2) = (?-\))2‘;5; ¢’

Xew (T,T) = (T+V) 2;9* =

T4

(T-9NTHYHT-V-L)(T4V-1)

ACD("T L) (Lg‘f"H’l't) (1‘C+5)(1T+"'),'u~t*3)

(V-TYT49)(T-v-1)

Rop (500 (G420 ) ey

(V-T)THNT+Y-1)

ACD L'C,'C—L) =(\c-g+"f*lt) (1.‘C+'-()"‘(_lt+5)

(’c-y) (T-f V)

Pon (1,040 = (gt 20) oy

and for [T-T'\€4

they are equal

(28)

(29)

(30)



It should be noted that

€. Creyy By 80, .
(0NN TR 8 AL o

Dy Doy Ay Aray

From (25) and (26) it can easily be seen that the condition (24) 1s equivalent to the

equation:

Z(Q-:ﬂlt,)@bp..bt-_v Nc,.Ac,'.f,aL...ar-, —o. o)

G Q™ Do Dty A Agyy

If S?# 0 , then from (32) we get the relations:

Q'Zt=°, Resete=0.

The first one can not be satisfied since R.=Z% 1 . It means that for f%o the
relations (25) are not satisfied and the given representation of SL(G,C) does not
transform into itself under space reflexion. There are two possibilities to obtain states
with definite parity: either to introduce two equivalent representations transforming
mutually one into the other under P , or to put S?s O . In the first case there will
exist always pairs of multiplets with opposite parity. In what follows we shall assume
that the second possibility occurs, namely we shall put S’—O +« In this case the equation

(32) 1s equivalent to the condition

‘21:4 + .= o

This means that the adjacent Slk“) multiplets contained in the 1afinite multiplet of
B, ... Bp-
SL((',C) under consideration have opposite parity. Therefore the spinors QAL Broy
1

o Reey
of the SL(Q,C) multiplet containing the baryon 56-plet have the following parity:

T-v
Pom (1),
13/
This result was obtained first by Fronsdal, who used another method.

For the unitary representation of the group SL(G,C) under consideration
formulae (18) and (19) give the canonical basis corresponding to the reduction
SL(6,()DSU(6) + However, as it was noted in a numver of papers /3’5’8’9/, elementary par—
ticles are classified according to the 1.r's of 5%(”'» and not of SW(6) . Thus for

applications in the symmetry of elementary particles it 1s necessary to consider the

14



ng the given representation of SL(6,C) into 1.r's of the little zroup

)t‘ , 1.e. we must construct a basis corresponding to the reduction SL(G,()DSu(e)r,
It was shown in a series of papers/J’e’g’D/that it is possible teo introduce for

rticle from the given infinite multiplet the corresponding quantized field which

rms according to some spinor (nonunitary) representation of the homogeneous Lorentz

For the sake of convenlence we shall introduce an auxiliary ( following the ter—

/16/) group 5= 5L(6,¢) containing the homogeneous

y of Fe an and Matthews
group. This group is isomorphic to the group of internal symmetry S, but 1t
tdentical with S . It may be identified with the group SL(6,C) proposed earlier

nber of papers /14,17-21/

‘Ye stress that the new auxiliary group is introduced
eatablish the connection between the symmetry and the quantum field theory. We
require invariance under this new group. For the description of particles we intro-—
each multiplet of the internal symmetry group S  an infinite number of spinor
ntations of the auxiliary group Sl . As it was shown 1n/3’8/ for these spinor
there exists the usual connection between spin and statistics.

Thus, constructing the basis from Su(G)’, spinors it 1s convenient to supply
em with definite transformation properties with respect to the auxiliary group S‘ .

The variables EA transform under Lorentz transformations 1like the spinors with a lower

undotted index, therefore we assume that they form & spinor with a lower undotted index

so under the auxiliary group 5' . In this case the complex conjugate quantities are

spinors with an upper dotted index and will be denote by ?A .

Constracting the basis for the reduction SL(G,C)DSU(G)'. we ¢ 1 use the
tity . A
IR
5w %
ead of the Sl(e) invariant
EAEA *
e A=(oyot) s @=4,2 1s the spin index, o =1,2,3 15 the unitary index and
"N "
L A [y a
)= () s
/B we /g ‘P

Thus the above expression is an SU(G) invariant. In addition it is invariant also
under Lorentz transformations. Instead of the basis defined in (18) and (19) we have thus
the following relativistically invariant basis

-3-t

R a) Yot o

Azav

15






.ly antisymmetric th rank tensor. We note that

§A’SA=0.

(3
5) of the matrix 7 with the following F , % §

)
[ .
\ Ji\ '
| B R AR

L] (3¢
' = | i .
| O ? g |D [}
L A P -
\ i }da
]
-

[]
ith nonvanishing determinant and I is the unity matrix ¢
ow that

(3¢

efore similarly to (8), the homogeneous functions of degree

A .
EA and TS , Tespectively have the form:

anS”‘ "I: Jsr(déb)ll("’?))rl %l(*). (4c
gz to (12).

asure for the scalar product (9) 1s now:

(%.) din O‘iu f}}_ Lia.) 0‘265 dz 8.

(41
atation follows from the invariance of 0(6('() . m the
vy
onstants )\., /k and A, /‘4 :
e
[P A S
X= 3 -3 +V y
(42

Lol
9% 5 %'
i S

‘T8 or half-integers and 9,9' are real numbers. The split

.on into irreducidble representations of the subgroup Su(e

'irst we consider the zeneous tunctions of the form

17






N @(L) i 9 (n)s (‘::)s (S’w CE;:,:’ (#3)

[CR.]

~8 2 1y §-¢' s
(P(ssu T§ (n )" Q(‘)*-L‘;T?{—‘:-X Sztn_) 16 S(Rj)A
@'s (4,348 10848 _
TN ”s}<P(;s)R+{[§(‘T‘*)'Z( > (u8)

)} PR (m ][5 ()° (r ):Bcp;‘;}

+tensors with four indices,

Vg0 =[5 LNk {0 -

(S s)] 82 () [ae 688 ) +

8 R 4 5 49
s ) [8:(h*)s+6:(n’).]}‘§“ + v

m)k
.H?_f{,_S (nt) + 6( ”35( )}CPH’

+tensors with four indices,
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LN
Before studying the meson-baryon vertex we intend to find the solution of a
neral problem:
let {,(Qﬁ) be a homogenz2ous function from the Illlbert space of the unitary
ntation considered in §3. We want to construct a trilipnear functioral, linear

speot to %/LEA,SA) , bylinear in eh) and inpvariant i r SL LQ,C) .
Let us look for this funotional in the integral form

- (706, g5,k (6,6,5,5)ds@ds(6)ds ;5. 2

asy to prove that the kernel K(G,O‘,g,'s) to be an 1ir ant function
arguments.

Let _9) be a homogeneous function of degree »;-?-z\"—% ) tj,(‘g;g) be
eneous fl:nction of degree iz‘*.\!‘—i with respect to {., Z,' and of degree
% with re 3t to S, S‘ . Then owing to the fact that the measures de(6)
.(z.,,’S) have the properties:_’

do(A6)=N'1 ds(6),

do(a3,v5)= XA I dog, ).
;egral (54) makes sense only 1f the kernel K(G,O‘,§,$) i1s a geneous function
arguments too, nemely

of degree %?19 -3 with respect to € and 6,

of degree -_:.?-n -3 with respect to 9' and ,

of degree —‘%‘;“—{ with respect to 3 and § ,

of degree -‘{“"i with respect to g and 3,

This kernel may contain explicitly the invariant variables

09)=6,3" ,  (€%5)=63, %)

can not be expressed by means of these variables only, for in such a oase it would

pend on i . We note however that a possible invariant function of three variables

integral of the form
(6,6 5) = (8" (6" ()™ (80" ()" (70" do),

(0a)-0pxt,  (8)=Bhty (F00)-3,t". (56)

2]



i1s integral makes sense only 1if

N+MitL=- 6.
t us write the kernel in the form of a linear combination of products of invariants (55)

1 integrals of the form (56). It can be proved that such a kernel exists only if f f
2 9'=9" | 1In this case 1t has the form

(6,63, jaz 4,000 oy ) {01 ()35 ,r,.)‘

T, ¥ —_— i;t_,_* PN —i;:_J~ L h*‘lx
‘(GS)': M) T T ) oD
*S(Ga)”‘ (820 (00)™ (8')™ (30) “ (3)™* do (),
are

i?‘, I_5 t Ty,

R'*r’-=~-£*\‘ 2? NA,L=133\"3"_5_— Maa R;,;,
g (58)

MA,;“_';;“*3+—1JI+}‘U Rt Ld,L=‘-;-S‘T.‘I‘%'

Now we apply these results to the s3tudy of the structure of the meson-baryon
‘tex. We expand an arbitrary spinor from the Hilbert space of homogeneous functions

\racterizing the baryon multiplet in the form

216 - =

oo Brovw "tﬂ

wh(en 2\15‘* 8

‘e the @ “t" ) are determined by formulae (33) and (34). On the other hand the

.nors ftom the Hilbert space of homogeneous funotions characterizing the mesons we write

FARIESS O NCAEATR TS T RO

22



4 =¥}
re @(QG{S) and ' an) are determined by ( and (53). To obtain the vertex it

suf
11

res

to insert expressions (59) and (60) into the formulae (57) for the invariant
ctional putting Q=3/:L , 9=?‘=$'- O . Extracting the part of the vertex
to the interaction of the baryon 56-plet and the meson 35-plets, we get

1) A,A'J.,,,c

rm u"uha ) 1’) ‘M 88,8, 0 /\kw(‘w:@&thisth,_)\fSLB"'B’ (‘\_L) (61)

re

\

@ hbi, e

v =%jolmlt&(|ti,r:q; $Tulis fy ) () x

)
= Ak

Teopy -1
a

~ ! ~(ﬂ c %‘4— - i_§;+ RN x
X (i)thu,(e)ées;(iﬁ)»\e” " (63) F (65) X

(62)

—_ _('?'5_;_ 1_‘;. 1-%‘_r1 — »1-‘:;‘~[41 ' '“‘?:"f" - 4,~"_;.‘L+rl
’((G‘S) F j(eo() (821} (6at) (6'0)

)
2

x (5t GR) " do ().

>

~
c
:he expressions (33), (34) and (35) for @Am and (ﬁus)(g,,‘), we must now put

ES
mt— — F‘ or )hl—r-—- CV, raspeotively. For the other paris we have analogous ex-—

pressions. These expressions show that the meson-baryon vertex in the theory of SL(""-)

symmetry depends on an infinite number of scalar products ( ( ‘\l,, hifwl)TaaTz;f‘H /u,_ ).

As far as
functions
pect that
different

now we are not able to prove whether the vertex depends essentially on all these

or they form in (62) just a trivial combination. It 1s quite reasonable to ex—
11 ? ~

different functions (( '\"’1”1 Ay j4g) enter in the vertex (62) 1n

ways and that this vertex depends effectively on an infinite number of functions.

This result of ours differs from that of Fronsdal/J/ and Ruh1/5/. From the expression (62)

one can derive different relations between physical formfactors.

The expressions of type (62) contain the complete information on the consequen—

ces of our symmetry scheme. A pjece of this informationm can be derived without the eva-

luation of the integrals merely on the basis of transformation properties of the corres-—

\ .
ponding integrals under the auxiliary group S'SL (61(—) containing the Lorentz

group (see §3). We remind that 0,9‘,{ and § transform aocording to finite dimensional
[

spinor representations of the auxiliary group S

22
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