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1. INTRODUCTION

Chiral symmetry is'one of the basic symmetries of hadron interactions 111. The

phenomenological Lagrangians successfully describing interactions of light baryons and

mesons were constructed forty years agoJ21. That time the Nambu-Jona-Lasinio (NJL)

model was proposed where the authors attempted to explain the origin of the nucleon

mass by spontaneous breaking of chiral symmetry 3].

In 1976, this model was used for construction of the chiral-symmetric four-quark inter-

action that after bosonization leads to the phenomenological meson Lagrangians obtained

earlier 141. This model was developed in 15 6 and after that was widely utilized by many

authors 171. The quark NJL model can be successfully used to obtain not oly the phe-

nomenological Lagrangians but also the mass spectrum of mesons, the relations between

the strong coupling constants in the scalar-pseudosealar and vector-axial-vector sectors.

In this model it is also possible to describe the breaking of the SU(3) symmetry taking

into account the mass difference of strange and u , d quarks. This explains the inequality

of the weak decay constants f, and fK, and the differences of the strange and non-strange

meson masses. Including the gluon anomalies in the consideration allows us to solve the

UA (1) problem and to describe the mass difference of the 7 7 mesons 61 -

However, the NJL models has some defects. They contain ultraviolet (UV) diver-

gences and do not provide quark confinement. Usually, UV divergences are removed by

using the cut-off parameter A taken at energy scale of the order of GeV. The phys-

ical meaning of this cut-off is connected with the separation of the energy-,momentum

region where spontaneous breaking of the chiral symmetry and bosonization of quarks

take place. Unfortunately, this procedure is not unique and can be realized i different

ways. However, it is worth noting that, as a rule, the different schemes of UV cut-off

lead to close results.

Right after the discovery of the nontrivial classical solutions in CD, instantons 181,

it was recognized that they might be important in hadrdn physics. Indeed, it was shown,

in particular, that the instanton induced nonlocal quark - quark interaction provides a

mechanism explaining the spontaneous breaking of chiral symmetry 1101 and the UA(l)

problem 191. Later on, within the realistic instanton liquid model of QCD vacuum 1111

the main features of the spectrum of light mesons and baryons have been described 1121.
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The instanton induced quark-quark interaction being nonlocal naturally regularizes the

UV divergencies in an analytical form. So, in the instanton model the UV cut-off results

from the internal nonlocal structure of the nonperturbative QCD vacuum. At the same

time, the model does not explain the quark confinement. This problem becomes essential

in the description of hadrons with masses exceeding the sum of constituent quark masses.

There are many works devoted to the construction of nonlocal quark models provid-

ing quark confinementII3-201. In these models the dynamical ark mass depends on

momentum. One of the models of this kind is considered here. The nonlocal four-quark

interaction is taken in a separable form motivated by the instanton model. However,

a more general space-spin-flavor structure of the quark interaction is allowed tan it is

followed from the quark zero mode arguments. Namely, the four-fermion couplings in

different channels are fixed directly from the meson mass spectrum. Further, we use one

of the simplest ansdtze for the nonlocal kernel which allows us to obtain the dynami-

cally generated quark propagator without poles. Our model is close to the model 1171.

However, our choice of the nonlocal kernel is motivated by the existence of the nonlocal

quark condensate in QCD.

The paper is organized as follows. In Sect.2, we consider a nonlocal four-quark inter-

action and after bosonization derive the gap equation for dynamical quark mass. The

nonlocal kernel is defined in Sect.3. In Sect.4, the masses and couplings of the scalar and

pseudoscalar mesons are obtained and the main parameters of the model are fixed. The

verification of the Goldberger-Treiman relation is given. In Sect.5, calculations of the

p-meson coupling constant, gp, and the decay width p -� 77r are given The axial-vector

meson, a,, and the - a, mixing are also considered. The last section is devoted to the

discussion of our results.

2. SU(2) x SU(2) QUARK MODEL WITH NONLOCAL INTERACTION

The SU(2) x SU(2) symmetric action with the nonlocal four-quark interaction has

the form

S(q, q) dx q(x)(ib - m,,)q(x) + G, (J,(x)J,(x) + 4(X)4(X))
2

Gp J a x) J a x) G., J.2 ,,, x) J.,,, x)
2
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where q(x = jt(x), d(x)) are the u and d quark fields, m, is the diagonal matrix of the

current quark masses. The nonlocal quark currents Jj(x) are expressed as

J1 W d'Xl&X2 f(X1)f(X2) xi) ri q(x'+ x2), (2)
f f

where the nonlocal function f (x) normalized by f (0 = I characterize s the space depen-

dence of the quark condensate. In 2) the matrices r, are defined as

r = 1, r- : iy 5 Ta., ru a = ,,r,, r, -Y 157jA7.a'41

where T' are the Pauli matrices and ym,,y' are the Dirac matrices.

In tis article, we mainly consider the strong interactions. The electroweak fields

may be introduced by gauging the quark field by the Shwinger phase factors (see, c.f.

117, 21, 22]). This method is used in derivation of the Goldberger-Treiman relation.

After bosonization the action becomes

I 1 ,a(X))2 
S (q, q, a, 7r, p, a) d'x I (&(X)' +7r'(X)') + - (P"(X)) + (a

2G,, 2G 2G,

&)(O - 7i,)q(x) + ff dxid'X2 f(X - XI)f(X2 - X) &1) &(x) + 7r'(x)i-y'7-'+

+pa(X)_Y,,r, + a" (x) -y'-rlr') q (X2) (3)

where &, , p a are the a, 7r, p, a, Meson fields, respectively. The field has a nonzero

vacuum expectation value < >= oro 5 0. In order to obtain a physical scalar field

with zero vacuum expectation value it is necessary to shift te scalar field as a+ o

This leads to appearance of the nonlocal quark mass m(p) instead of the current quark

mass m,

M P =Mc, Md. P = Me _ ao f2 P = M: + M _ M fl p), (4)

where q is dimensional parameter which play the role of the constituent quark mass.

These relations result from the solution of the gap equation

m(p = m, + iG. 2N f (p) dkf (k)2T�(27r)4 [S(k)] (5)

that one derived from the action, Eq. 3 by using

0. 6)
(1S)O

In the leading order of the 11N, expansion the inverse quark propagator with dynamical

mass is given by

S' W MW (7)
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3. DYNAMICAL QUARK MASS

Let us remind that in the instanton model the nonlocal function f(p) defining the

kernel of the nonlocal four - quark interaction is expressed in terms of the profile function

of the quark zero mode. In 1171, taking the same separable form of the kernel the function

f (p) was chosen in the Gaussian form. This choice also removes UV divergencies but in

addition provides the quark confinement. Here, we follow different ideology. Namely,

close to 1131 we demand absence of pole singularities in the scalar part of the quark

propagator

(P') 2
2 (p. . -, Ei -Q(P (8)M ) p 2

This equation is given in the Euclidean domain of p 2. Note, that the left side of (8)

coincides with the nonlocal quark condensate if the quark propagator is taken in the

form 7) 231. The function Q(p2) is considered as an entire function in the complex p2

plane decreasing in the Euclidean domain at p 2 --+ o. In particular, in this work the

Gaussian function is used

Q(P2) exp P (9)
(-A2

where p and A are arbitrary parameters. At each p eq. (8) has the following solutions

_±(p = Q1(P2) -�p2 Q 2 (p2 (I 0)

Then three different situations occur:

1. There is some region of real p 2 where p Q2(p2) > 1. This situation leads to the

appearance of complex values of the quark mass. We do not consider this case

further.

2. The relation p 2Q2(p2) < I is fulfilled in the whole domain of real p2 . Then from two

possible solutions we can use only the solution m- (p) which decreases at p 2--� 00

,rn(p = rn_(P = Q-1(P2) p2Q2 V))

3. The function p 2Q2 V) equals at a single real point p2. In this case the continuous0

mass function is

,M(p = Q-1 (P2). _ Sgn(� _ 2) Vrl pV(p2))
0
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The last, caw is defined by conditions

P2Q2(p2)1,.=", = VQ2(1?))Il p2 =,2- 0, (12)

that constrains the model parameters m, and A as

A 2 2 = A 2
2 , /A Te , m = 2p. (13)

As a result only one parameter remains free. This is due to equivalence of the third case

to the choice of normalization condition m = 2 ../p2.

If the current quark mass M. is nonzero, es.(9) and (10) are modified as follows:

Mdy,,(P) = I Q(p2),

M2(p) + p2 2

MdV.:k (p = Me Q-I(p2) M�)2 (p2 + Me (14)

and eq.(13) becomes

A2 2A = -,, = (I ' m - m' F2 + ImA�22s) (15)
2 A2 A TF '

P2 = A' exp (-c 1 m = u ( 1 + V/1 - 2Tm., (16)
2 P

We checked that in the second case the model with Gaussian nonlocality 9) predicts

the or-meson mass and decays a 7r7r, p -+ rlr that are in disagreement with experiment.

The third case allows us to construct the scheme where not only the main low-energy

theorems are fulfilled, but also the better agreement with experimental data is achieved.

Therefore, the present work is devoted to investigation of this case.

4. PSEUDOSCALAR AND SCALAR MESONS.

Let us consider the scalar and pseudoscalar mesons. The meson propagators are given

by

D,,1F g.2'. (p2) (17)
+ l,,.(p2) PI - M.2.

where M,, are the meson mans, .9,,(J72) are the Sanctions describing renormalization

of the meson fields and rl,,,,(p2) are the polarization operators (see fig. 1) defined by

II,, (p2) = i 2Nc dkjr2(k!)f2(k2) Sp [S(k-)r.,.S(k+)r,,.], (18)
(2ir)4



where k, = k + p/2, k- = k - p/2. The meson masses M,,: are found from the position

of the pole in the meson propagator

rl"'(M2 G-' (I 9)

and the constants g,,, (M2,,) are given on meson mass shell by (see also fig.2)

M. � (p2)
Jp2=M�2'�. (20)gd'� dp2

In the chiral limit the pion constant g,(O) is given by 241

- 2 0) NC M 2(U _ UM(U)M,(U + U2M12(U).

9. 2 2 du u (U +,M2(U))2 (21)47r I
0

4.1. Pion mass

Describing the pion propertieswe can consider only the lowest order of the expansion
in small p2. Indeed, in our odel M�2 < M2 2

q A (see the end of this section). In this

approximation one gets

M� = g2 (0) -L-N' duu f(U)4 (22)
G, 27r2 U + M2(U)

0

On the other hand, the constant G, is defined by the gap equation (m, m(O) is

00
I NC f(U)2_(U)

�- du u �� = (23)
G, mq - m, 27r2 + MIR

0
00 00

NC Au) 4 N Indyn (U) + 0 (M2)

du u + M, - - du u , (u) CT'T� dyn27r u + M'(u) q U+M
0 0

As a result, the pion mass equals

00

-2mc��n N I d, U 'ndYn M.) + O(M2
M2 47r2 U+M 2 D. (24)

q 0 dyn

It is worth noting that the expression in the parentheses represents the quark condensate

in the chiral limit mc = 0. Hence, the Gell-Mann-Oakes-Renner relation is reproduced

M'2 -2 g.2 (25)

m2mc(400-
q
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4.2. Goldberger-Treiman relation

For description of the decay ir -,uv the external weak field must be introduced. We

use the method consisting of the replacement the quark fields in the interaction part of

Lagrangian by the quark fields with Schwinger factors depending on external weak field.

This procedure ensures the gauge-invariance of the interaction with respect to the weak

field.

The amplitude of the process r -,uv has the form

AA ip'F, (26)

where , is the weak pion decay constant , = 93 MeV 125]. The diagrams of fig.3 give

the following contributions:

Ne '� d 4kf (k+)f k-)Tr[iy'S(k- )P'Y5 S(k+)],
1�1, f �2ir)4

FK2 = N�g� f Ik Tr[S(k)]f (k)(f (k + p) + f (k - p - 2f (k)), (27)
;T (27r)4

F.3 = MI, N� g� d'k f (k+)f (k-)Tr[i-y'S(k-)-y'S(k+)j(f (k+ - f k- ))2,
p2 f (27r)4

that in the chiral limit at p 2= are reduced to

00
F,(,' = g- N. du m(u)(2m(u - um'(u))

Mq 'g7r2 j U (U + M(U)2)2
0
00

(3) g� Ne UM12
F'(2) +F, =;_. , duU (u - 2m(u)m'(u - u m(u)m'(u)

Mq 8ir2 f u + M(U)2
0

Summing all terms and using 21) one obtains the Goldberger-Treiman relation

00
(2) M 2(U - UM(U)Ty�(U) + U270(U)

F. F,(,') F� � F (3) 9w NC du u T'. 28)
Mq 4r2 f (U + M(U)2)2 9W

0

4.3. Numerical estimations

First, let us consider the chiral limit m, 0. Three model parameters mq, A, G, are

defined from (5), 13), 28)

A = 406 MeV, G, = 63 GeV -2, M = 348 MeV (29)
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(in this case g,(O = 37 ). If m, j by using also equation 25) with M, = 140 MeV

one obtains very close numbers

A = 400 MeV, G, = 61 GeV-2 , m = 346 MeV, m, 14.5 MeV (30)

(in this case g,(M,, = 36

4.4. Sigma meson

By using the parameters 30) we get M, = 450 MeV and g,(M, = 38. The amplitude

of the decay --+ 7rlr described by the diagram in fig.(4) is equal to A__jw+.- = 1.5

GeV. Then the total decay width is = 120 MeV. Comparing these results with

the experimental data one finds that M, is in satisfactory agreement with experiment,

however, the decay width is very small.

5. VECTOR AND AXIAL-VECTOR MESONS

The propagators of the vector and axial-vector mesons have transversal and longitu-

dinal parts

T LD", = TA'D .� + LD (31)Pa PI P'al

where TA = gl" - pl'p'lp', LP = pl'pvlp' and

T I a V) ID 9�1 � D (32)pal G I + rT.' (p2) p2 pal (p2)pa P, Mpa� G-11 a,
Here, rIT. and rIL

PI Aal are transversal and longitudinal parts of the polarization operator
rlpo � (p2)

Pla
21C f2 )f2

P'a, V) i(2-7r 4f dk (k- (k,) Sp [S(k-)rp,.,S(k+)rp,.,I.

The constants GP,,, are fixed by physical meson masses

G-a� = _rjT a� WPA�)PI PI

and numerically equal to GP = 644 GeV -2 , Ga = 0739 GeV -2 Note, that there is no

pole in the longitudinal part of the vector meson propagators.

The constants gpa� (Mpa,) are equal to

driT V)
-21 m2 �paj 1 2

9P. pal) dp2 1p2=M".' (33)
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5.1. p-mesonanddecayp-4ir7r

From eq.(33) we obtain g,(M, = 12. The decay p -+ 7ir is described by the triangle

diagram similar to the diagram fig.4. The amplitude for the process is

&�rr = (34)

(P _q(p�7rw) , q4'

where q = q - 2- We obtain g,,,r,) 5.6 and the decay width 130 MeV

which is in qualitative agreement with experimental value 149.2 ± 07 MeV 1251.

5.2. Axial-vector meson and - a, mixing

For the a,-meson constant we obtain ga(Mal = 0.5. The longitudinal component of

the a,-meson field is mixed with the pion, as it is illustrated in fig.5. The amplitude

describing this mixing is

A�' (35)

The value of the constant C,,at) is 80 MeV. The additional renormalization of the pion

field is described by the ratio(see fig.6)

C2
(w-+al) C2

6)-) Z:� X�aj)Ga, ;�- 0.005. (36)
ga2t (0) (G I JILat at

As one can see this ratio is small and the effect of the ir - a, mixing can be neglected.

6. DISCUSSION AND CONCLUSION

In this work we considered one of the possibilities of construction of the nonlocal

chiral quark model providing absence of UV divergences and quark confinement. These

features of the mdel are specified by the nonlocal kernel which appeared in the our-

quark interaction. Such a structure of the four-quark interaction can be motivated by

the instanton model 122, 241. A similar model was considered in 171, where the nonIocal

form-factor was chosen in the Gaussian form that exponentially decreases in the Euclidean

domain of momenta. Recently, in 231 it was demonstrated that the functions defining

the nonlocal kernel are related to the nonlocal quark condensate. From this point of view

it looks more natural to require that not a form-factor, but a scalar part of the quark
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propagator m(p)/(p + -'(p)) be an entire function. Let us note that this idea is close

to the method proposed in 131, where the confinement is provided by demanding the

absence of poles in the quark propagator.

As it has been shown in 1231, assuming that M(p)IV +M2(p)) is a decreasing function

of PI in the Euclidean egion leads to three different possibilities for the dynamical quark

mass m(p) at different values of the parameters m, and A(see Sect.3). One of them has

complex valued masses on the real axis and we did not consider it. The second possibility

is connected with such a choice of the parameters when the function 'Q2V < I in the

whole domain of real PI. Then, the solution rn- (p) can be used where the mass function

has zero at zero quark virtuality. In this case, the main requirements of chiral models

are fulfilled. However, in this version of the model the mass of the sigma meson and the

strong decay widths of the o- and p mesons are in disagreement with experimental data.

Therefore, in the present work we studied the third possibility of the choosing of the

parameters m A when the function pQ'(p' = I at some point P = p. In this case

m(p) is the combination of the solutions m,(p), -(p). This mass function is nonzero

at PI = and drops monotonically with increasing PI. In this case, one can predict the

scalar meson mass and the decay width p 4 7N which are more close to experimental

values. However, the decay width a 7r7r remains too small.

It is useful to compare some results obtained in this model with analogous results

obtained in the framework of the local NJL modell6j. Let us start with the - al mixing.

In the local NJL model the amplitude describing the 7 - a, ixing equals A' (,VIL)

iv/6mp,', where m = 280 MeV is the constituent quark mass. Therefore, the coefficient

C("') in the NJL model equals 680 MeV. This value is one order larger than in the

present model. As a result it leads to the noticeable additional renormalization of the pion
NJL = (N.1L _ Z12, M2/M2�field in the local NJL model -!, 9K where Z = (I - 6 ;z�, 1. 4,

in this model Z = 1004. Therefore, in the local NJL model the - a, ixing play a

more important role.

Let us compare also the amplitude of the decay width or -� 7rir in tese models. In the

local NJL model this amplitude equals A'J'), = mg = 28 GeV (here g = 25). Thisa-+ir+

amplitude is twice times larger than in the present model. However, after taking into

account - a, mixing this amplitude takes the form A N11) = 4mgZ- = 2 GeV. This
a-+?r+z-

leads to noticeable decrease in the decay width which becomes smaller than experimental

data.
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The failure of the models to describe the a-meson is expectable. The similar problems

appeared in the CD sum rule method. In the salar channel with vacuum quantum

numbers the corrections from different sources may be valuable. Indeed, it was shown

recently that the 11N, corrections in'this channel are rather big[261, and thus we can not

trust the results of the model in this case.

In conclusion, let us summarize the main results of this work. The pseudoscalar,

scalar, vector and axial-vector sectors of the model have been considered. It was shown

that the low-energy theorems are fulfilled. The masses and strong coupling constants of

the mesons were calculated. The strong coupling constants of the mesons were shown

to noticeably decrease with increasing p in the physical domain(see fig. 2. The 7 - a,

mixing was considered and it was found that this mixing could, be neglected. Among

satisfactory predictions of the model there are the decay width p 4 27r and the mass

of the sigma-meson. However, the width of decay' 4 7r is significantly below the

experimental value 1251.

In the future, we plan to describe the electromagnetic interactions in the framework

of this model, verify the vector meson dominance, calculate the e.m. pion radius and

consider the processes iro 'Y'Y, 'Y' -+ 'Y7r (here y* is a virtual photon), the polarizability

of the pion and the 7 - r scattering length.

The authors thank D. Blaschke, G. V. Efimov, S. B. Gerasimov, and S. N. Nedelko

for fruitful discussions. The work is supported by RFBR Grant no. 02-02-16194 and the

Heisenberg-Landau program.



k,

k-

Figure 1. Meson polarization operator. The thick lines are mesons. All loops

in fig.1, fig.3-fig.6 consist of constituent quarks(thin lines).
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Figure 2 Momentum dependence of the mesons strong coupling constants.
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Figure 3 Weak pion decay. Dash lines denote weak external field.

Blobs are onlocal vertices.
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q,

k + q ir

P

7r q2

Figure 4. Decays or -+ w7r, p -+ rv.

k,
i 5

7r
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Figure 5. 'Transition loop describing 7r - a, mbang.

Figure 0. Diagram describing additional renormalization of the pion field.
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