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1 Introduction

The possibility of the two-photon Cherenkov effect was predicted by Frank and Tarnm
in [11:

We note in passing that for v < c the conservation laws prohibit the
emission of one particular photon as well as the simultaneous emission of
a group of photons. However, for the superluminal velocity such higher
order processes are possible although for them the radiation condition
(2.4) is not necessary.

(Under this condition Tamm and Frank meant the one-photon radiation condition
cos = vn). In this case, the conservation of energy and momenta does not prohibit
the process in which a moving charge emits simultaneously two photons. There is
no experimental confirmation of this effect.

The calculations of the two-photon radiation intensity are known 261, but they
were performed without paying enough consideration to the exact kinematical re-
lations. The goal of this treatment is to point out that the two photon Cherenkov
effect will be strongly pronounced for special orientations of photons and the recoil
charge. This makes easier the experimental search for the 2-photon Cherenkov effect.

The plan of our exposition is as follows. In section 2 for the pedagogical purposes,
we consider the one-photon emission from a charge moving uniformly in medium. It
turns out that the kinematics allows not only emission at the Cherenkov angle 7,
but also in the forward direction, in accordance with the claim made in [8]. In section
3, devoted to the two-photon emission, the inequalities are obtained for the emission
angles of two photons. In specific cases these inequalities reduce to equalities. For
these particular cases a possible setup of experiments aiming to observe the two-
photon emission is discussed. In the same section the relation of the solutions of the
classical Maxwell equations to the quantum two-photon Cherenkov effect is discussed.
A short discussion of the results obtained is given in section 4.

2 Pedagogicalexample: one-photonCherenkovef-
fect

Let a point-like charge e having the rest mass m move in medium of the refractive
index n. It emits the photon with the frequency w. The conservation of energy and
momentum gives

MOC2_Y = MOC2 'Y + w, MOVO-Y = molu- + hwn el (2.1)
c

Here h is the Plank constant, 60 and are the charge velocities before and after

emitting the y quanta, y = /VT--Tl 7 = / � _ 2 ; 6, and w are the unit
vector in the direction of emitted quanta and its frequency; n is te medium
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tefractne index taken at the fequency. w W rewrite 21) in the dimensionless
form

30-,, + (rw', (2.2)

Here F11 c. .3o = F/(7 c ri_,/moc'. Let ro e directed along te z axis. We
project all \ectors o tis axis ad wo others perpendicular to it

.30 = 30 3 = 3[C, cos sin (C, cos + C, sin

C_ (F, cOs sin 0, e', cos,6, + C, sin 0,)]. (2-3)

Suhstitutin, 2.3 ito 22). one otains

+ 6 7 30 -Y = 0-� cos 0 + n cos

3- sin 0 cos o + ,n cos 0, = 3- sn sin n( sin 0, sin 0. (2.4)

From tv,-o last euations oe finds

sin sin ( - -j = 0, sin 0, sin (d - 0, = 0. (2.5)

For sin( - -,) �4 it ilows that 0 0, a Eqs. 24 rduce to

-�O + 30-�O T. (2.6)

From tis one easilv otains:

2 30 (11 11 + 1) 2-�o(3o - )
3 n I - 2723 112 - I (2.7)0

The onditions > ad < 3 < give

1< 3 < 2'f i
I I 1 + 112

for n > I ad
n< 3 2n (2.8)

< 712

for <
In the past, the possibility of the one-photon radiation in the forward irection bv

a charge moving i medium was suggested by Tyapkin on purely intuitive grounds
[8]. Equations 26)-(2.8) tell us that this assumption is not in conflict with the
kinematics.

Let nw sin( - = Tere are no physical solutions of 2.4) if It
remains only Q, 7 Ten,

-�O + , 3o,�O = j�� cos 0 + nc cos 0,, /3-/ sin = n( sin 0,. (2.9)
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These equations have the well-known solution found by Ginsburg 7]

1 c(n 2 1) 02-y2 + 0y2 - n2 (-y _ Y 2

COS 0, [1+� �]' coso= (2.10)
00n 2-yo 2,3-y)3o-yo

The conditions that the r.h.s. of these equations should be smaller than and greater
than -1, lead to the following conditions:

12 _ n2 + I < < 2,yo(Oon - ) (2.11)
n2 - oo n - I

Eqs. 29)-(2.11) can be realized only for n > 13 > 1/n.

3 Two-photon Cherenkov effect

3.1 General formulae

The eDergy-momentum conservation gives

70 = Y + El + 2, 'YA = 79+ finloF + Qn262. (3.1)

Here
hwl E = hW2 n(W2),El = ;Wo- , n = nwl), n2C2, rn0C2

wl and W2 are the frequencies of the -y quanta I and 2 and el and e2 are the unit
vectors along the directions of their propagation. Projecting 3.1) on the same axes
as above one gets

7 = Y 'El 2, yo0o = y COO + cin, COS 01 + E2n2 COS 02,

#-y sin OS 0 + elni Bin 1 COS 01 + e2n2 sin 02 COS 02 0,

,Oy sin sin 0 + Eln, sin 01 sin 1 + 2n2 sin 2 sin 02 0- (3.2)

From the last two equations one finds

f2n2 sin 2 o2 - f2n2sin 2 _ 272 Sin2 
COS(0i - 0) 2 2 - I 

20,yeln, sin sin 1

cos(02 - ) e2 2 qn2 Bin2 2 '82,y2 Sin2 M, sin 2 (3-3)

20'YC2n2 sin sin 02

For the given Oo (initial charge velocity), , 0, (the final charge velocity and its
direction), cl,01 (the frequency and the inclination angle towards the motion axis
for the first photon) the first and second of Eqs. 32) define the frequency and
the inclination angle towards the motion axis for the second photon) while Eqs.
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(3.3) define the azimuthal angles for the I and 2 photons. These angles are not
independent:

,3 2-y2 Sin _ n2sin 2 f2 n2 sin 2 02
COS(�2 - 1) I I. 2_ 2 (3.4)

2ejn1f2n2sin0j Si 02

The conditions

-1 < COS(0 - ) < < COS(02 - < 1, -1 < COS(02 01 <

lead to the following restrictions on 0, Oi and 02:

Inle, sin 69 - n262 sin 021 < in < n16, sin0 + n2E2 sinO2
3'Y - - 0-Y I

1,3-y sin - n2(2 sin 021 < sin 01 </3-y sin + n2f2 Sin 02

nie, no,

10-y sin - nj el sin 01 Sin 02 <�3-y sin + n El sin 01 (3-5)
n2(2 n2f2

The energy of the recoil charge enters only through the 0-r sin term. It can be
excluded using the relations

)2
C1 f �2

0-Y Sir, = 2-Y2 _ (-yoO - In, cos 01 f2n2 COS 02 )211/2. (3.6)

For the extremely relativistic charges (YO > EI, YO > E2)

V2
sin 0 �_ [ I n, COS 01 + 62 n2 COS 02

0

'YO

that is, 4 when 1. It follows from this that

( 1 (n I COS 0 - ) 62 n2 COS 02 1) > 0

This inequality cannot be satisfied if both nj and n2 are smaller than 1. In the same
relativistic limit

0-y sin = 2�o [ I n 1 COS 01 + E2 (n2 COS 02 - 1)]1/2

is finite despite the large Vf-yo factor. This becomes evident if we rewrite the first of
equations 3.5) in the form

InIc, sin0 - n2f2sin 021 < 0-ysin < n61 sin0l + n2(2Sin02

and note that enters into two last inequalities 3-5) through the same combination
0-y sin 0.

4



3.2 Particular cases

Inequalities 35) reduce to equalities when the recoil charge moves in the same
direction as the initial one ( = 0) or when one of te photons moves along te
direction of motion of the initial charge. We consider these cases separately.

3.2.1 A charge does not change the direction of motion

Let = that is a charge does not change the motion direction Ten, from the
two first equations 3.5) it follows that

ni l sin 0 = n262 Sin 02 (3.7)

It follows from 3.4) that

COS(02 - 01) 02 = 1 + 7, (3.8)

that is, photons fly in the opposite azimuthal directions. Then, Eqs. 32) reduce to

70 El + E2, yo0o - y = in, COS 01 + E2n2 COS 02,

n, El sin 0 = n2E2 sin 02. (3-9)

From this one easily obtains cosOl and CS02

Wo-ya _ Oy)2 + 2n2 - 2n2
COS 0 = I 2 2

2(00-yo - 8y)clnl

(00-y - 0,y)2 - 2n 2 + C2n 2
COS 02 = I 2 2 (3.10)

2(,307o - 3'Y)C2n2

The conditions - < COS 0 < I and -I < COS 02 < lead to the inequality which
can be presented in the following two equivalent forms:

jeln - 2n2l floyo -,8,y cin, + f2n2,

1,3o-yo - 0-y -,Elnll n2('YO - Y - l) oyo -,By + eni. (3.11)

These inequalities can be easily resolved (see Appendix). For definiteness, we sug-
gest that n > nl. There are the following possibilities depending on nl, n2, #0 and fl.

1) n > > ni.

In this case inequality 3.11) has the solution

0 < < Po for < 0 2n2 (3.12)
n2 2

and
< < for 0 > 2n,2 (3.13)

+ n 2'2
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Here
+ n2)2ii - 3 (I 2 132 21�2 2

+ 122 2I - 2O( I 2 - 2n2A

When the conditions 3.12) and 3.13) are satisfied, the dimensionless energy of te
first poton belon-s to te iterval

(3o-,o - 3) < (I < -2(N (00N - 3-Y) (3.14)
n + n2 'n2 nI

The ener-v of the secon poton is positive if 62 �'O I > 0. Since theO.,
inequalitv

< < (3.15)
n2 ' I

holds hen inequalities 3.12) and 3.13) are satisfied, the Psitivity Of 2 is guaran-
teed.

2) n2 > nI > 1

For I < (1 + 2)/2112 (this corresponds to the following chain of iequalities2
r12) 2))1/n2 < 22/0 2 < I/n < 2n,/(I + ni one otains:

�32 < 3 < 0 for I< '90 < 2712
n2 + n22

30 for -f 2n2 I
IIL

and
1 2n,

< < for <3 < + , 2 (3.16)
nj I

For nj > (I 2)/2TI2 tis corresponds to the ain of inequalities 1712 < I1nI <2
2n2/(I 2n,/(l + n')) one obtains:

�32 < 3 < 30 for < �5 <
n2 ni

I 2n)
�32 < < j for - < 0 < I 2

nj 2

and
< < 3 for 2n2 < 0 < 2n, (3.17)

1 + 2 1 + n2
2 1

WThen and 0 lie inside the intervals defined by (3.16) and 317), el satisfies
the same inequality 3-14).

On the other hand, the inequality

n 2 (-/O - Y - 00 Y - 3 7) < <n2(70 - _�) + (130-YO 07)
ni + n2 n2 + ni
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holds when

0 < < for 1 < < 2n,
nj 1 + n 2

and
< < for 6 > 2n, (3-19)

1 + n2'
I

There are no solutions of 3.11) when both n, and n2 are smaller than .
A further analysis of 3.10) and 3.11) requires the knowledge of the dispersion

law n(w). These equations are convenient when the charge energy moving along the
z axis can be measured.

As a result, we obtain the following procedure for measurement of the two-photon
Cherenkov radiation. Put the charge particle detector on the axis of motion. It
should be tuned in such a way as to detect a particular charge velocity in the intervals
(3-12), 313),(3.13) or 317). Correspondingly, the energy of one of the photons
should be chosen in the intervals 3.14) or 3.18). The energy of the other photon is
found from the first of Eqs. 31). Put the photon detectors under the polar angles
given by 310) and, in accordance with 38), under opposite azimuthal angles.
Since and 02 are uniquely determined by,30,,3 and l, the corresponding radiation
intensities should have sharp maxima at these angles.
If the measurement of the recoil charge is not possible, one can place photon detectors
tuned into the coincidence at the angles given by 3. 10) from which the 0� sin term
should be excluded using the relations 3.6). This is especially clear for the relativistic
case considered below.

Extremely relativistic case. The ove euations are simplified if both the ini-
tial and recoil charges are etremely relativistic (,80 _- 1, 6 z�� 1). Then one has

)2 2 2 2 2 _ e2 2 + E 2
((I + E2 + (nl f2n2 (El + C2)'- ini 2n2

Cos 0 = , COS 02 . (3-20)
2(f, + (2)clnl 2(c, + C2)f2n2

instead of 3.10). Inequality ,3.11) reduces to

ni n, I
(I < < - El

n - 712

for n > > n, and to
n, I-El < < 71] + (3.21)
712 712

for n > n > .

Non-dispersive medium. Also the simplification of 3. 10) and 3. 1 1) takes place
for the non-dispersive medium. It turns out that El satisfies the inequality

n(-yo - y - (Oo-yo - 0-y) <_ el n(,yo - y) + (30,yo - 3-y) (3.22)
2n 2n
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which is valid tinder the condition

ri(-�o - Y > ooo 01. (3.23)

In a manifest form, this equation for n > I looks like

2 - n2 + 1) < o, for I < � < 2n
I + n - 2n,3o n + n2

and
< < o for �3 > 2n (3-24)

+ n2'

There are no solutions of 3.22) for n < .
If in addition both charges are extremely relativistic, one gets for the non-dispersive
medium > )

)2 nl(, - 22) 2 - 2 2 _ 2)
( I + E2 (El + C2) n N E2

Cos 2(f + f2)Ein COS 02 2(c, + E2)f2n

n - n I n >
(I < 2 < - Eh

I n -

3.2.2 One of the photons moves along the direction of motion of the
initial charge

For definiteness, let this poton be the second one (02 = 0). Then, it follows from
(3.5) that 0-ysin = nj(j sin0j. Substituting this into 3.3) one finds cos(0 - =
- 1, 01 - that is, the recoil charge and poton fly in the opposite azimuthal
directions. As a result, one gets the following equations:

70 Y I C2,

00'YO = 2n2 + ein, os 01 + 0-� os ,

,6-y sin = nc, sin 01.

From this one easily finds 01 and :

(NO - E2n2 )2 y2�2 _ 2n 2

Cos 2-yO(-yo,3o E2n2) 1 1 1

(_Y00 - 2n2)' -y2,82 + (2n2
Cos 01 - I I.. (3.25)

2cini(,yoo - 2n2)

The conditions that the r.h.s. of these equations be smaller than I and greater than
-1, give the following inequality

J-yooo - fin, - f2n2 < �'Y < N00 + (Elnl E2n2j. (3.26)
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We do not further elaborate Eq.(3.26) by presenting it in a manifest form similarly
as it was done for 3.11).
These equations are useful when one is able to easure only te photons energies. In
fact, substituting 3.6) into 3.25) one gets the polar agles of recoil charge ad the
1-st photon. Making the same substitution in 326), one finds the set of available
El and C2:

1-yo,6o - fin, - 2n2 < YO - El - 2 )2 _ 1112 < NOO + 1711 - 2nd- (3.27)

The measurement procedure reduces to the following oe. Choose the photon ener-
gies fl and f2- Check whether they satisfy 3-27). Put the photon counters at the
initial direction of the charge motion, and at the angle 01 defined i 325). The
counters tuned into the coincidence will detect photons arising from te two-photon
Cherenkov effect. Since 01 is uniquely defined by kinematics, the radiation intensity
should have maximum at this angle for the photon with the energy El.

3.3 Back to the general two-photon Cherenkov effect

The situation is more complicated for the general two-photon Cherenkov radiation
described by Eqs. 32)-(3.5). It is easy to check that only one of inequalities 3.5)
is independent. It is convenient to choose the first of them rewriting it in the form

)2 < p2_Y2 20 < )2.(nlEl sin - 2 sin 02 - sin - no sin 01 + n2f2 sin 02 (3.28)

This inequality is satisfied trivially for particular cases = and 0 = consid-
ered above. However, there are other solutions of 3.28) for which 01, 02 and are
uniquely defined.

3.3.1 Another particular case

To find this case we substitute fl-y sin from 3.6) to 3.28) thus obtaining the fol-
lowing inequality

Cos 0) < Cos 0 < osdl) (3.29)
2 �2

where
cosO(l = A - R COSq(2) - A R 3.30)2 Y 12

A c, floyo-cinicosO,
2n2f2 Z2

R= Po-yoefjn2 sin0 [Co.0, _ COS 0(l))(COSO(2) COS01)]1/2'

f2n2Z2 I 1

2n2 + + #y)2
Cos O(l) 6I #0272 - ff2n2

I 20oyofin,

(2) E2n2 + 2-Y2 _ _ Oy)2
I 1 (f2n2

Cos 0 20o7ofin, (3.31)
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cl 21 2, + 2 2n 2 + (Cl + (2)(2,yo - c, - 2 - 230-yoejnj costs,,

Z = 2n 2 22 2 - osI I 0 10 10 �0 I I

AVe see tat for each cosOl from the interval

I (2)
Cos < Co's 01 < Cos 1

there is a continuum Of CS02 alues given by (3.29). The corresponding angular
radiation intensities are rather road.

The notable exceptions (in addition to te trivial cases = and = 
(1) (2)considered above) are cos0i = COO I and COO, COO , whe R = and

Os 1 Cos O� ,2

The cosO(') and COS 0(2) corresponding to .osO(' ad cosO� 2)1 respectively, are2 2 1
obtained y substitution cos0i COO(" ) and os Ot = os O� 2) into A and are given
bx-

.32 2- (2p, 2 + (2712 32OM 0 0 1
2 23ON(Qn) + 3)

for cosoj coso, and

32 -2 F2P 2 0-/)2
Cos 2) 0 0 I I + ((2TI2 (3-32)

2 230-�O(C2."2 3/)

fo cs 01 Cos 01, 2)

Ob-, iousiv. the r.h.s. of equations (3.31) and 332) defining osO(l z) and (-Os O�')2
be smaller tha I and greater than -1. This define te iterval of ( ad 2

for \hich the olution discussed exists.
The olar angle of the recoil harge is found fiont the relation

3-� COS = 3C - 711 COS (2712 c(S 0(�) (3-33)

where s 0 N) and os 02'� are te same as in 3.31 and 3.32).

Since 0. 0 and 02 are now fixed ad are o longer connected y inequalities, te

corresponding angular radiation intensities sould ave sarp maxima at a 02

(similarly to the single-photon Cherenkov effect).

In general. to each angle 01 tere corresponds te interval Of 02 defined by 3.29).

The axima of corresponding radiation intensities are rather diffused.

Only for special cases:

1) when the recoil charge moves in the same direction as the iitial charge (see section

3.2.1):

2) when one of the photons moves along te direction of te initial charge (see section

30.2.2) and

3) or the orientations of the photons and recoil charge defined by (3.3l)- (3.33)�

the directions of the recoil charge and photons are uniquely efine smilarly to the

single-photon Cherenkov effect. The corresponding radiation itensities sould have

sharp maxima for such orientations.
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3.3.2 Relativistic case

In the relativistic. limit the inequality 3.28) reduces to

el + C2 ni el COS 01 + n2f2 COS 02

El + C2 �! ni I OS 01 + n2(2 COS 02,

which are compatible only if

I n, cos0 - 1) + E2(n2 COS 2 - 1) = 0 (3.34)

This equation has no solutions if both n, and n2 are smaller than 1. VVe extract

COS 02:

COS 02 + el - n, COS 01) (3.35)
n2 n2f2

For definiteness we choose n > n, and n > 1. The right hand side of this equation
should be smaller than and greater tan -1. This leads to the following inequahtN
for COS 01:

1 C2(n2 < COS 01 + (2(?12 

7,11 cin, ni cin,
It is convenient to rewrite this equation in a anifest form.

Let n > n >

Then, available 01 lie in the following intervals

I ni
-1 < cosO < for E > I n - 11

1 C2(n2 - ni +- < COS 0 < for l < 62 < l
7�1 ein, n2 + n -

and

C2(n2 < COS 01 < + E2(n2 + ) for < 2 < El n -
n, cin, ni c1n, n2 +

Let n > n < .

Then, available values of 01 belong to the, intervals.

+ ni
1 < COS 0 < for 2 > , n -

and
C2(n2 n1 < eln, + 1

< COS 0 < f6 I < 2
ni cin, n - n - 1'

It follows from these equations that there is a continuum of pairs 002 connected
by 3.34). This means that in a general case, rather broad distributions of radiation
intensities should be observed. The kinematical consideration is not sfficient now
and concrete calculations are needed.

In the specific case = CO 0 and COS 02 also satisfy 3.34) but teir values are
fixed by 3.20).



3.4 Relation to the classical Cherenkov effect

We discuss now how the classical electromagnetic field strengths (which are the solu-

tions of the Maxwell equations with classical currents in their r.h.s.) are related to the

quantum field strengths operators. In quantum electrodynamics 910] the classical

electromagnetic field strengths are dehned as eigenvalues of positive frequency parts

of the quantum field strengths operators (taken in the Heisenberg representation)

when thev act on the so-called coherent states. The latter can be presented as an

infinite sum over states with a fixed photon numbers. The coefficients of these states

are related to the Fourier components of the classical currents. Therefore, classical

solutions of the Maxwell equations involve contributions from states with arbitrary
photon umbers. The afore-said is valid only for the current flowing in vacuum. If

one suggests that the same reasoning can be applied to the charge motion in medium,

the classical formulae describing Cherenkov radiation should contain contributions

from the states with arbitrary photon numbers.

4 Discussion and Conclusion

Using the analogy with the Doppler effect for the scattering of light by a charge

moving in medium, Frank [11, 12] obtained the following condition for the emission

of to photonsi

(1(3n, cosO - 1) + (,(3n2COS02 - 1) = 0, (4.1)

where 3 is the initial charge velocity. In the relativistic limit ;z�5 1), 4.1) coincides

with equation 3.34) following from the relativistic kinematics. However, for arbi-

trarv 3. 4.1) is not compatible with exact kinematical inequalities 3-28) and 3.29)

for te two-photon emission and, therefore. the above analogy with te Doppler effect

is not at east complete.
It turns out that highly relativistic carges are ot convenient for the observation

of the two-photon Cherenkov effect. As we have seen, i this case the recoil charge

flies in the almost forward direction and it will be rather difficult to discriminate it

from the recoil charge moving exactly in the forward direction (only for this particular

kinematics the photon emission angles 01 and 02 are fixed (see 3.10)). It is desirable

to choose the energy of te initial charge only slightly above the summary energy of

two photons. Certainly, kinematics itself cannot tell us how frequently the recoil

charge or one of the photons moves exactly in the forward direction. For this,

concrete calculations are needed. The goal of this treatment is to point out that

the two-photon Cherenkov effect will be pronounced for the special orientations of

photons and the recoil charge. This makes easier the experimental search for the

2-photon Cherenkov effect.
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Appendix

It is easy to check that inequality 3.11) leads to 3.14) when

Ooo 0 < YO - - < 00-yo - 0Y (A. )
n2 n 1

and to 3.18) for
IYO - -Y > '30-YO - '3-Y (A. 2)

n

We need, therefore, to resolve the conditions

I
IYO - - < -(#O-yo O) (A. 3)

n

and
1

70 - Y > - (00-yo O) (A.4�
n

for various relations between n and .

Inequality (A.3)

For n > inequality (A.3) reduces to

1
, < flo for O < (A. 5)

n

and to
< 8c for I < 2n (A. 6)

n 0 < 1+ n2'

Here we put
2n - 80(1 + n 2)

1 + n2 - 2n#o

Inequality (A.3) cannot be satisfied for flo > 2n/ (1 + n 2).

For n < , inequality (A.3) holds for all in the interval < < .

Inequality (A.4)

For n > , inequality (A.4) reduces to

I 2n
< < for < < (A.7)

n I 2

and
< < for Po > 2n (A-8)

1 + n2'

For n < , there are no solutions of (A.4).
Putting n = ni < I in (A.3), n = n > in (A.4) and combining them, one gets
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(3.12) and 313).
Putting i = ni > I in (A.3), n = 2 > I i (A.4 ad combining them, one gets
(3.16) and (3.17).
Putting n = nj > I in (A.4), one gets 3.19).
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