


1 Introduction

The possibility of the two-photon Cherenkov effect was predicted by Frank and Tamm
in [1]:

We note in passing that for v < c¢ the conservation laws prohibit the
emission of one particular photon as well as the simultaneous emission of
a group of photons. However, for the superluminal velocity such higher
order processes are possible although for them the radiation condition
(2.4) is not necessary.

(Under this condition Tamm and Frank meant the one-photon radiation condition
cos@ = ¢/vn). In this case, the conservation of energy and momenta does not prohibit
the process in which a moving charge emits simultaneously two photons. There is
no experimental confirmation of this effect.

The calculations of the two-photon radiation intensity are known [2-6], but they
were performed without paying enough consideration to the exact kinematical re-
lations. The goal of this treatment is to point out that the two photon Cherenkov
effect will be strongly pronounced for special orientations of photons and the recoil
charge. This makes easier the experimental search for the 2-photon Cherenkov effect.

The plan of our exposition is as follows. In section 2, for the pedagogical purposes,
we consider the one-photon emission from a charge moving uniformly in medium. It
turns out that the kinematics allows not only emission at the Cherenkov angle (7],
but also in the forward direction, in accordance with the claim made in [8]. In section
3, devoted to the two-photon emission, the inequalities are obtained for the emission
angles of two photons. In specific cases these inequalities reduce to equalities. For
these particular cases a possible setup of experiments aiming to observe the two-
photon emission is discussed. In the same section the relation of the solutions of the
classical Maxwell equations to the quantum two-photon Cherenkov effect is discussed.
A short discussion of the results obtained is given in section 4.

2 Pedagogical example: one-photon Cherenkov ef-
fect

Let a point-like charge e having the rest mass m¢y move in medium of the refractive
index n. It emits the photon with the frequency w. The conservation of energy and
momentum gives

" - hwn
mMoc*Yo = moc®y + b, moTlyyo = Moy + —8;. (2.1)
Here h is the Plank constant, @ and ¥ are the charge velocities before and after

emitting the y quanta, v = 1//1— 5%, v = 1/,/1 - f%; €, and w are the unit
vector in the direction of emitted 7y quanta and its frequency; n is the medium



refractive index taken at the frequency w. We rewrite (2.1) in the dimensionless
form
n=v e Sevo = By 4 enel. (2.2)

Here J = /e, 3= 0y/c. €= hu/myc? Let @ be directed along the z axis. We
project all vectors on this axis and two others perpendicular to it

Jo = 3., F= 3[€, cos @ + sin 0(€; cos ¢ + €, sin ¢)],

€, = €, cosb., +5sinb, (& cos o, + €, sin ¢,)]. (2.3)

Substituting (2.3) into (2.2), one obtains
o =v+e Fovo= Fvcosh+ necost,,

3~ sinfcoso+ nesing, coso, =0, Bysinfsing + nesinb, sing, = 0. (2.4)

From two last equations one finds
sinfsin(o —o.,) =0, sinf,sin(d — ¢,) = 0. (2.5)
For sin{o — o) # 0 it follows that # =6, = 0 and Eqgs. (2.4) reduce to
Yo =v+ e Fovo = Iy + ne. (2.6)

From this one easily obtains:

oM _miwon
The conditions € > 0 and 0 < 3 < 34 give
. 2n
n < 1+ n?
forn > 1 and o
n< g < P (2.8)

forn < 1.

In the past, the possibility of the one-photon radiation in the forward direction by
a charge moving in medium was suggested by Tyapkin on purely intuitive grounds
{8]. Equations {2.6)-(2.8) tell us that this assumption is not in conflict with the
kinematics.

Let now sin(¢ — ¢,) = 0. There are no physical solutions of (2.4} if ¢ = ¢,. It
remains only ¢ = ¢, + 7. Then,

Yo="7+e¢, Bovo=Bycosd+necosh,, Bysinh =nesinb,. (2.9)



These equations have the well-known solution found by Ginsburg (7]

e(n?-1)

2.10
7 (2.10)

RIS _ B+ B30 — n(v — 1)?
Bon 2B8vBovo

The conditions that the r.h.s. of these equations should be smaller than 1 and greater
than -1, lead to the following conditions:

cos B, = ], cosé

f2n — Bo(n? + 1)| <B<By €< 2v0(Bon — 1). (2.11)

n2+1-2n0, n2 -1

Egs. (2.9)-(2.11) can be realized only for n > 1, 8, > 1/n.

3 Two-photon Cherenkov effect
3.1 General formulae
The energy-momentum conservation gives
Yo=v+er+e, Yho=78+eamé +eanady. (3.1)

Here
hwl th
€x =

€6 = m =n(w), n2=n(wl),

moc?’ moc?’

w; and w, are the frequencies of the 7y quanta 1 and 2, and €; and &, are the unit
vectors along the directions of their propagation. Projecting (3.1) on the same axes
as above one gets

Y=7+e€ +e, YoBo="Bcosd+ e n,cosh + eanycosby,
By sin B cos ¢ + €;n; sin §) ¢os P, + €2n3 sin H, cos g, = 0,
Bysinfsin ¢ + €1, sin 8y sin @, + €am4 sin by sin ¢y = 0. (3.2)
From the last two equations one finds

2,2 oin2 2,2 o302 2.2 gin?
e3ny sin 0, — efnisin® 6, — [2y*sin® 6
cos(p1 — ¢) = ,

2Bv€;n sin@sin 6,

ein?sin’ 6; — en?sin? G, — 2 sin?¢
2Bveans sin B sin 0, )

cos(gz — ¢) =

For the given f (initial charge velocity), 8,0, (the final charge velocity and its
direction), €;,8; (the frequency and the inclination angle towards the motion axis
for the first photon) the first and second of Eqs. (3.2) define the frequency and
the inclination angle towards the motion axis for the second photon) while Egs.

(3.3)



(3.3) define the azimuthal angles for the 1 and 2 photons. These angles are not
independent:

2.2 o102 2.2 oin2 2,2 i 2
By sin“ g — €ini sin® B — esn;sin” 6,

cos(de — ¢1) = (3.4)

2e1M €975 sin B sin B,
The conditions

—l<cos(py —d) <1, =1<cos(dp—¢) <1, —1<cos(¢y—¢1)<1
lead to the following restrictions on 8, 8; and 8,:

|n1€1sin ) — nqes sin 85| < sing < ny€y sinfy + noessinby

By By ’

[Bysinf — nyes sin b,

Bysinf + naeqsin by

S sin 91 S y
n€; n€;
sinf — nie; sin @ i sinf + nie; sinf
|8 Ll ! <sinf, < by 11 L (3.5)
151 No€o

The energy of the recoil charge enters only through the Sysinf term. It can be
excluded using the relations

57:m0—61—62)2—1,

Bysind = [6°y* — (yoBo — €1ny cos By — egn cos By)?]H2. (3.6)
For the extremely relativistic charges {yo > €1, o > €)

/2
sin@ = ’Y—[EI(nl costy — 1) + €3(ngcos by — 1)]1/2,
0
that is, § — 0 when 3y, — 1. It follows from this that
61(n1 COSB] - 1) +€2(Tl2 COSBZ — 1) > 0.

This inequality cannot be satisfied if both n; and n, are smaller than 1. In the same
relativistic limit

Brysinf = \/27o[e1(n1 cos by ~ 1) + €2(na cos B, — 1)]1/2

is finite despite the large /7 factor. This becomes evident if we rewrite the first of
equations (3.5) in the form

|16 5in 61 — noexsinba] < Bysin® < nye; sinh) + noepsin by

and note that @ enters into two last inequalities (3.5) through the same combination
Bysinf.



3.2 Particular cases

Inequalities (3.5) reduce to equalities when the recoil charge moves in the same
direction as the initial one (f = 0) or when one of the photons moves along the
direction of motion of the initial charge. We consider these cases separately.

3.2.1 A charge does not change the direction of motion

Let # = 0, that is a charge does not change the motion direction. Then, from the
two first equations (3.5) it follows that

ny€; sin@; = ngeg sin b,. (3.7)
It follows from (3.4) that
cos(¢p2 ~ ¢1) = =1, ¢ =1 +m, (3.8)
that is, photons fly in the opposite azimuthal directions. Then, Egs. (3.2) reduce to
Yo=7+e+e, Ybo—v8=en cost + emycosty,
n1€1 8in 0y = noer sinfy. (3.9)
From this one easily obtains cosf; and cos,

(Bovo — B7)? + €in — €kn3
2(Bove — By)erm

(Boro = B)* ~ élnt + e4n} (3.10)
2Bt — Br)emz '

The conditions —1 < cosf, < 1 and —1 < cosf; < 1.lead to the inequality which
can be presented in the following two equivalent forms:

cosf; =

cosfy =

lexmy — €2m2| < fovo — By < €mu + €eany,
|Bovo — By — emu] < na(vo — v — &) < Bovo — By + e (3.11)

These inequalities can be easily resolved (see Appendix). For definiteness, we sug-
gest that ne > n;. There are the following possibilities depending on n,, 74, f and 3.

1) ne > 1> n.
In this case inequality (3.11) has the solution

1 2712
<B< for —<f< 3.12
B2 <B<py - Bo ey (3.12)
"and 0
T2
0<B< f > . 3.13
B<h for fo>1s (3.13)



Here
5 2ny = 31 +n?)

_ 277,2 - ,80(]. + 77%)
L Y T

A T
When the conditions (3.12) and (3.13) are satisfied, the dimensionless energy of the
first photon belongs to the interval

ny(0 = ) = (Bp70 — B87) <6 < n2(v0 =) = (Boro — B7)

ny + ny Ty — Ty

. (3.14)

The energy of the second photon is positive if ¢ = 44 — 7y — ¢; > 0. Since the

inequality

< na(vo — v) — (Jovo — 87)
ng — 1y

~

<%Yo— 7 (315)

€y

holds when inequalities (3.12) and (3.13) are satisfied, the positivity of ¢, is guaran-
teed.
2) Ng >Ny > 1.

For n, < (1 4 n3)/2n, (this corresponds to the following chain of inequalities
1/ny < 2ny/(1 +n3) < 1/ny < 2n;/(1 + n?)) one obtains:

1 21y
3 <3< By f — < < —,
2 < Dy lor g 2o 1+n%
) 2 1
0<B<By for —2 <fy<—
1 +n3 ny
and
) 1 21,
0<3<3 f — <y < —. 3.1
< < 1) or m 10 g 7]% ( 6)

For n; > (1 + n3)/2ny (this corresponds to the chain of inequalities 1/ny < 1/n; <
2n,/(1 + n2) < 2n,/(1 + n?)) one obtains:

1 1
[)’2 < B < ‘BO for — < ['))0 < -,
n

2 i
1 2n-)
3 < B < f — < fy < -
B < B < By for ™ Bo 1+n%
and 9 om
Ny 1
< f < fi < < . 3.17
0<f<B for 1+ n3 bo 1+n? ( )

When 8 and f, lie inside the intervals defined by (3.16) and (3.17), €; satisfies
the same inequality (3.14).
On the other hand, the inequality

ny(v0 — ) — (Bove — B7) e < n2(v —¥) + (Bovo — 67)

(3.18)
ny + no Ny + 1y



holds when

1 27’11
< fi —
BL< B < By for n1<ﬁ0<]+n%
and
0 < fi .
<B<pfo for B> 1+n1 (3.19)

There are no solutions of (3.11) when both n; and n, are smaller than 1.

A further analysis of (3.10) and (3.11) requires the knowledge of the dispersion
law n(w). These equations are convenient when the charge energy moving along the
z axis can be measured.

As a result, we obtain the following procedure for measurement of the two-photon

Cherenkov radiation. Put the charge particle detector on the axis of motion. It
should be tuned in such a way as to detect a particular charge velocity in the intervals
(3.12), (3.13),(3.13) or (3.17). Correspondingly, the energy of one of the photons
should be chosen in the intervals (3.14) or (3.18). The energy of the other photon is
found from the first of Eqs. (3.1). Put the photon detectors under the polar angles
given by (3.10) and, in accordance with (3.8), under opposite azimuthal angles.
Since 6; and 6, are uniquely determined by S, 5 and €, the corresponding radiation
intensities should have sharp maxima at these angles.
If the measurement of the recoil charge is not possible, one can place photon detectors
tuned into the coincidence at the angles given by (3.10) from which the Bvsin 8 term
should be excluded using the relations (3.6). This is especially clear for the relativistic
case considered below.

Extremely relativistic case. The above equations are simplified if both the ini-
tial and recoil charges are extremely relativistic (Gp = 1, B8~ 1). Then one has
(€1 + €2)* — €n? + €n2

, €osfp = T (3.20)

(€1 + €2)* + e2n? — €n3
2(61 + 62)€1n1

cosf, =

instead of (3.10). Inequality (3.11) reduces to

1—ny n +1
€ <€ <
ng—1 1y — 1

€]

for ny > 1 > n; and to

€1 (3.21)

for no >n; > 1.

Non-dispersive medium. Also, the snmphﬁcatlon of (3.10) and (3.11) takes place
for the non-dispersive medium. It turns out that ¢; satisfies the inequality

n{vo — ) — (Bovo — B7) <o < (v = 7) + (Bovo — B7)
2n == 2n

(3.22)



which is valid under the condition

n(vo ~7) > Bovo — By (3.23)

In a manifest form, this equation for n > 1 looks like

2n — By(n? + 1) 1 2n
TR T < B< By, for =< By <
1+n?-2n5 SB<bo, for n fo 1+n2
and
f 2n
0<fB< ,Bo or [y > 1-!-—7_7,5 (324)

There are no solutions of (3.22) for n < 1.
If in addition both charges are extremely relativistic, one gets for the non-dispersive
medium (n > 1)

(€1 + €2)% + n?(e? — €2)

cosf; = cosf, =
! 2(61 + 62)6171 ’ :

(€1 + €2)? — n?(e? — €2)
2(61 + 62)627’1

n—1 < <n+1
€ €
n+1' T -l

3.2.2 One of the photons moves along the direction of motion of the
initial charge

For definiteness, let this photon be the second one (; = 0). Then, it follows from
(3.5) that Bysin@ = nye; sin 6. Substituting this into (3.3) one finds cos{¢; — ¢) =
—1, ¢ = ¢ — 7, that is, the recoil charge and photon fly in the opposite azimuthal
directions. As a result, one gets the following equations:

Yo =7+ €+ €
Bovo = €2na + €ny cos by + By cos b,
Bysinf = nje;sinb,.
From this one easily finds 6, and 6:

(voBo — €2m2)? + ¥ 8% — €in]

cosf = )
2v8(v0bo — €2m2)

(7080 — €2n2)? — ¥2B% + €in?
261n1(10fo — €2n2)

The conditions that the r.h.s. of these equations be smaller than 1 and greater than

-1, give the following inequality

cosf = (3.25)

[Yofo — €11 — €zma| < By < |yofo + €11y — €2nal. (3.26)

8



We do not further elaborate Eq.(3.26) by presenting it in a manifest form similarly
as it was done for (3.11).

These equations are useful when one is able to measure only the photons energies. In
fact, substituting (3.6) into (3.25) one gets the polar angles of recoil charge and the
1-st photon. Making the same substitution in (3.26), one finds the set of available
€; and €5:

7080 — 6xn1 — €2m2] < [(10 — &1 — €2)% — 1]Y2 < |00 + €111 — €212 (3.27)

The measurement procedure reduces to the following one. Choose the photon ener-
gies ¢; and €. Check whether they satisfy (3.27). Put the photon counters at the
initial direction of the charge motion, and at the angle 6; defined in (3.25). The
counters tuned into the coincidence will detect photons arising from the two-photon
Cherenkov effect. Since 8, is uniquely defined by kinematics, the radiation intensity
should have maximum at this angle for the photon with the energy ¢;.

3.3 Back to the general two-photon Cherenkov effect

The situation is more complicated for the general two-photon Cherenkov radiation
described by Eqgs. (3.2)-(3.5). It is easy to check that only one of inequalities (3.5)
is independent. It is convenient to choose the first of them rewriting it in the form

(ni€sin @) — nyeysinBy)? < B2y sin? @ < (ny€; sin ) + nyep sin 6,)2 (3.28)

This inequality is satisfied trivially for particular cases # = 0 and 8, = 0 consid-
ered above. However, there are other solutions of (3.28) for which 6;, #; and @ are
uniquely defined.

3.3.1 Another particular case

To find this case we substitute Svysin# from (3.6) to (3.28) thus obtalnmg the fol-
lowing inequality

cosB( ) < cos by < cosﬂ(z) (3.29)
where
coso( )= A-R, cosﬂ(z) A+ R, (3.30)
— & Bovo—enicosb
21’1262 A ’
2,2 in 9
R= é(-)’Y—O;Lr::I—Z,;—n——l[(cos 8; — cos 8{")(cos 8 — cos6,)]'/2,

cos 8 = €int + 6318 — (e2ma + Bv)°
2Bov0€1m ’

cos 052) = 6%"% + Bgfyg _ (62n2 - ﬁ7)2 (331)
2Bovo€11 ’

9



o= e?nl? + egng + (e + Q)(?'yo — 6 — €3) — 23v0€1n) CcOS By,
7% =¢2 nl + 3 — 283p0€11 €05 By

We see that for each cos#, from the mterval
cos B < cos B < cos 952)

there is a continuum of cosf, values given by (3.29). The corresponding angular
radiation intensities are rather broad.

The notable exceptions (in addition to the trivial cases § = 0 and #; = 0
considered ahove) are cosf; = cos 0§” and cosf, = cos 0&2) when R = 0 and
cos 8y = cos 0;2)

The cos65' and cos 0%2 correspondmg to cos 01 and cos 952).‘ respectively, are
obtained by substitution cos 8, = cosﬁ and cosf, = cos6’ "into A and are given
by
B3~ — 2n? + (eany + O7)*

23yv0(e2nz + 37)

i

.
cos B5"

for cos b, = cos 95” and

Favd — €2n? + (eang — )2
2807v0(€any — 3)

cos bt = (3.32)

for cosf, = cos 952).

Obviously, the r.hs. of equations (3.31) and (3.32) defining cos F)Y) and cos 95;}
should be smaller than 1 and greater than -1. This defines the interval of ¢, and €,
for which the solution discussed exists.

The polar angle of the recoil charge is found from the relation

G cosB; = Symg — €11 oS ()El) — €971y COS 9&‘), (3.33)

where cos 81" and cos #y' are the same as in (3.31) and (3.32).

Since 4, 6, and 6, are now fixed and are uo longer connected by inequalities, the
corresponding angular radiation intensities should have sharp maxima at ¢, and 6,
(similarly to the single-photon Cherenkov effect).

In general. to each angle 8, there corresponds the interval of 8, defined by (3.29).
The maxima of corresponding radiation intensities are rather diffused.

Only for special cases:

1) when the recoil charge moves in the same direction as the initial charge (see section
3.2.1):

2} when one of the photons moves along the direction of the initial charge (see section
3.2.2) and

3) for the orientations of the photons and recoil charge defined by (3.31)- (3.33),
the directions of the recoil charge and photons are uniquely defined similarly to the
single-photon Cherenkov effect. The corresponding radiation intensities should have
sharp maxima for such orientations.

10



3.3.2 Relativistic case
In the relativistic limit the inequality (3.28) reduces to
€1 + €2 < nje; cosf) + noeg cos
€1 + €3 > ny€) cos B + noey cos by,
which are compatible only if
€1(n1cos8; — 1) + e3(npcosfy — 1) = 0. (3.34)

This equation has no solutions if both n; and ny are smaller than 1. We extract

cos f,:

1  €(1—n;cos@
cosfy = — + a(l — mcosé) 1). (3.35)
Mo Tin€g
For definiteness we choose n, > n; and ny; > 1. The right hand side of this equation
should be smaller than 1 and greater than -1. This leads to the following inequality
for cos9,:
1 €2(ng — 1 1 €2(ny +1
————2(2 )§00501§—+——-2(2 ).
n G m €6
It is convenient to rewrite this equation in a manifest form.

Let ng >n; > 1.

Then, available 6, lie in the following intervals

1+n
—1<cosf; <1 for 62>£1—1,
n2—1
1 eng—1 o m -1 n;+1
—."—A—z—-—)<c0501<1 for ¢ LI < €3 < € !
m €11 ) g + 1 . Nog — 1
and
1 g — 1 1 +1 -1
'—-52—('-—2—')§cos6?1$-—+€—2(—nz———'—2 for 0<52<elnl .
) €1y R €1n) ns+1

Let ny > 1; ny < 1.

Then, available values of 6, belong to tfle"i_r'ltérvals:,

. 1
—1<cosf, <1 for 62>€1ﬂ—17
n2—1
and 3 ( 1 1 ' 1
€ (e — . . -—n n
——L)<c0391<1 for ¢ - s

<€ <€ .
5 €6mn T ng—1 ng—1

It follows from these equations that there is a continuum of pairs 8,6, connected
by (3.34). This means that in a general case, rather broad distributions of radiation
intensities should be observed. The kinematical consideration is not sufficient now
and concrete calculations are needed.

In the specific case § = 0, cos 8, and cos 0, also satisfy (3.34) but their values are
fixed by (3.20).

11



3.4 Relation to the classical Cherenkov effect

We discuss now how the classical electromagnetic field strengths (which are the solu-
tions of the Maxwell equations with classical currents in theirr.h.s.) are related to the
quantum field strengths operators. In quantum electrodynamics [9,10] the classical
electromagnetic field strengths are defined as eigenvalues of positive frequency parts
of the quantum field strengths operators (taken in the Heisenberg representation)
when they act on the so-called coherent states. The latter can be presented as an
infinite sum over states with a fixed photon numbers. The coeflicients of these states
are related to the Fourier components of the classical currents. Therefore, classical
solutions of the Maxwell equations involve contributions from states with arbitrary
photon numbers. The afore-said is valid only for the current flowing in vacuum. If
one suggests that the same reasoning can be applied to the charge motion in medium,
the classical formulae describing Cherenkov radiation should contain contributions
from the states with arbitrary photon numbers.

4 Discussion and Conclusion

Using the analogy with the Doppler effect for the scattering of light by a charge
moving in medium, Frank [11, 12] obtained the following condition for the emission
of two photons:

e1(8nycosb; — 1) + ex(Bnacosfy — 1) =0, (4.1)

where 3 is the initial charge velocity. In the relativistic limit (8 = 1), (4.1) coincides
with equation (3.34) following from the relativistic kinematics. However, for arbi-
trary 3. (4.1) is not compatible with exact kinematical inequalities (3.28) and (3.29)
for the two-photon emission and, therefore, the above analogy with the Doppler effect
is not at least complete.

It turns out that highlv relativistic charges are not convenient for the observation
of the two-photon Cherenkov effect. As we have seen, in this case the recoil charge
flies in the almost forward direction and it will be rather difficult to discriminate it
from the recoil charge moving exactly in the forward direction (only for this particular
kinematics the photon emission angles 6, and 6, are fixed (see (3.10)). It is desirable
to choose the energy of the initial charge only slightly above the summary energy of
two photons. Certainly, kinematics itself cannot tell us how frequently the recoil
charge or one of the photons moves exactly in the forward direction. For this,
concrete calculations are needed. The goal of this treatment is to point out that
the two-photon Cherenkov effect will be pronounced for the special orientations of
photons and the recoil charge. This makes easier the experimental search for the
2-photon Cherenkov effect.
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Appendix
It is easy to check that inequality (3.11) leads to (3.14) when

Bovo — By <o —v < Bovo — By (4.1)
Na n

and to (3.18) for

v > Bovo — By . (4.2)

0
i n

We need, therefore, to resolve the conditions
1
%0 =7 < ~(Bovo ~ B7) (A.3)

and 1
Yo — > ;(6070 - B7) (A4)

for various relations between n and Sy.

Inequality (A.3)
For n > 1 inequality (A.3) reduces to

1
B< By for Bp< ;l— (A5)
and to ] 9
n
. — e A.
B<Pe for —<fo<i — (A-6)
Here we put
8, = 2n — Bo(1 + n?)
T 1+4+n2-2n8,
Inequality (A.3) cannot be satisfied for 8y > 2n/(1 + n?).
For n < 1, inequality (A.3) holds for all 8 in the interval 0 < 8 < 5.
Inequality (A.4)
For n > 1, inequality (A.4) reduces to
1 2n
ﬂc < ,B < ﬂo for. ; < ﬁo < H—n'z' (A7)
and
0<B<fy for fo>—1 (A.8)
¢ 7 14n2 ’

For n < 1, there are no solutions of (A.4).
Putting n = n; < 1in (A.3), n = ny > 1 in (A.4) and combining them, one gets

13



(3.12) and (3.13).

Putting n = n; > 1in (A.3), n = ny > 1 in (A.4) and combining them, one gets
(3.16) and (3.17).

Putting n = n; > 1 in (A.4), one gets (3.19).
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