


1 Introduction

Several nonlinear phenomena in physics, modelled by the nonlinear differential
equations, can describe also the evolution of surfaces in time. The interaction
between differential geometry of surfaces and nonlinear differential equations has
been studied since the 19th century. This relationship is based on the fact that
most of the local properties of surfaces are expressed in terms of nonlinear dif-
ferential equations. Since the famous sine-Gordon and Liouville equations, the
interrelation between nonlinear differential equations 'of the classical differential
geometry of surfaces and modern soliton equations has been studied from vari-
ous points of view in numerous papers. In particular, the relationship between
deformations of surfaces and integrable systems in 241 dimensions was studied
by several authors {1-14, 27-28, 30].

The Self-Dual Yang - Mills equation (SDYME) is a famous example of nonlin-
ear differential equations in four dimensions integrable by the inverse scattering
method (16]-[17]. Ward conjectured that all integrable (1+1)-dimensional non-
linear differential equations may be obtained from SDYME by reduction {13] (see
the book [19] and referenced therein). More recently, many soliton equations in
241 dimensions have been found as reductions:of the SDYME [20]-[23].

In this paper we study the deformation of surfaces in the context of its con-
nection with integrable systems in 2+1 and 341 dimensions. We show that many
integrable (2+41)-dimensional nonlinear differential equations can be obtained
from the deformed or (241)-dimensional Gauss - Mainardi - Codazzi equation
(GMCE) describing the deformation (motion). of the surface, as exact particular
cases. At the same time, integrable isotropic spin systems in 2+1 dimensions are
exact reductions of the (2+1)-dimensional or, in other words, deformed Gauss
- Weingarten equation (GWE). Also we show that the deformed GMCE is the
exact reduction of two famous multidimensional integrable system, namely, the
Yang - Mills - Higgs - Bogomolny equatiop and the SDYME.



2 Fundamental facts on the theory of surfaces

Let us consider a smooth surface in R? with local coordinates  and ¢, where r(z, t)
15 a position vector. The first and second fundamental forms of this surface are
given by

[ = dr?* = Edz* + 2Fdxdt + Gdt?, (la)
[1 =dr n = Ldz® + 2Mdxdt + Nd¢t*, (1b)

where by definition
2
E=r2 F=r,-r. G=rl

L=r,, n. M=r,-n. N=r4 n
The unit normal vector n to the surface is given by

r.Ar,
n= .
vz Ard

There exists the third fundamental form
[l =dn-dn = edz? + 2fdzdt + gdi®. (2)

This form, in contrast to /I, does not depend on the choice of n and contains
no new information, since it is expressible in terms of T and /1 as

Hi=24-11-K-1, (3)

where A, H are the gaussian and mean curvatures, respectively. As is well known
in surface theory, the GWE for surface can be written as

re; = [re + T3 r 4+ Ln, (4a)
rp = F{zrr + I‘?zr, + Mn, (46)
ry = F;2l‘r + ngrg + Nn, (4C)
n, = P'r, + Py, (4d)
n, = Pjr, + Plr,, (4e)
‘here
where . GE,—2FF,+FE  _, 2EF,—EE, - FE,
I, = 9 . Iy = 2 >
g g
. GE, - FG, 2 EG,. - FE,
I, = o I = BT
=9 Y
2GF, —~ GG, — FG,. EG, - 2FF + FG,
L= ——, W s = , (3)



Pl = y Pl=———,
' g ! g
Pl = NF—MG’ p? = MF—-NE
g g
Here
g=EG—F?
Now we introduce the orthogonal basis as
e = -2
1= \/E_’
€2 =1,

€3 = €] /\ez.

= \/E
t = Ee1 Ee;;.

Then the GWE takes the form
. €1
=A €3
€3
€
: €2
€3

Hence
€1
€2 1
€3 z
€1
€2 "
€ t

_¢ )
3
where .
0 Kk -0
A=l -« 0 71 |},
c -1 0
0 “Ll.)ra —wy
C= —Ww3 0 wh
wo —Wwy 0
and
L
Kg =K = ﬁ,
Tg=T= _\/%Plz’
Kn=0= g[‘ﬂ
and

(6a)

(60)



W3=\/—E:.

Here k,.x,,7, are called the normal curvature, geodesic curvature and geodesic
torsion, respectively. In the case
c=90

the first equation of this GWE coincides in fact with the Frenet equation for
the curves. So, all that we are doing in the next sections is true for the motion
(deformation) of curves when o = 0.

The compatibility condition for the GWE (6) gives the GMCE as

A —-C.+[A,Cl =0, (8)
or in elements

K, = wsir + Twy — owy, (9a)

Ty = Wiz + Ows — Kwa, (95)

Ot = wor + KWy — Tws. (9¢)

We can reformulate the linear system (6) in 2 x 2 matrix form as
ve = Uy,

Uy =V,
U__l_ T K+ 10
T u\Kk—io -7 ’

V= l w wa + Twy
21\ w3 — twy —w ’

where

3 Deformation of surfaces

Now we would like to consider the deformation of the surface with respect to y.
We postulate that such deformation or motion of the surface is governed by the
system

€y €y
€9 =A €2 , (10(1)
€3 €3

xr



€y €1
€2 =B €3 (lOb)
€3 v €3
€] €)
€2 =C €2 . (10(‘)
€ /, €3
where
0 K -0
A=) -k 0 T ,
o -1t 0
0 Y3 —72
B=] -v 0 " R (11)
Y2 -m 0

. 0 w3 —w
C= —Ww3 0 RO l
) o - 0

and «; are real functions. The system (10) will be called the deformed or (2+1)-
dimensional GWE. We remark that first and third equations of the system (10)
are the equations (6) and A, C coincide with formulas (7). The compatibility
conditions of the deformed GWE (10) gives the deformed or (2+1)-dimensional
GMCE of the form

A= C: +[A,C) =0, (12a)
A, - B, + 4, B]= (126)
-Cy+[B,C)= (12¢)

As we see, ‘equation (12a) is in fact the GMCE (8) This fact explains why we call
(12) the deformed GMCE. The linear problem (Lax representation) associated
with the system (12) can be written as

¥, = M. 4 (F = A FHy, (13a)
U, = —idW; 4 (C +iAFH)Y, {13b)
where
F*=A%iB,

z =‘%(:c + iy),

z= %(z —1y).

So we can confirm that the deformed GMCE (12) is a candidate to be integrable
in the sense that for it there exists the Lax representation with the spectral
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parameter (13). Higher hierarchy of the deformed GMCE (12) can be obtained
as the compatibility condition of the linear system

=MV, 4 (F™ = A FH0, (14a)

Uy = A0+ Y NFU (14b)

J=0

4 Deformation of surfaces induced by (2+1)-
dimensional integrable systems

In this section we would like to attract your attention to some aspects of the
relation between the deformation of surfaces and integrable systems in 2+1 di-
mensions.

4.1 Integrable systems in 241 dimensions and the de-
formed GMCE

Our first observation is that some important integrable systems in 241 dimen-
sions are particular reductions of equations (12). In fact, the well-known (2+1)-
dimensional integrable systems such as the Kadomtsev - Petviashvili equation,
the Davey - Stewartson equation and so on, can be obtained from the deformed
GMCE (12) as some reductions. We support this statement by presenting some
cxamples.

Example 1. The Davey - Stewartson II equation. Let the matrices A, B,C
in the equations (12) have the following form.

1
A= V2iras + + , 15
a3 \/iqo \/§ (15a)
I
B = (10' + _a (15[))
f f V2!
C = =5(lal* + &, +3X)3 = 30+ —3Aqgo™, (15¢)



where we used the isomorphism so(3) = su(2) to write the matrices 4, B,C in

2 x 2 form,

ot =0, xio,.

Substituting (15) into the system (12) after some algebra we get the Davey -
Stewartson II equation [24]

1 .
iqt + 5((11‘:: + ny) - (|q|2 + ¢V)q = 07 (160)
bz + ¢yy + 2(lg1%)y = 0. (160)

Example 2. The Kadomtsev - Petviashvili equation. Now we consider the
case when ;
T=o=w=wp=n=7=_0

Then the matrices A, B, C take the form

0 &\ -
A= ( —k 0 ), (17a)

_ 0 v —
B = ( v 0 ) (17b)

v _ 0w -
C = ( —ws 0 ) (17¢)

Substituting these expressions into (12) we get

Ky = 3r (18a)
Yar = Wiy, (180)
Rt = wiy. (18¢)

Now we assuine that the function wy has the form
Wy = =Ky — 387 = 30207 . (19)

Hence and from (18¢) we obtain

Ky + 6Kk, + Kypr + 3(727;;!, =0, (20q)
Far = Ny, {200)

or
(Kt + 68Kz + Kozz)r + 30k, = 0. (21)

It is the famous Kadomtsev - Petviashvili equation.



Example 3. The Lame equation. Now we consider the case when the matrices
A, B, C take the form (see, e. g. the Ref. [26])

0 —Ba =P
A= /321 0 0 , (22(1)
Bsy 0 0
0 Bz O
B=| 32 0 -85 |, (22b)
0 532 0
0 0 [313
C= 0 0 B |. (22¢)
—Bis =B O
In this case, the (2+1)-dimensional GMCE (12) takes the form
auﬁi
auz = BiBrss (23a)
03; 9B,
90, 3 2
3 T Tu +m§jﬂm,ﬂm 0, (23b)

where
w=z, W=y o=t

It is the Lame equation. integrability of which was proved by V. E. Zakharov in
[2].

So we have presented three examples of integrable equations in 241 dimen-
sions which are the particular reductions of the deformed GMCE (12).

4.2 Integrable spin systems in 241 dimensions and the
deformed GWE

Now let us consider the relation between integrable spin systems in 2+1 di-
mensions and the deformed GWE (10). Our second observation is that many
integrable isotropic spin systems in 2+1 dimensions are particular reductions of
equations (10). We support this statement by citing two examples.

Example 4. The M-I equation. First, we consider the M-I equation which
reads as

S: =(SAS, +uS), (24a)
u, = =S-(S; AS,) (246)



and which is integrable (see, e.” g. Refs. [9, 13]). In this case we take the

identification
e =8, (23)

where S is the solution of the M-I equation (24) and
el=k?4+0* =82

Then the M-I equation (24) becomes

ey = (e1 A ey +uey)s, (26a)
u, = —ey - (e Aeyy). (26b)
Now let us assume
T=fu,
n=f+u,
wr = fi + 87 (ows — Kkws), (27)
Wy = —Y3z — V2T + uo,

W3 = Yor — V3T + ux,

where f(z,y,t,]) is a real function. Taking into account the formulas (27) and
after eliminating the vectors e; and ea, the systern (10) takes the form (26).
This means that the M-I equation (24) is the particular exact reduction of the
{2+1)-dimensional GWE (10) with the choice (27).

Example 5. The Ishimori equation. Now we assume that the functions +;,w;
are given by the formulas

|
T= f, + -2-!1”,'
1
n=5+ 5 e (28)

1
wy = fi + 6;1(§u,‘¢ + ows — Kws),

where as in the previous case, f(z,y,t,]) is a real function. Using these expres-
sions and doing as for the M-I equation, i. e., eliminating the vectors e;, e; from
the system (10), we obtain the following equation for the unit vector e,

eir = e; A (e + a’eyyy) + uzer, + u e, (29a)
Quyy — uzr = 2a%e; - (€12 A eyy). (29%)

After the identification (25), the equation (29) takes the form
S; = S A (Szz + @?Syy) + 4 Sy + u,Ss, (30a)



o0ty =t = 2078 - (S, NSy, {306)

that is. the Ishimori equation [23]. So we have shown that the M-I and Ishimori
equations are the particular reductions of the deformed GWE (10). Similarly, we
can show that the other isotropic spin systems in 2+1 dimensions are the exact
reductions of the svstem (10) at least for existing known integrable isotropic
(2+1-dimensional spin svstems.

4.3 Integrable spin systems in 241 dimensions as exact
reductions of the M-0 equation

Now let us consider the (2+41)-dimensional isotropic M-0 equation (about our
notations. see. e.g.. [13-13]. [31-32))

€y = w3ty — wres, (3](1)

Ty——'”l.:e| '(elT/\ely)y (311))

which sometimes we write in terms of S as
S, :015£+02Sy. (32(!)

T — T2 =S (S; A Sy), (326)

where 8; are some real functions. We note that many integrable isotropic spin
systems in 241 dimensions are particular reductions of the (241)-dimensional
isotropic M-0 equation (31), (32). For example, the M-I equation (24) is the

particular case of (32) as
W3y — W3

by = 0L (33a)
KY2 — 073

g, = L2 T W39 (33b)
KY2 — 073
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5 The (2+1)-dimensional GMCE as exact re-
duction of the Yang - Mills - Higgs - Bogo-
molny equation

One of the most interesting and important integrable equations in 241 dimensions
is‘the following Yang - Mills - Higgs - Bogomolny equation [19]

®, +[® B+ C.— A +[C, A} =0, (34a)
$, +[®,C)+ A, — B, +{A, B} =0, (34b)
&, +[®, A+ B, -C,+[B,C]=0. (34c)

The third important observation is that the deformed GMCE (12) is the partic-
ular case of the equation (34). In fact, if in the Yang - Mills - Higgs - Bogomolny
equation we put

®=0
then it becomes the deformed GMCE (12). So we can suggest that the deformed
GMCE is a candidate to be integrable as the exact reduction of the integrable
equation (34).

6 The (2+1)-dimensional GCME as exact re-
duction of the SDYME

Now we study the relationship between the defonned GMCE (12) and the SDYME.
The. SDYME reads as [29]

| R (35) .

where « is the Hodge star operator and the Yang - Mills ficld defined as
oA, dA4,
Fo = —J:‘ - d—" - ‘[7.~1,,, 1,]

Let

e = 3+l

Tz =3 —1il,

rg==z+1y,

Tz =1 -1y
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be the nuli-coordinates in the Euclidean space for which the metric has the form
ds? = dr,dzs + dapdzxp.
Now the SDYME takes the form [16-17,19]
F,5 =0, (36a)
Fs5=0, (36b)
Foa+ Fg5=0, (36¢)

where
A, = A, +1A4,,

As = A; — 1A,
As +iA,,
A= A; —1A,.
The associated linear system is [19]
(0o + 205)0 = (A, + AA;5)V9, (37a)
(05— A0:)¥ = (Ag — AA;) Y, (37b)
where A is the spectral parameter and

0 a .0
=— —1

9z, 9z Ot
9, .9

LS
LY
i

aTE = E Za—y.
Our fourth observation: the deformed GMCE (12) is the particular reduction
of the SDYME (36). In fact, we consider the following reduction of the SDYME

A, = —iC, (38q)
As = iC, (38b)
As= A —iB, (38¢)
As=A+iB, (38d)

and assume that A, B, C € so(3) and independent of 2. In this case, from
the SDYME (36) we obtain the (2+1)-dimensional GMCE (12) in the Euclidean

coordinates.
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7 Conclusion

In this paper, we have considered some deformations or. in other terminology.
motions of surfaces. We have shown that the corresponding deformed GMCE is
integrable in the sense that the associated linear problem (Lax representation)
exists with the spectral parameter. We demonstrated that several important in-
tegrable systems in 2+1 dimensions, such as the Davey - Stewartson II. Kadom-
stev - Petviashvili and Lame equations are some exact reductions of the deformed
GMCE. Although, all known integrable (24-1)-dimensional isotropic spin systems
can be obtained from the deformed GMCE, we have showed that such spin sys-
tems can be obtained also from the deformed GWE as exact reductions. Finally.
we proved that the deformed GMCE is the particular case of two famous in-
tegrable systems, namely, the Yang - Mills - Higgs - Bogomolny equation and
SDYME. It goes in favour of integrability of the deformed GMCE.
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