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1 Introduction

Several nonlinear phenomena in physics, modelled y the onlinear differential
equations, can describe also the evolution of surfaces in time. The interaction
between differential geometry of surfaces and nonlinear dfferential euations has
been studied since the 19th century. This relationship is based on the fact that
most of the local properties of surfaces are expressed in tern-is of nonlinear dif-
ferential equations., Since the famous sine-Gordon iffld Liouville euations, the
interrelation between nonlinear differential equations of the classical dfferential
geometry of surfaces and modern soliton equations has bee sudied from vari-
ous points of view in umerous papers. In particular, the relationship between
deformations of surfaces and integrable systems in 2 dmensions was studied
by several authors 114, 27-28, 30].

The Self-Dual Yang - Mills equation (SDYME) is a famous example of nonlin-
ear differential equations in four dimensions integrable by the inverse scattering
method (161-fl7l. Ward conjectured that all integrable 1+1)-dirnensional nn-
linear differential equations may be obtained from SDYME by reduction 181 (see
the book 19] and references therein). More ecently, many soliton euations ill
2+1 dimensions have been found as, reductiQnsiof the SDYME 201-[231.

In this paper we study the deformation of surfaces in the context of its cn-
nection with integrable systems in �+l and 31 dimensions. We show that many
integrable (2+1)-dimensional nonlinear differential equations can be obtained
from the deformed or (2+1)-dimensional Gauss - Mainardi - Codazzi equation
(GMCE) describing the deformation (motion) of the surface, as exact part Iicular
cases. At the same time, integrable isotropic spin systems in 21 dimensions are
exact reductions of the (2+1)-dimensionaJ or, in other words, deformed Gauss
- Weingarten equation GWE). Also we show that the deformed GMCE is the
exact reduction of two famous multidimensional integrable system, namely, the
Yang - Mills - Higgs - Bogomolny equatiop and the SDYME.

I



2 Fundamental facts on the theory of surfaces

Let u- cfjn�lriei a muw� Surface in R' with local coordinatesa- and t, where r(x, t)
i. a po�j�ion %e-Tcjr. The first and second fndamental forms of this surface are

I dr" = EdX2 + 2Fdxdt + Gdj2' (la)

2 2(Jr n = Ldx + 21,ldxdt + Ndt (lb)

where 1% definition
2E = r2. F = r - rt, G r,'

L = r_ in. M = r, n. N rtt n.

The uit nrmal vector n to the surface s given by

r A rj
r A rt

There exists the third fundamental form

III = n dn = cdx 2 2 dxdt + fd 2 (2)

This form. in contrast to H, does not epend on the choice of n ad contains
no new information, snce it 'is expressible 'in ternis of I ad 1 as

III = 211 1 - A , (3)

where A, H are te gaussian ad mean curvati-11-CS, respectively. As is well known
in surface theory, the GWE for surface can be written as

r 1 + F 2rt Ln, (la)I

rt = F,2r, + rrt + Mn, (4 b)

rtt = F2,r, + 2 rt + Nn, (4c)2

n = Prx + P2rt, (4 d)

n = P2r, + P'rj, (4c)2

where GE, - 2FF, + FEj 2 2EF - EE, FEx

2g rH - 2g

GEt - FG, 2 EGx - FE,
r,2 29 r,, - 2y

2G - GG - FGt 2 EG - 2FF, + FG,
r"' 2g 9 9 (5)
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pI -MF-LG, p2=LF--ME
9 9

NF-MG 2-MF-NE
PI, 9 2

Here
g=EG-F 2

Now we introduce the orthogonal basis as

r,

V-E'

e = n,

e = el A e2-

Hence
F

rt = 7Eel e3-

Then the GWE takes the form

ee: = A 6e: (6a)
e3 e3

el el
e2 = e2 (6b)

e3 9 e3

where
0

A -K 0 T (7a)
01 -Ir 0

0 -3 -102

C -103 0 (A (7b)
W2 -WI 0

and
L

p2

K, Irg-,,2
E

and

9P2
AT 2
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W2 = I,E 12,

M
W3 = �E-

Here K,. K, 7 are called the normal curvature, geodesic curvature and geodesic
torsion, respectively. In the case

a = 

the first equation of this GWE coincides in fact with the Frenet equation for
the curves. So, all that we are doing in the next sections is true for the motion
(deformation) of curves when = .

The compatibility condition for the GWE 6) gives the GMCE as

A, - C,, + A, C = ,

or in elements
Kt = W3 + W2 WI, (9a)

'r = Wix + OW3 - KW2, (9b)

Ut = W2, + KW - 7W3- (9c)

We can reformulate the linear system (6) in 2 x 2 matrix form as

IPX (1V

where
T r, + 17

2 i K= I (

WI I-3 + iW2

U)3 - L1)2 I

3 Deformation of surfaces

Now we would like to consider the deformation of the surface with rspect. to y.
We postulate that such deformation or motion of the surface is governed by tile
system

el el
e2 A e2 (10a)
63 C3
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el el
e2 = e2 (10b)
e3 y e3

el ele2 = C2 (10C)

e3 e3

where
0

A -K 0 r
or _T 0

0 '13 -�2

= -- Y3 0 1I

-12 -71 0

0 W3 -W2

C = _W3 0 WI

W2 -WI 0

and -yj are real functions. The system (10) will be called the deformed or 2+ I)-
dimensional GWE. We remark that first and third equations of the system (10)
are the equations 6) and A, C coincide with formulas 7). The com 'patibility
conditions of the deformed GWE (O) gives the deformed or (2+1)-dimensional
GMCE of the form

At C. (Al C] = 0, (I 2a)

Ay - B, [A, B = 0, (12b)

B - C, + [B, C) -_ 0. �(12c)

As we see, equation (12a) is in fact the GMCE (8). T[iis fact explains why we call
(12) the deformed GMCE. The linear problem (Lax representation) a ssociated
with the system 12) can be written as

%y� A2%p3� + (F- \2 F+) F, (13a)

IP, + (C + iAF+)*, (13b)

where
F* A,± iB,

z + Y),

j _(X 
2

So we can confirm tat the deformed GMCE 12) is a candidate to be integrable
in the sense tat for it there exists the Lax representation with the spectral
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parameter 13). Higher hierar6y of te eformed GMCE 12) can be obtained
as the compatilbdit% condition of the linea sstem

�p_ = A2�lj4 + (F- A 2F+)q" (14a)

T, = IA'T�. + Y AFT. (14b)
3=0

4 Deformation of surfaces'induced by (2+1)-

dimensional integrable systems

In this section we would like to attract your attention to some aspects of the
relation between the deformation of surfaces and integrable systems in 21 di-
mensions.

4.1 Integrable systems in 21 dimensions and the de-

formed GMCE

Our first observation is that some important integrable systems in 21 dimen-
sions are particular reductions of equations 12). In fact, the well-known (2+1)-
dimensional integrable systems such as the Kadorntsev - Petviashvill equation,
the Davey - Stewartson equation and so on, can be obtained from the deformed
G.'VlCI-' 12) as some reductions. We support this statement by presenting some
examples.

Example 1. The Davey - Stewartson II equation. Let the matrices A, B, C
in the quations 12) have the following form,

I ++
V2_i A o-, + qu (15a)

v2

zA I - + I (15b)
B=--- 0'3 -q(7 + �72 qo,

V2 v"2

12 + 0, 2)(7,
C -- (Iq + 3A - iAq(i+ - 3Aqe7-, (15c)

2
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where we used the iornorphism so(3) 2- su(2) to write the matrices A, B, C in
2 x 2 form,

Substituting (15) into the system 12) after some algebra we get te Davey -
Stewartson II equation 241

iq + (q�� + q.) _ JqJ2 + Oj = 0, (16a)

0.� + Oy, + 2q12) = 0. (16b)

Example 2 The Kadomtsev - Petviashvili equation. Now we consider the
case when

' = = WI W2 71 72 0-

Then the matrices A, B� C take the form

A 0 (17a)
-K 0

B 0 -'3 (I 7b)
- 0

C 0 ":' .I = 0 (17c)

Substituting tliesc exI)r(-ssioiis into 2 we get

Hy 13.r, (18a)

1:31 LA:.I.Y' (I 8b)

KI (18c)

Now we assume tat the function v:� Ilas IIe form

W3 = t�xx _ :jK2 _ ;(I2i)'-I 7SY -

HeDce and from (18c) we otain

K, + 6tzK,. + K.j.j- + &V2'7:1Y : 0 (20a)

Ky' (20b)

or

(K + 6tcKx + Kxxx) + 3a '2KYV = 0. (21)

It is the famous Kadomtsev - Petviashvili euation.

7



Example 3 The Lame equation. Now we consider the case when the matrices
A, B. C take the form (see, e. g. the Ref. 26j)

0 -,321 31

A = 021 0 0 (22a)
/331 0 0

0 d12 0
B = _�312 0 -032 (22b)

0 /332 0

0 0 d13
= 0 0 323 (22c)

_A3 -1323 0

In this case, the (2+1)-dimensional GMCE 12) takes the form

0"i = 3i0kj, (23a),9Uk

00i + 49,3) + )3�j�3., 0, (23b)
WW ou,

where
1 2 3U = X, U Y, U

It is te Lame equation. integrability of which was proved by V. E. Zakharov in
[2].

So we have presented three examples of integrable equations in 21 dimen-
sions which are the particular reductions of te deformed GMCE 12).

4.2 Integrable spin systems in 21 dimensions and the

deformed GWE

Now let us consider the relation between integrable spin systems in 21 di-
mensions and the deformed GWE (10). Our second observation is that many
integrable isotropic spin systems in 21 dimensions are particular reductions of
equations (10). We support this statement by citing two examples.

Example 4 The 11-1 equation. First, we consider the MA equation which
reads as

S, ( A + us)" (24a)

u, -S (S A S,) (24b)
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and which is integrable (see, e. g. Refs. 9 131). In tis case Nve takt te
identification

el = S, (2-5)

where is the solution of the M-1 equation (24) and

2 = 2 2= S2el r. +r X.

Then the M-1 equation 24) becomes

elt = (el A el, uel)x, (26a)

u = -el (el, A ely). (26b)

Now let us assume
-r fX'

'YI f + ,

'01 A + a. - C112), (27)

W2 -73. - 72r + uo,,

W3 72� - T U,

where f (x, y, t, A) is a real function. Taking into account the formulas 27) and
after eliminating the vectors e2 and e3, the system (10) takes the form 26).
This means that the M-1 equation 24) is the particular exact reduction of the
(2+1)-dimensional GWE (10) ith the choice 27).

Example 5. The Ishimori equation. Now we assume that the functions yi, wi
are given by the formulas

1
7- + _u Y,

2
fy + 1 (28)

jo,2 X,

WI A + 0.'( Ut + aW - rW2),. 2 -

where as in the previous case, f x , y, t, A) is a real fnction. Using these expres-
sions and doing as for the M-I equation, i. e., eliminating the vectors e2, e3 from
the system (10), we obtain the following equation fr the unit vector el

elt = el A (el.,,, + a 2ely.) + uel, + uyel., (29a)

a 2UYY X = 2a2 el (el_, A el.). (29b)

After flic dentification 25), the equation 29) takes the form

S A " + a2SYY + US + uys�' (30a)
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0 2UYU U = 22S - S A S,), (30b)

that I-. Tlie I-hinioii quation [251. �'o e have shown that the M-1 and Ishimorl

e(jitwion- are tl-io particular I-edUctions of the eformed GWE (10) Smilarly we

can -Io%% tl-ia t ohei sotropic spin systems in 21 imensions are the exact

iedu(Ticjii� o tlje s\stern (10) at least for existing nown integrable isotropic

(2- 1 )-rfinicn�ional pill sYstems.

4.3 Itegrable spin systems in 21 dimensions as exact

reductions of the M-0 equation

Now let its consider the (2+1)-dimensional isotropic M-0 equation (about our

notations. see. e.g.. 113-151. 31-32])

elt = �C3e2 - �02e3, (3 a)

T - 11� = el el, \ ely), (31 b)

which sometimes w write in terins of as

St = 01 S, + 2SY (32a)

7 - I = - A (32b)

where Oj are some real functions. We ote that many integrable isotropic spin

svstems in 21 dimensions are particular reduction.,; of the (2+1)-dimerisloiial

isotropic M-0 equation 3 32). For example, the M-1 equation 24) is the

particular case of 32 as

Ol (33a)
K' - -/3

0, W2 - W30' (33b)

K-12 - 03
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5 The� (2+1)-dimensional GMCE as exact re-
duction of the Yang Mills - Higgs - Bogo-
molny equation

One of the most interesting and important integrable equations in 21 dimensions
is the following Yang - Mills - Higgs -� Bogomolny quation fig]

4), + [-t, B) + , A, [C, Al = 0, (34a)

.t + ['D, C] � A, B +A, B = 0, (34b)

41� + [, A] B - C, + [B, C = 0. (34c)

The third important observation is that ihe deformed GMCE 12) is the partic-
ular case of the equation 34). In fact, if in the Yang - Mills - Higgs - Bogomolny
equation we put

4 = 

then it becomes the deformed GMCE.(12). Sowe can sggest tat the deformed
GMCE is a candidate to be itegrable as te eact reduction of the itegrable
equation 34).

6 The (2+1)-dimensional. GCME as exact re-
duction of the DYME

Now westudy te relatioiishipbetweeii thedeforined UNICE 12 ad he SDYNI E.
The,9DYME readsas;[2Q]

(35),

where is the Hodge. star oerator aud the Yaii - ills field dfined as

0A, OAJS

XA

Let
;r,, +41,

X& it,

Xf3 X + iY,

X� X - iy
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be the null-coordinates in the Euclidean space for which the metric has the form

ds 2 = dx.dx5 + dx,3dx�.

Now the SDYME takes the form 16-17,19]

F, = (36a)

Fd, = 0, (36b)

F.& + oj = 0, (36c)

where
A = A, + iAt,

Aa =A, - i A,,

A, =Ax + A,

A =Ax - iA,.

The associated linear svstem is 191

(C9 + A0�)% = A� + AAI)T, (37a)

(,9, - ,9&),P = (A, - AAc)Ik, (37b)

where A is the spectral parameter and

a a a
w-r, = W� I ,

(9 a + d
Tx� az at'
a a

�X 3 ax ay'

a- a + a
ax� ax ay

Our fourth observation: the deformed GMCE 12) is the particular reduction
of the SDYME (36). In fact, we consider the following reduction of the SDYME

A, -iC, (38a)

Aa IC, (38b)

A = A - B, (38c)

A = A+ iB, (38d)

and assume that A, B, C E so(3) and independent of z. In this case, from
the SDYME 36) we obtain the (2+1)-dimensional GMCE 12) in the Euclidean
coordinates.
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7 Conclusion

In this paper, we have considered some deformations or. i other terminology-.
motions of surfaces. We have shown that the corresponding dformed GNICE is
integrable in the sense that te associated linear poblem (Lax representation)
exists with the spectral parameter. We demonstrated that several important i-
tegrable systems in 21 dimensions, such as the Davey - Stewartson 11. Kadoni-
stev - Petviashvili and Lame euations are some exact reduction,; of te deformed
GMCE. Although, all known integrable (2+1)-dimeusional isotropic spin systenis
can be obtained from the deformed GMCE,'we have showed tat sch spin sYs-
tems can be obtained also from the deformed GWE as exact reduction,,. Finallv.
we proved that the deformed GMCE is the particular case of two famous 'Ifl-

tegrable systems, namely, the Yang - Mills - Higgs - Bogomolny euatio ad
SDYME. It goes in favour of integrability of the deformed GNICE.
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