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1 Introduction

The main idea of this investigation is that a space-time geometry is created by the forces
acting in space. Some prominent scientists, as Lobachevsky, Riemann, Einstein, Weyl
and others were of such opinion [I - [5]). If corresponding dynamical geometry is local
one, it must be given by the differential equations. These equations show how usual flat
geometry, which is not connected with interactions (i.e. "rigid" in Weyl's terminology),
propagates from point to point. In this case all notions used by modern theoretical
physics have to obtain the local forms. In particular, it concerns the representations of
finite Lie groups of symmetry and definitions of inertial motion and vacuum. In this
talk the vacuum idea is analyzed, when it arises in classical gauge field theory in its
geometrical form. It is shown that Einstein equations specify the vacuum structure
of all gauge fields. The usual and hyperbolical instantons play an important role in
definition of this relativistic vacuum structure, as their energy-momentum tensors are
zero in spite of the fact that corresponding nonzero gauge fields are present. Therefore
the instantons can be considered nongravitating matter.

2 Geometrical gauge field theory equations

In order that to construct the consistent relativistic quantum theory of interacting fields
it is necessary to have the equation system describing any combinations of physical fields
on classical level. In the gauge field theory such equation system is Q6]):

Rt- - _g�,�R (T(gf) + T(P)) (2)
2 P,

a = 1, 2, ... r v = 1, 2_4.



Here F,_ - gauge field strength tensor, R, - Ricci curvature tensor, R - scalar curva-

ture of Riemannian space-time V4 with metrics g,,, T,,91 - guge field n,,gy-rn..,ntum

tensor, 7�'7 - energy-momentum tensor of particles, r - gravitational constant, j - gauge

field sources, - covariant derivative in fiber bundle space-time over 4D Riemannian

space-time of G, and fiber is gauge finite Lie group G_ Latin indexes number param-

eters of internal symmetry group G_ Greek indexes concern space-time V4.

Any physical field describing interactions between particles can be regarded as a

gauge field. Different Lie goups correspond to different kinds of forces. If several gauge

fields are smultaneously present, then they can be jointly described by various ways.

Firstly, two different interactions may be united into a single interaction of more

broad tpe. Then the gauge symmetry group should be extended in such a way that

the symmetry group of each initial int eraction became the subgroup of new extended

symmetry group. Symplest variant of such unification is Weinberg-Salarn model Q7]).

In this model electromagnetic and weak interactions are unified into electroweak one by

substitution of two individual gauge groups for more broad single gauge group SU(2) x

SU(l) for electroweak interaction. This procedure does not change the equation system

(1 - 2 But it is possible vacuum reconstruction.

Secondly, the equation system (1 - 2 may be extended by replacement of single

equation (1) by several similar equations for each of interactions being combined. Then

sum of energy-momentum tensors of all gauge fields and their sources will appear on

the right side of equation 2 The solutions of such combined equation system will

describe both the gauge fields themselves and tese fields influence on geometry of space-

time where they exist. If the different gauge fields will interact between themselves,

modification of equation system (1 - 2 will become possible.

The important property of equation system (1 - 2 is its form independence on a

gauge field treatment Q8] 9. Symmetrical tensor of two rank g., has the same rights

both as Riemannian space-time V4 metrics and as a tensor field in Minkowski space-

time. In its geometrical form the gauge eld vector-potentials A' become connection

coefficients of fiber bundle space over Riemannian V4. Here we shall consider equation

system (1 - 2) te equations of unified geometrical theory of gauge fields.

3 Global and local geometry. Relativistic vacuum

In classical mechanics space-time geometry is globally given according with long-range

action hypothesis. 3D space and disconnected with space 1D time are proposed infinite

and plane. Space and time are absolute, i.e. are not connected with matter motion.

Vacuum is present in the most part of Universe. In Newton mechanics vacuum is defined

as emptiness, i.e. as any matter absence. In this sense it is universal for all matter kinds.

Such vacuum is as absolute as world geometry is (i.e. not connected with matter motion)

and global (i.e. its properties are the same in all points of Universe).
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Relativistic physics is based on short-range action hypothesis. It states that all kinds
of forces propagate in space from point to point. But if the world geometry is created
by the forces acting in space, it must be also formed locally near one point and after
that propagate to other points of space.

Einstein equations describe a construction process of world geometry step by step,
when invariant square form ds 2 = g,,dx"dx' is given to start with. Although we can
always choose the local geometry as flat, the space-time as a whole turns out to be
curved. Its properties are described by Riemannian geometry without torsion.

Einstein equations connect Universe geometry with matter motion in it. Therefore
in GR Riemannian space-time is not absolute. The form of Einstein equation solutions
depends on energy-momentum tensors of different matter kinds being on the right side
of these equations. Therefore in GR space-time in not universal. By electromagnetic
field traces on the V4 metrics this field can be reproduced to within dual rotations Q5]).

In GR the vacuum is described by the solutions of Einstein equations in emptiness,
i.e. in the absence of any energy-momentum tensors on the right side of these equations.
Usually emptiness means absence of any matter. But in the relativistic quantum field
theory absence of particles (i.e. absence of the field quanta) does not mean nullification
of corresponding field. It can be showed that the last would contradict to uncertainty
principle. The fields in vacuum state are considered performing null oscillations 0]).
The vacuum solutions of Einstein equations describe Universe geometry both in absence
of any nongravitational fields ad in presence of them when their energy-momentum
tensors are equal to zero. This situation is realized by instanton configurations of the
fields [11]). In a sense instanton configurations correspond to the matter without
gravity.

In the quantum field theory instantons are classical trajectories connecting vacuums
among themselves. They are being used for description of tunnel processes between
vacuums ([12], 13], 14]).

In the gauge field theory instantons are usually called self- and antiself-dual solutions
of Euclidean version of field equations, i.e. the solutions of self-duality equations

F,' = T�; * means dual conjugation.

These solutions turn gauge field action integral into a constant. On the other hand
these solutions nullify gauge field energy-momentum tenser T,,,gJ). In ordinary opinion
in the space-time with pseudoeuclidean metrics self-duality equations have no solutions.
But the gauge field vector-potentiais A' nullifying the field strength tenser F,',, (i.e. so-
called "pure gauges"), trivially satisfy self-duality equations and nullify the gauge field
energy-momentum tensors in Minkowski space-time. Therefore they can be called trivial
hyperbolical instantons, i.e. trivial instantons in space of pseudoeuclidean metrics,

When gravity is regarded as a gauge field in pseudoriemannian space-time V, then
nontrivial hyperbolical instantons arise. They are the solutions of double self-duality
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equations of Riemannian curvature tensor R,,,A of V, Q151):

R,,,A = ±-R. (3)

These equations appear in the gauge gravity theory when gravitational field is con-
sidered the gauge field associated with local Lorentz group of space-time symmetry
(50(3, I)-gauge gravity). The solutions of double self-duality equations nullify energy-
momentum tensor of SO(3, I)-gauge gravity field 9) and turn corresponding action
integral containing Riemannian curvature tenser square into a constant. Contracted
equations of self-duality 3) lead to the vacuum Einstein equations [II]).

Thus. relativistic vacuum in GR is universal for all kinds of matter and their inter-
actions. It is specified by the vacuum Einstein equations

R, = . (4)

It is easy to see that in unified geometrical gauge field theory relativistic vacuum has
to be determined in the same way as in GR. The equation (1) solutions corresponding
to zero right side of equations 2) will be vacuum solutions in each gauge field theory
and at the same time the vacuum solutions in GR.

Thus, the short-range action hypothesis works both in GR and in unified geometrical
gauge field theory. Therefore in both cases geometry is local and connected with motion
of matter. But vacuum in these theories is not connected with motion of matter and
is absolute. It is defined by vacuum Einstein equations solutions. This is relativistic
universal vacuum. because its appearance conditions are the same for all kinds of mat-
ter and their interactions. These conditions are nullification of right side of Einstein
equations. Such relativistic vacuum is not global. Its properties are changing from
point to point and specified by differential equations. In analogy with geometry in GR
it can be named a dynamical vacuum. Between solutions of vacuum Einstein equations
there are static and flat solutions describing flat space-time and globally given vacuum.
Hence. vacuum Einstein equations ensure possibility of passage to nonrelativism and
realization of corresponding principle.

4 Gravity as a gauge field

When we investigate physical processes in such region of space-time that its size is much
more than our laboratory size, it is necessary to use Riemannian geometry. It arises
just the situation when Universe properties are investigated. But the same situation can
arise in elementary particle physics when the elementary particles are being used both
as reference system and as observation means. Therefore Einstein equations appearance
in elementary particle physics is quite natural.

Gauge fields arose as new mathematical (and later as physical) objects when global
internal symmetry were localized. In other words the short-range action hpothesis

4



being applied to the properties of elementary particles symmetry led to necessity to
introduce into consideration the gauge fields as images of forces realizing interactions
between these particles. If these forces are found to be of short range (as weak and
nuclear forces), the elementary particles interact mainly with their nearest neighbours.
The interaction propagates from one to another. Electromagnetic field is long-range
acting. But it propagates also from point to point in correspondence with the short-
range action hypothesis. Exception to the rules is static Coulomb potential. Infinite
radius of tis field action arises because of zero mass of photon as electromagnetic field
quantum.

May gravity be considered a gauge field and where it comes from?
In GR te gravitational field propagates from point to point and, hence, the short-

range action hypothesis is realized. Gravitational field is of infinite range of action.
Therefore gravity forms Universe structure together with electromagnetic field.

Uniform approach to all interactions means tat gravity is considered a gauge field.
But it was be found that Einsteinian gravity takes peculiar place among fundamental
interactions. Mathematical method (just compensation procedure) proposed by Weyl
in 1929 161) permits us to input electromagnetic field into the free electron theory In
1954 Yang and Mills 17]) applied tis method to introduction of weak interactions. In
1956 Utiyama ([18]) proposed that all fields being in nature can be introduced into free
particle theory by the compensation procedure when corresponding global symmetry
becomes a local one. But his attempt of Einstein theory reproduction i this way has
failed. Any way of successful GR regeneration by compensation procedure is not now
exist. Therefore the opinion tat quantum gravity must be noneinsteinian one is widely
known 191). This opinion is not quite correct.

Really it is necessary to refuse the compensation procedure as formal and essentially
restricted for application. Instead of that we have to do like Maxwell and carry attention
center from particles and charges into space between them. When Maxwell has created
electrodynamics electron was not yet being discovered and electric current nature was
unknown. But this did not prevent im from correct formulating the electromagnetic
field equations. The sources of any nature he denoted by letter j on the right side of
the field equations, and elucidation of teir physical sense was extracted as independent
problem for next generations. Electron had experimentally been discovered ODly 30
years ence electrodynamics creation. Thus, in the field theory te field equations are
primary, and sources nature is secondary.

We shall begin at the known fact that elementary particles physics language is Lie
groups teory. All elementary particles are classified by te representations of finite
Lie groups G,, which transformations are specified by finite number of parameters in-
dependent on point. Global specification of transformations parameters simultaneously
in all points of Universe contradicts the short range action hypothesis. Therefore in the
relativistic physics of elementary particles the parameters of symmetry groups can not
be globally given and must be the functions of V4 point. But then the finite Lie groups
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G, become infinite Lie groups G_ In this case the symmetry transformations instead
of number parameters are specified by r functions of point and their derivatives to k-th

order.
When global symmetry becomes local one and finite Lie groups G, turn into infinite

Lie group G_ two fundamentally different kinds of infinite Lie groups representations
arise. The representations, which transformations are independent on te parametric
function derivatives, we shall use for classification of elementary particles as it is in te
case of global symmetry. Te representations, which transformations depend on these
derivatives, we shall name gauge fields ([6]). If the parametric functions derivatives turn
into zero the situation becomes nonrelativistic and the fields turn into the particles.
Then fields can be as classified by finite Lie group G, representations as particles are
usually.

By Lagrange variational formalism for infinite Lie groups G_ being formulated
in 1967 by N.P.Konopleva 91) it is possible to get any nongravitational gauge field
equations in the form of equations (1). Here nongravitational flelds are called those,
which are disconnected with local space-time symmetries.

In order that to obtain the Einstein equations for gravity as a gauge field, above-cited
Lagrange formalism for infinite Lie groups must be applied to a symmetric tensor of
rank two g,, and its transformations under any continuous coordinate transformations
of the form

X" = f(x'), (5)

where f(x' - arbitrary continuous functions of x. Then the transformations (5) must
be regarded as belonging to the local 4-parametric translation group G-4 Q91)-

In this case Einsteinian Lagrangian directly arises as the gauge field g,, Lagrangian
in the form of scalar curvature L = R. By variation of this Lagrangian with respect to
g,, we shall get vacuum Einstein equations:

RI_ - 1g,,, R = , or R, = . (6)
2

These equations and Lagrangian appears independently on that is g, metrics of 4

or not. The .. derivatives combinations will be the same both when g,, is the tensor
field in flat V4 and when we regard it as metrics of Riemannian space-time Q91).

For obtaining of equation system (1 - 2) it is necessary to consider the system of
two interacting fields: tensor fields g- and some nongravitational gauge field described
by vector-potential A'. Gauge field sources (particles) can also be introduced into the
theory by corresponding field variables. The local symmetry of the theory permits to
specify Lagrangian form of interacting fields and particles. There is no choice making
principle in a globally symmetric theory in flat space-time.

The variational formalism for infinite Lie groups makes possible not only reconstruc-
tion of GR in terms of the gauge field theory, but also extension of our ability of gravity
description. Real gravity manifests not only as curvature of test bodies trajectories, but
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as tidal forces which are not described by GR. In order to get corresponding equations
let us discuss in detail what is a result of space-time symmetry localization of flat world?

It is well known that Minkowski space-time is symmetric with respect to tile global
Poincar6 group P10 of transformations including 4D invariant subgroup of translations
and Lorentz subgroup of rotations SO(3, 1). In contrast to localization of internal
symmetry when space-time symmetry becomes a local one the conception of the world
geometry becomes fundamentally different. Riemannian geometry in its usual form does
not permit to construct the global invariants, as radius, energy, momentum, spin and
others which are being used for description of physical processes in flat V4.

But it is possible, following E. Cartan 20]), to substitute Riemannian space-time
V4 for aggregate of flat Minkowski spaces tangent the Riemannian space-time in each its
point. Then the global symmetry group of Minkowski space will fall into two different
in essence local symmetry groups: 1) the local Lorentz group SO(3, 1) or as equivalent
G-6, and 2 the local translations group G-4, which is the group of general relativistic
coordinate transformations (5). First of them acts in tangent space as group rotating
the local system of four mutually orthogonal vectors h,' (reference system). Each of the
tangent spaces is spanned with the reference system h. The local traslations group
corresponds to displacements of reference system origin from one point of Riemannian

space V4 to other point.
Thus, after localization of global space-time symmetry the local groups of space-

time rotations and translations generated by it act in different spaces. In this case the
local Lorentz group acting in the tangent space can be regarded as analog of internal
symmetry group. But the local translation group can not be considered in the same
way, because the coordinate transformations (5) concern the external world geometry.

Ricci connection coefficients A,(ik) arise as the gauge field associated with the local
Lorentz group SO(3, 1) (or G-6). They permit to make a parallel displacement of local
system of four mutually orthogonal vectors h' in Riemannian V4. Ricci coefficients are
defined as:

A,(ik = hhk + hOV (7)
i � I I I

It is easy to see that in addition to usual Christoffel symbols these connec-
tion coefficients include supplementary terms hOh'. Such terms permit to remain
orthogonality of vectors h under parallel displacement in Riemannian space.

The gauge field A,(ik) is gravity field although its Lagrangian structure is similar
to that of Maxwell electrodynamics and contains the square of Riemannian curvature
tensor as L - R,,(ik)R-(ik). Here R,,(ik) is usual Riemannian curvature tensor ex-
pressed in terms of vectors h' components. Therefore the parallel displacement does not
result in resealing. The lengths of segments and volumes keep their sizes under trans-
lations. This is just the point of the fundamental difference between Weyl geometrical
approach ([4]) and the gauge field theory in geometrical interpretation 6]).

In accordance with two kinds of local symmetries arising from localization of global
symmetry of Minkowski space-time we have two gauge gravitational fields. Firstly,
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it is Einstein gravity described by tensor g,, and associated with infinite group of
local translations G-4- Secondly, it arose a new gravitational field associated with the
local Lorentz group SO(3, 1) being infinite group G-6. This field is described by Ricci
connection coefficients and is called SO( '3, I)-gauge gravity.

If these gravitational fields are separately considered and each of them theory is
independently formulated we shall have system of two equations for noninteracting

fields:
RI"(ik); = 

R,� � 0 (9)

If we shall formulate the theory of two interacting gravitational fields a new equations
system will arise.

In the geometrical gauge field theory gravitation as a gauge field is described by
equation system including the equations of two kinds and being similar to the equation
system (1 - 2). This equation system describes both relativistic gravitational vacuum,
and real tidal gravitational forces. It has the form 211):

R"-(ik);, = (I 0)

1
R;_ - -91,.R = 7_0<99)1

2
where by analogy with electrodynamics the expression

1
V.99) = R (ik)R (ik) - _9,.R,,(ik)R,-(ik) (12)1- P 4

is named the energy-momenturn tensor of SO(3, l)-gauge gravity field.
The equations system (10 - (11) as compared with the equations system (8 - 9)

has only difference in one point. Appearance of interaction between two gravitational
fields results in appearance of energy-momentum tensor on the right side of Einstein
equations and vacuum reconstruction. The same situation takes place when we consider
some nongravitational gauge field A' and tensor gauge field g, When the gauge fields
A' and g,,, regard as separate noninteracting fields on the right side of equations 2)
gauge field energy-momentum tensor is absent. When interaction of A' and g,, arise
(i.e. space-time geometry becomes dynamical one) the vacuum turns immediately into
the relativistic dynamical vacuum and on the right side of Einstein equations appears

the gauge field energy-momentum tensor.
Having taken covariant divergence of equations (I 1) we shall get the equations (lo).

Thus, Einstein equations (1 1) for the tensor field g,,, are followed by the equations (1 0).
It could be said that being contained in quasimaxwellian equations (10) information is
really already contained in Einsteinian equations (11), and hence in the metrics g,,.
However in contrast to Weyl we say that here the metric field contains not electromag-
netic field, but additional information of gravitational field. This is information of tidal
forces, which are indeed able to vary lengths and volumes.
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The connection of Einstein equations (11) with equations (10) arose from localization

of flat space-time translation group, i.e. because of general relativity principle. It is

universal for all gauge fields.

Indeed, if on the right side of equations 2) only one gauge field energy-momentum

tensor will be remained and covariant divergence of these equations will be taken, then

without sources equations (1) will arise from equations 2). It appears because localiza-

tion of tranlations group results in reduction of independent equations number in the

system (1 - 2) and decrease of it by four (dimension of space-time V). Thus the con-

nection between equations (1) and 2) arise from localization of translations. As far back

as 1915 D.Hilbert paid attention to this connection, when he wrote a similar equations

system for gravitational and electromagnetic fields 22]). From this he concluded that

four equations of the system (1 - 2 are unnecessary. Therefore the elecromagnetic

field can be regarded as a certain gravity manifestation. Weyl as Hilbert's disciple was

of such opinion also, but he realized above idea by other mathematical way.

Many different fields in addition to gravitational and electromagnetic fields are

known at present. Writing equation system for all fields simultaneously (regarding

them as gauge fields) we shall see that only four equations of this system will as before

arise from others. It is evident that gravity alone is not ample for description of te

whole interactions diversity.

In classical field theory in flat space-time equations of particles motion are indepen-

dent on field equations and must be given in addition to them ([23)). But in Riemannian

space-time V4, i.e. in the presence of gravity, the equations of particles motion can be ob-

tained from the field equations and Einstein equations. It is a result of general relativity

principle and is known in GR.

If on right side of Einstein equations only energy-momentum tensor of noninteract-

ing particles (dust) is remained and covariant divergence of these equations is taken,

the geodesic lines equations appear as particles motion equations. Hence in GR hy-

pothesis of test bodies geodesic motion is not independent hypothesis but follows from

gravitational field equations.

The same situation take place in the classical gauge field theory. Without gravity in

flat V4 any connection between gauge field equations and particle motion equations is

absent. These equations are independent. But in Riemannian V4 (or in gravity presence)

such connection appears. When we consider a system of gauge fields with their sources

assumed charged particles in Riemannian V4, the particles motion equations can be

obtained as consequence of equation system (1 - 2) with the sources in the form of

particles noninteracting among themselves. It is found that the structure of motion

equations of all gauge charged particles will be in that case similar to Lorentz equation

structure, but taking into account gravitational field g,,. It is known that Lorentz

equations describe motion of electron in external electromagnetic field. Our above-

mentioned generalized Lorentz equations describe the motion of electron as motion of

a test body in external electromagnetic and gravitational fields. Similarly all gauge
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charged particles in accordance with equations (1 - 2 will behave as test bodies in
corresponding external gauge and gravitational fields ([6]). Let us remember that the
gravitational field g,, bears the responsibility for vacuum reconstruction.

In each infinitesimal segment of its trajectory test body are by definition moving
free, i.e. by inertia. Therefore Einstein equations permit us to state a local concept of
inertial motion. Experimental observation of test bodies motion give us a chance to see

geometry of external world.

5 Fiber bundle space and Weyl geometry

In modern geometry a set of local reference systems associated with each point of
Riemannian V4 is described in terms of fiber bundle space geometry 241).

Fiber bundle space geometrically unites the spaces of two kinds. One of them is
chosen as a base of fiber bundle space, and other one is declared a fiber. A copy of
fiber is associated with each point of a base. Under displacements from one base point
furnished with coordinate x�' to other one with coordinate x' the fiber associated with
initial point is carried to the next point. But in the point z' some copy of fiber has
already been present before displacement. For substitution the fiber being previously in
point z' for the fiber carried over from point x" it is necessary to tranform the original
fiber in point x. This transformation turns the fiber into itself because all fibers
associated with all points of base are identical to each other and its transformations are

automorphysms.
In the gauge field theory 4D pseudoriemannian space-time of GR is chosen as a base

of fiber bundle space, and a finite Lie group G, is chosen as a fiber of this space. Lie group
G, describes internal symmetry of the gauge field theory. Thus, for electrodynamics this
is group U(1), for weak interactions - SU(2), for strong interactions (QCD) - SU(3). n
this case Lie group G, is regarded geometrically as a manifold. As E.Cartan showed, all
sernisimple finite Lie groups under geometrical consideration are symmetric Riemannian
spaces. Then tensor 9.b = f.'-fb-. appears as a metrics on Lie group G_

For gravity, as said above, tangent space in given point of V4 becomes a fiber, where
Lorentz group SO(3, 1) acts. In all tangent spaces in each points of V4 Lorentz group
SO(3, 1) acts uniformly but parameters wk' of corresponding rotations bek = Wk'e-

where ek - arbitrary vector of the tangent space, can depend on the point. Therefore
Lorentz group in Riemannian V4 is said to be acting as a local group.

When the results of experiments fulfiled in different points of space-time are under
discussion it is useful to apply the fiber bundle space geometry. Indeed, any experimental
measurements are by their nature local. But for objectivity and science meaning of their
results the experiments must be reproduced. They have to be repeated and compared
with each other. If V4 geometry is local one, comparison procedure requires to specify a
process of parallel displacement so as to avoid a distortion of information obtained by
the experiments when observation point is changed. But Riemannian V4 has not any
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global symmetry in general case. Therefore the displacements in real space-time lead
almost inevitably to distortions. At the same time description of experiment results
requires an existence of globally symmetric space of parameters, because we have need
of the invariants carrying the information of physical objects properties. The structure
of fiber bundle space permit us to unite these two seeming incompatible demands: the
global symmetry of parametric space (by fiber introduction) and the local space-time
geometry in the base.

A tangent space exists only in infinitesimal neibourhood of each base point, but it is
possessed of global symmetries of a flat space. All dynamical constants can be as usual
defined in it. Segment lengths must be measured in tangent space as well.

How to do so that the local operations fulfiled in infinitesimal neibourhood of one
point result in objective information remaining its valid under displacements to any
other point of iemannian space-time? Just for this the rules of displacement of different
geometrical objects and of tangent space itself must be correctly specified.

Weyl geometry arose from an attempt to solve the question of measurement and
displacement of segments in infinitesimally defined geometry.

In Riemannian space parallel displacement of vectors from point P to infinitesimally
close to it point is defined by coefficients of ane connection (Christoffel symbols):

1g agn + a" ag�--
2 OZP Ox, Ox, 

These coefficients give only displacement of direction. The displacement of segments
must be given by other coefficients, namely by the coefficients of metric connection.
According to Weyi ([4]) they have the form:

r PA� = f/lA I + 1 Wo� + 6Ao' _ g..glo.) (13)
2 f-

where , do = dxP - infinitesimal multiplier independent on oving segment.
This multiplier is a linear differential form. It specifies a difference of segment length di
on its parallel displacement from point P to infinitesimally close to it point P Under
this

d = -ldO.

Under arbitrary continuous coordinate transformations (5) both forms given on an-
ifold (square form ds = g,,,dx"dx' and linear form do = dx") are invariant. Under
arbitrary gauge transformations of scales the metrics g, is substituted for Ag,,,, and
the linear form coefficients 0, changes in correspondence with formula:

1 OA (14)
�F;'

By Weyl these two fundamental forms characterize the metrics of manifold in some
reference system (= coordinate system gauge). He considered that the functions q,..
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and , have to be so brought into all values and relations, which express analytically
metric respects, that would take place te invariance under 1) arbitrary continuous
coordinate transformations (5) ("coordinate invariance"), and 2 substitutions g,, -
A91-, 0 - - aA . Here A can be any positive function of coordinates ("gaugeA &.�

invariance"). Thus, Weyl extended Einsteinian general relativity principle by addition
to it the requirement of the gauge invariance of theory.

Weyl multiplier A in 4D interval definition in GR takes into account a possibility of
resealing, i.e. gauge variation of the scale measuring segment lengths. This gauge can
be different in different points of Riemannian space. In Weyl space parallel displacement
by the connection coefficients 13) is not preserving lengths and volurns. In order to talk
about equal segments or about the same segment in different points of metrical space
supplementary conditions must be formulated. These conditions have to guarantee
conservation of segment length under displacements in Weyl space. As Weyl showed,
necessary and enough condition of it is nullification of "scale curvature" tensor

defined as

9zp ox,'
In this case d = d(IgA)i that permits us to choose A so that do is equal to zero
everywhere. So, a length comparison of different segments is possible if and only if the
metrical space is Riemannian space, i.e. f, = 0. This condition is the basis of any
measurement procedure. It was be later noted that in the case of central symmetry the
aggregate of orbit radii in Weyl space along which the parallel displacement preserves
volumes satisfies Bohr rules of hydrogen atom orbits quatization ([251).

Extention of relativity principle leads to appearance of new fields. In Weyl theory
of 1918 261) a new field �, appeared as a result of addition of new gauge nvariance
of gravitational theory. At that time there was known oly one field besides gravity. It
was eectromagnetic field. The tensor of new field , satisfied, by definition, Maxwell
equations. The gauge transformations of the field 14) were by their structure similar
to the gauge transformations of second type of electromagnetic vector-potelitial A,':
A' = A - 0a(x). The "scale curvature" tensor f,, was expressed in terms of inP
just the same way as the electromagnetic field tensor F,,, - in terms of A,. Therefore
Weyl identified his new field with electromagnetic field and his theory - with unified
geometrical theory of gravity and electromagnetism.

At present it became clear that all kinds of forces in nature considering gauge fields
are described by vector-potentials A,, wich are analogs of the electromagnetic vector-
potential A, Strength tensors of all gauge fields F.', and corresponding Lagrangians
are by their structure similar to electromagnetic field strength tensor F,, and Maxwell
Lagrangian L = -F,�F-. All gauge field equations are similar to Maxwell equations,

4

although they are nonlinear one. Physical fields differ from each other by the local
gauge symmetry group. The parameters of these gauge groups, as in Weyl geometry,
become the invariant linear forms. In geometrical interpretation the vector-potentials
of all gauge fields become the connection coefficients of a fiber bundle space over V4,

but not space-time with generalized connections as Weyl proposed.
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Weyl theory is the first simple example of a gauge field theory. But before Weyl

ideas became to be extendable to other kinds of interactions his generalized connections

had to be developed as long as generalized spaces, sch as fiber bndle spaces, arose. In

fiber bundle space all ocally measured characteristics can be carried over Riemannian

space without distortions. Separation of points displacement (i.e. displacement in

Riemannian sace of base) and displacement of geometrical objects defined in fiber over

each point of te base permitted to solve the problems formulated by Weyl. In contrast

to Weyl space in the fiber bundle space the parallel displacement in base preserves

volume even if strength tensor of a gauge field F,, is nonzero. This tensor becomes

the main geometrical characteristic - curvature tensor of fiber bundle space. Nonzero

strength gauge field tensor means that the fiber bundle space is nontrivial.

6 Summary

In relativistic quantum field teory (i.e. in eementary particles theory) a ground state

of field or system of fields is called a vacuum state. Te vacuum state has zero energy

and a other ynamical invariants I his state there are no quanta of ay field, i.e.

any elementary particles are absent. In general, this vacuum can be both global ad

local depending on field energy distribution in space. In elementary particle physics

space-time geometry is considered Minkowski geometry and not connected with matter

motion.
In gauge field tbeorv it happens that symmetry of the theory is spontaneously broken.

Then there appear many local states of a stable equilibrium. Tey are called local

vacuums. Quantum theory of perturbations are constructed in neibourhood of such

locat vacuums. The structure of the local vacuum. set radically influences roperties of

quantum theory of corresponding gauge field. This terminology can not be regarded as

successful, as it leads to misunderstanding and multiple attempts "to do energy from

vacuum".
Here a new formulation of relativistic vacuum state is proposed. This approach

follows from the gauge filets theory being invariant with respect to both an arbitrary

continuous coordinate trasformations and local gauge groups. It is applicable to both

local internal symmetries and local space-time symmetries forming a world geometry

and directly concerning gravity. In accordance with the point of view stated here the

relativistic vacuum has to satisfy following conditions: 1) local definition, 2) realizability

of short-range action hypothesis, 3 being given by differential equations permitting to

define the vacuum state step by step in any points of Universe.

It is shown that the local relativistic vacuum of any gauge fields and its sources is

described by vacuum Einstein equations solutions. The gauge fields can take part in this

consideration both individually and in aggregate. This vacuum is absolute and universal

for all kinds of matter, but in contrast to Newtonian vacuum it is not globally given. The

1 3



properties of the relativistic vacuum change from point to point. The vacuum solutions
of Einstein equations describe the relativistic vacuum not only when fields and particles
are absent, but also in the case when the fields form an instanton configurations with
zero energy-momentum tensors.

We must make it a rule to add Einstein equations to any field and particle motion
equations if the space-time geometry becomes a local one. This addition means that we
give the equations specifying the structure of new vacuum changing and propagating
from point to point, i.e. of the relativistic vacuum. Einstein equations permit to correct
the field and particles equations due to the constraints between these equations arising
from general relativity principle.
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