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A Field Theory Description of Constrained Energy-Dissipation Processes 

We give a field theory description of dissipation processes constrained by a high-sym­
metry group. The formalism is presented in the example of the multiple-hadron production 
processes, where the transition to the thermodynamic equilibrium results from the kinetic 
energy of colliding particles dissipating into hadron masses. The dynamics of these processes 
are restricted because the constraints responsible for the color charge confinement must be 
taken into account. We develop a more generalS-matrix fonnulation of the thermodynamics 
of nonequilibrium dissipative processes and find a necessary and sufficient condition 
for the validity of this description; this condition is similar to the correlation relaxation con­
dition, which, according to Bogoliubov, must apply as the system approaches equilibrium. 
This situation must physically occur in processes with an extremely high multiplicity, at least 
if the hadron mass is nonzero. We also describe a new strong-coupling perturbation scheme, 
which is useful for taking symmetry restrictions on the dynamics of dissipation processes 
into account. We review the literature devoted to this problem. 

The investigation has been performed at the Bogoliubov Laboratory of Theoretical 
Physics, JINR. 
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1. Introduction 

Dedicated to the memory of Aleksandr Mikhailovich Baldin, 

an outstanding scientist and personality 

In this review, we attempt to describe nonequilibrium processes constrained by a high-symmetry group. 

The example of this type that is closest our interests is provided by multiple-hadron production processes, 

although these do not seem to limit the variety of physical applications of the formalism presented here. 

We attempt to formulate the perturbation theory for a nonequilibrium problem, namely, the relativistic 

thermodynamics with constraints associated with the high symmetry of the problem. Specifically, we wish 

to describe the dissipation of the kinetic energy of colliding particles into hadron masses. We view this 

process as one of the forms of the initial-state thennalization, assuming that the incident energy goes into 

the hadron color constituent masses and into the color charge binding energy. 

We note that the problem of defining the notion of equilibrium in dissipative systems is itself very 

important. For example, interest in this problem is often aroused because the transition to equilibrium in 

such systems is understood as the tendency to establish a certain "order" [1]. 

Within this setup of our problem, we are interested in the S-matrix formulation, where we can arbi­

trarily fix the initial and the final states at infinitely remote hypersurfaces u00 . We assume that symmetries 

acting via the corresponding conserva.tion laws, including hidden ones (of the "polynomial type"), can 

constrain the dissipation process, thereby affecting the probability of the realization of specific asymptotic 

states on u00 • In what follows, we addiess the problem of how and to what extent this can occur. 

1.1. Energy dissipation proc<3Sses and multiple-particle production. Strictly speaking, we 

do not have the possibility to control the time of the multiple-production process in inelastic scattering 

experiments with relativistic particles (see [2], [3], where this problem was investigated within the formalism 

of Wigner functions [4], and also see [B], where it was discussed from general perspectives). Therefore, we 

can only indirectly estimate the proper time of the process by controlling just its result. For example, 

introducing the inelastic coefficient "'== 1 - Emax/ E, where Emax is the energy of the fastest particle in the 

given reference frame 1 and E is the total energy, we can control the dissipation degree by choosing specific 

values of r; .. We can also consider the mean kinetic energy 1/ (3, of the produced particles if fluctuations in the 

vicinity of (3, are not very large. The simplest parameter (albeit not necessarily from the experimentalist's 

standpoint) is the multiplicity n of the produced particles. It is obvious that dissipation is considerably 

large if!'.; ~ 1 or if n _,. nmax = E/n•~h (where rnh ~ 0.2 GeV is the characteristic hadron n1ass). Under 

these conditions, f3c --------+ oo. 

It is assumed that in hadron physics, the constraints that follow from the non-Abelian gauge symmetry 

lead to the confinement of the color charge inside colorless hadrons. In addition, and apparently more 

importantly, the same constraints prevent the complete thermalization of a very "hot" initial state (the 

one at high energies of colliding particles). Indeed, under complete thermalization, the mean multiplicity 

of the produced particles 'ii(E) must be ~ E [6]. But the experiment shows that the mean multiplicity is 

proportional to only log2 (E/mh), although rare fluctuations can occur with the multiplicity n » n(E). 

It can therefore be assumed that the constraints considerably affect the formation of the multiple­

hadron production dynamics. But these constraints do not play a decisive role here, in contrast to the 

case of completely integrable problems [7], [8], because a certain fraction of energy still dissipates (n(E) ~ 

log2 (E/mh) » 1). We therefore assume that the constraints only restrict the dynamics in some way (see 

1 We couside1· only the center-of-mass frame. 
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Sec. 1.3 for details). The problem considered here thus involves processes that are intermediate between 
completely integrable and completely thermalizable ones and is therefore sufficiently complicated. 

Indeed, many facts have been accumulated in the physics of multiple production during the almost 
three-quarters of a century of its history (the pioneering works pertaining to multiple production are referred 
to in [9]), but there are not many rigorous results. We must first note the results based on causality and 
unitarity, for example, the proof of dispersion relations for the two-particle amplitudes (see [10] and the 
references therein and also [11]). There is also a principally important extension of this approach to inclusive 
processes [12]. Regarding asymptotic estimates, we must note the Froissaire and Pomeranchuk theorems for 
the total cross sections (see, e.g., [13]). This practically exhausts the results concerning formal foundations 
of the theory of strong interactions describing multiple-production processes.

2 

Over the decades of the development of multiple-production physics, many ideas based on heuristic 
assumptions have been tested. We mention some of them here. First is the idea based on the experimental 
observation that the mean transverse momentum of produced hadrons is constrained and is practically 
independent of the energy E and the multiplicity n (at least for "moderate" E and n). This observation leads 
to the multiperipheral approach [14] and the Regge model related to it [15]. Even without a comprehensive 
theoretical justification, these schemes remain the main instruments for describing multiple production 
qualitatively. 

Experimental data were considerably systematized using the notion of scale invariance at short dis­
tances [16]. Next, the notions of duality (which follows from crossing symmetry and the sum rules for the 
final energy [17]) seem fundamental [18]. But we lack a consistent scheme based on these ideas that would 
not contradict the unitarity condition and could produce experimentally verifiable predictions [19]. 

Ftom the methodological standpoint., it is important to keep in mind that the dissipation of the incident 
energy E into hadron masses is a multicomponent process and each of its c01nponents has its own space­
time scale and apparently different multiple-production mechanism. Grasping this idea has been attempted 
from the phenomenological [20] as well as from the purely formal standpoint [21] using decomposition into 
correlation functions. The latter approach is similar to the Mayer group decomposition [22]. 

Despite all these efforts, we still lack a detailed quantitative theory of inelastic hadron interactions. At 
the same time, inelastic interactions are responsible for the main share of contributions to the total cross 
section of hadrons (see, e.g., [23]). Discrepancies in the qualitative estimates of the role of specific inelastic 
processes are therefore an essential obstruction to further experimental investigations (in modern problems, 
these investigations are very sensitive to the background conditions). 

We note that the physics of multiple production is also interesting for its own sake, although it may 
not presently be the "mainstream" of physics as compared, for example, to the standard model and related 
problems (the discovery of the Higgs boson, the mass hierarchy problem, etc.). In this sense, the production 
processes of a very large number of hadrons may be especially interesting because the maximum number of 
the degrees of freedom must be excited at a very high multiplicity [7]. 

The remaining uncertainty in estimating the contributions that are dominant at high energies [24] 
and the fact that the Regni fractal dimension is nontrivial and has an essential dependence on the energy 
and type of the interacting particles [25] certainly abate the hope that the qualitative theory of multiple­
hadron production can ever be completely created (for example, this phenomenon seems comparable to 
turbulence in complexity). The observable decline in the number of publications on multiple production 
during the last two decades is a direct consequence. In this connection, we note that precisely the asymptotic 
regime with respect to multiplicity can be the simplest (see Sec. 6), because we expect that the statistical 
description [7] is applicable in this domain of multiplicities (which means that the process details must 
not be crucially important under these conditions). But we must emphasize here that in contrast to the 

2 We do not discuss purely axiomatic constructions including the Wig!JtmaJJ functions or the Haag theorem. 
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hydrodynamic and statistical multiple-production models developed previously [6], [26], we expect the onset 

of the hydrodynamic stage [27] of the thermalization process only in the domain of very high multiplicities 

(in other words, it can be realized only as a sufficiently rare fluctuation in the dissipation process). 

We attempt to construct a theory here that could describe the dynamics of strong interactions both at 

short distances, where the effect of symmetry constraints seems insignificant, and at long distances, where 

taking the constraints into account is principally important. We see in what follows that despite its formal 

compactness, the final expression (see Eq. (5.38) below) for the generating functional of the observables 

(the scattering cross section, correlation functions, etc.) is in fact extremely cumbersome; therefore, more 

than likely, only numerical methods can be effective to any extent (see Sec. 6). We are presently working 

in this direction, but the description of experimental predictions is beyond the scope of this review [28]. 

1.2. Microcanonical formalism. Strictly speaking, the amplitudes of the production of n particles 

depend on 3n-4 variables. This number is too large,3 and hoping to construct an exact scheme for their 

description with all these variables being essential would be naive (see above and also [25]). Therefore, 

to formulate the problem qualitatively, we first attempt to find conditions under which the system can be 

described by a limited number of parameters. Obviously, statistical physics methods must be adapted for 

this purpose. 

It is remarkable that under the conditions resembling the Bogoliubov correlation relaxation princi­

ple [29] 4 (see Sec. 2.1, where the Bogoliubov conditions are derived), the system arising as a result of 

particle production must attain equilibrium. Namely, the generating functional of the inelastic scattering 

cross sections p(o., z) evalnated using the S-matrix under the above conditions precisely coincides with the 

partition function of the equilibrium thermodynamics in the Schwinger-Keldysh formulation [30] with the 

corresponding Kubo-Martin-Schwinger periodic boundary conditions [31]. Here we must note the formal 

statement that thermodynamic theories constructed on the base of the Kubo-Martin-Schwinger periodic 

boundary conditions can describe only the systems that are in equilibrium in the canonical meaning of this 

term [32]. 
We show that the above relaxation of correlations is the necessary and sufficient condition for the 

validity of our thermodynamics based on the S-matrix formalism. Describing the kinetic stage of the 

process was attempted in [3] based on the local equilibrium hypothesis [33]. But if the correlations do not 

vanish, we are left with the standard S-matrix description operating with 3n,-4 independent variables. \Ve 

reconsider this problem in Sec. 2.1. 

It follows from the above that, generally speaking, the correlation relaxation conditions must not be 

satisfied in hadron processes, because symmetry constraints are involved. But the asymptotic regime with 

respect to n can be considered. In that case, if the conservation laws corresponding to the symmetry of 

the problem only constrain the dynamics, then selecting very high multiplicities results in suppressing the 

effect of those constraints associated with a given symmetry. This must obviously simplify the theory. 

(The introduction of the asymptotic regime with respect to n is also convenient because a small parameter 

~ n( E)/ n then arises in the theory. We can then use the fact that the momenta of produced particles must be 

relatively small.) The principle importance of the physics of very high multiplicities was discussed in detail 

.in [7], and we do not consider this problem in what follows. We note here that the tilermalization, i.e., the 

correlation relaxation effect, seems to be attainable at lower values of n/n(E) in ion-ion collisions [34]. We 

note that n determines only the number of momenta in the argument of the multiple-production amplitude 

an(q1 , q2, ... , qn; E). Therefore, whenever we are interested in the asymptotic behavior with respect ton, 

for example, we must evaluate the modulus I an ( q,, q2, ... , qn; E) 1

2 
integrated over the entire phase volume 

3 With modern accelerator energies, the mean multiplicity of produced particles is up to one hundred. 
4 The importance of the Bogoliubov correlation relaxation principle for multiple-hadron production processes has be.::-n 

emphasized many times by A.M. Baldin in discussions with one of us (A. N. S.). 
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because n appears as a parameter in our formulas only in that case. 

All this naturally leads to the idea that instead of multiparticle amplitudes, we must consider precisely 

the generating functions (or functionals) p( a, z) expressed through the integrals of ]an ]2 weighted by the 

corresponding parameters a and z. In the simplest version of the theory, to preserve the possibility of 

"tuning" the final state of the dissipation process of the incident energy at will, we therefore introduce the 

dependence on the four-vector a= ( -i(3, a), which is conjugate to the momentum of the produced particles, 

and on the parameter z, which is conjugate to the number of particles (see the definition in Eq. (2.1)). 

We first show how to introduce a thermodynamic formalism ("rough," using the definition proposed 

in [27]) that is "economical" (because it uses a restricted set of parameters-the temperature ~ 1/ (3, the 

chemical potential ~ log z, etc.) and at the same time is capable of describing the system. We find the 

necessary and sufficient conditions for this description (see Sec. 2.1). Details and an additional list of 

references can be found in [3], [7]. 

1.3. Constrained quantization. Because the Lagrangians of modern field theories possess a high­

symmetry group [35], [36] while the computational scheme must operate with only independent degrees of 

freedom, the problem of how to select these latter arises. In the canonical formalism, the corresponding 

constraint equations are used for this [37]. But this procedure is sufficiently complicated and unclear in 

many respects due to its unwieldiness. 

At an early stage of constructing the theory of strong interactions based on the Yang-Mills gauge theory, 

it was natural to use the conventional computational scheme that practically repeated the quantum electro­

dynamics with its excellent reputation. It is then essential that with the Slavnov-Taylor identity [38] applied 

in this formulation, the Yang-Mills theory becomes renormalizable [39]. The Faddeev-Popov method [40] 
used for this helps separate the dynamic degrees of freedom from the purely gauge ones. But the price 

for this is that the effective action of non-Abelian gauge theories is non-Hermitian. This considerably 

complicates the derivation of gauge-invariant results because gauge invariance is restored only in summing 

different diagram contributions. In addition, the procedure of selecting gauge degrees of freedom is itself 
ambiguous in strong gauge fields [41], [42]. In relation to this, reformulating the perturbation theory in 

terms of gauge-invariant fields was proposed in a number of works (see, e.g., [43]). In what follows, we show 

how this can be achieved (see Sec. 5.4). 

These problems do not play an essential role if the interactions and, correspondingly, the fields are 

weak in the applications under consideration. As a result, the asymptotic freedom was predicted in this 

weak-coupling regime, based on the phenomenon of the antiscreening of a color charge [44]: the "running" 

expansion parameter is 

1 
a,cx:log(q2jA2) «1 (1.1) 

for q2 » A 2 This fact has had a crucial impact on the formation of the hadron phenomenology during the 

last decades. A natural explanation was thus found for the scale in variance in deeply inelastic processes [45], 

and the formation of (QCD) jets was predicted [46]. At the same time, it can be seen from (1.1) that the 

weak-coupling perturbation theory has a limited applicability domain because of the existence of a pole 

in the expression for a, at q2 = A2 . This difficulty can be eliminated by introducing a certain analyticity 
condition in the theory (4 7}. "Correcting" the theory by taking power corrections into account was also 
attempted [48]. 

But there remains the problem of constraints, in particular gauge ones, that are essential at long 
distances, where the fields are strong and must therefore influence the spectrum of "soft" particles. Namely, 
such particles are produced in the domain of very high multiplicities, and, as noted above, it is desirable 
to learn to describe them first because they are likely to be particularly simple [7]. To take the constraints 
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into account, we use the idea in [49], which is quite popular because of its transparency. It can be observed 
that the invariant hypersurface W preserving the symmetry group constraints is determined by a partial 
solution of the Lagrange equations5 The quantization problem can then be reduced to quantization of the 
invariant hypersurface W, which is considerably simpler, because this hypersurface can coincide with the 
quotient space Q /1i, which is homogeneous and isotropic in the quasi-classical approximation by definition. 
Indeed, Q is the symmetry group in the problem, and 1i is the symmetry group of a given solution. The 
hypersurface W = Q /H is therefore determined by the quasi-classically conserved generator of the subgroup 
that is broken by the chosen solution. 

We must note that both approaches (the direct one via a straightforward account of constraints in 
quantization and the indirect one via the mapping of the problem into the space W) must be equivalent. 
The main aspects of our scheme and several examples of its application are given in [7], [50]-[53]. The 
scheme incorporates the indirect method of taking the constraints into account through the mapping of the 
quantum problem into the space W. 

Many works are devoted to the quantization of constrained systems. We note that this problem 
is essential whenever the kinetic and potential parts of the Lagrangian are equally significant from the 
dynamic standpoint. Precisely this kinematics is realized in the production of "soft" particles. In the 
earliest works, the Wentzel-Kramers-Brillouin (WKB) quasi-classical expansion [54] was considered, which 
is a direct generalization of the well-known stationary phase method. This formalism was subsequently 
developed in [55], where convenient boundary conditions that essentially simplified the calculations were 
proposed. These works were important because they allowed fully realizing the difficulties entailed by the 
"naive" approach to the problem of quantizing theories with a high-symmetry group. But we see in what 
follows that the WKB quantization scheme is the only possible scheme because only it preserves the full 
probability [50], [51], [56]. 

In [57], the problem of separating the nondynamic degrees of freedom, the zero modes, was placed in 
the foreground. Using the notion of collective variables was proposed for this based on the earlier works 
(see, e.g., [58]). 

For integrable (1 + 1 )-dimensional field theories, the inverse scattering problem is a canonical transfor­
mation to variables of the "action-angle" type (see details in [59]). It is then natural to quantize extended 
soliton-like objects precisely in terms of collective variables if these are in involution [60], [61]. Precisely 
the collective variables were used as local coordinates on the space W in [52]. 

We must find and describe the full set of quantum states in the space W. 6 This problem is very 
complicated if we do not know the inverse scattering problem, as is the case with the (3+1)-dimensional 
field theory in the Minkowski metric considered in Sees. 4 and 5. We see in what follows that the key role 
in this process is played by precisely the relation W = g /H. 

In the conventional formulations of quantum theory, the problem of mapping into the space W is 
practically unsolvable [63]. Attempts to use the lattice expansion of the path integral for this purpose 
involve an essential uncertainty, which becomes noticeable in the transition to the continuum limit [64]. 

Taking the above experience into account, we proceed as follows. In the example of particle motion in 
a potential well, the spectral representation for the corresponding amplitude is given by 

5 If the constraints are insufficient to select the hypersurface W, then they play no role in the dynamics (see the selection 
rule in Proposition 8 in what follows). 

6 For the quantum theory of solitons, it is important that the solitonS-matrices are factorable [62]. 

7 



If we are not interested in coordinates, it is useful to consider the quantity [55] 

a(E)=jdxA(E,x,x)=LE ~ . ="PE 
1

E +irrLJ(E-Et), 
- t+'lE ~ - l 

l l l 

where we use the orthonormalizability of the wave functions 1/J(x). We note that in reality, we are not 

interested in unobservable values E to E,. It then suffices to evaluate only the absorption part 

lma(E) = rr L J(E- E1). 

l 

This means that we drop the continuum of states (not realized in nature) with E to Et. But we do not 

know how to formulate the theory in terms of the absorption parts of the amplitude. To circumvent this 

difficulty, we consider the integral probability 

r(E) = J dxr dxziA(E,xr,xz)l
2 =~IE_~~+ ;,J 

and use the optical theorem (the unitarity condition) 

er(E) = c >:"'I 1 lz = ~ >:"' { 1 - 1 } = 
L. E - Et + it: 2i L. E - E, - it: E - Et + ic 

l l 

= rr L J(E- Et) = Im a(E), 
l 

which shows that the observables are determined by the absorption parts of the amplitudes. This is a 
general assertion and must always be true. 

The unitarity condition en8uring the conservation of the full probability is formally realized as the 

result of canceling the real part. We want to use this cancellation to refine the definition of the functional 

measure in the integral for the amplitude [56]. In Sees. 3 and 4, we generalize this cancellation mechanism 

to the field theory problem. Namely, we show that the functional measure for p(o:, z) contains a functional 

o function that determines the full set of contributions. This in turn opens the possibility to map the 

quantum theory into any manifold and, in particular, into the quotient space. 

We once again stress that we solve the constrained problem of calculating the probabilities that are 

given by absolute values of the corresponding amplitudes by definition. Or, using the unitarity condition, we 

restrict ourselves to calculating the absorption parts of the amplitudes. But we must note that if quantum 

perturbations are turned on adiabatically [10], then we can also evaluate the full amplitudes by applying 

the dispersion relations. 

We stress that the generating function p(o:, z), as noted above, is defined by integrals of precisely 

lanl 2 We then use the optical theorem to express p(o:, z) through the absorption part, thus closing our 

formalism, because the absorption part is defined on a 6-like functional measure. Thus, we first determine 

the structure of the perturbation theory in terms of field variables; this structure coincides with the standard 

WKB scheme. We then use the fact that the functional measure is J-like to map the perturbation theory 

into the space W = Q /7-i. 
In Sees. 3 and 4, we describe the perturbation theory in the quotient space W = Q /7-i of a simpler 

conformal (3+1)-dimensional scalar theory in real time. We do not know the general structure of W, and 

the realization in the space W = 0(4, 2)/0(4) x 0(2) [65] considered in this review is therefore only an 
example. Otherwise, Eq. (5.38) for the generating functions of the multiple-prOduction cross sections given 

in what follows is exact. 

The Yang-Mills theory is considered in Sec. 5. The most important result is a perturbation theory that 

does not require gauge fixing (Sec. 5.4). This is obviously achieved by describing quantum perturbations 

in the space 1¥ instead of the space of fields (more precisely, of the Yang~ Mills gauge field potentials). 
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1.4. The main points and results. We now briefly describe the contents of this review. In Sec. 2, 

we describe the relation to the thermodynamics in real time. The main result in Sec. 2.1 is the factored 

representation for p(a, z) (see Proposition 1), which allows not discriminating between mechanical and 

thermodynamic perturbations. This result is important because, strictly speaking, quantum perturbations 

can affect the thermodynamics and vice versa. This is why there has always been the problem of the 

time ordering of these perturbations [66]. For example, it was proposed in [67] to consider "thermal" 

perturbations separately from the "mechanical" ones. The result obtained in Sec. 2.1 therefore has an 

independent importance. In Sec. 2.2, we use the possibility to write p(a, z) in the factored form and show 

that p( a, z) is defined on aS-like functional Dirac measure. which proves the unitarity of the WKB scheme. 

In Sees. 3 and 4, we construct the perturbation theory in the quotient space. We consider the simplest 

example of a mapping into the space W in Sec. 3.1 and give the general theory of mappings in Sec. 3.2. It 

is important to demonstrate the possibility to reduce to W and the fibering mechanism W = T*W x R, 

where the q-numbers belong to T*W and the c-number zero modes are involved in R. 

All this is first demonstrated with an example of a simpler 0( 4, 2)-invariant scalar field theory. Here, 

it is important to be able to find the measure p(a, z) that would take the energy-momentum conservation 

laws into account. This is a nontrivial problem because we describe the inelastic scattering of particles 

through an extended soliton-like object (see Sec. 4.3). 

Finally, in Sec. 5, we give an explicit expression for the generating functional p( a, z) in the Yang-Mills 

theory. The result is a strong-coupling perturbation theory (the expansion in the inverse powers of the 

coupling constant) for p(a, z). We show that the new perturbation theory is free of divergences, at least 

in the vector-field sector, and is formula.ted such that it does not require gauge fixing (see Sec. 5.4). This 

spares us the introduction of the Faddeev-Popov ghosts and the struggle with Gribov ambiguities. 

2. Field theory in real time and at finite temperatures 

In the S-matrix interpretation of thermodynamics, the role of a particle is played by a point from 

which a particle with a given momentum is emitted (or into which it is absorbed). It must then be kept 

in mind that the four-coordinate of this point, generally speaking, has no meaning because the uncertainty 

relation must be taken into account. This picture is dual because, on one hand, the emitted particles are 

free, being on the mass shell, but on the other hand, the momentum distribution of these particles does 

not coincide with the black-body radiation, because the particles are emitted by interacting fields. These 

peculiarities of the interpretation developed here should be remembered in reading [3], [7]. 

2.1. The S-matrix theory at finite temperatures. We show here that under certain conditions, 

an isomorphism can be established between the thermodynamic description of a system with a large number 

of particles and the S-matrix formalism accepted in the description of the multiple-production process. For 

simplicity, we begin by considering the simplest massive real scalar field theory. The specific form of the 

Lagrangian is then irrelevant. 

We must first introduce the notion of the generating functional for cross sections p(a, z) ""p( <>;, ar; z;, zr). 

In the simplest version of the theory considered here, we can trace only the momenta q1 and PJ of the par­

ticles with a given mass rn with p] = qJ = m 2 . We assume that 

lamn(Pt,P2, · · · ,pm: qt, q2, · ·., qn)I
2
S( P- ~Pi )s(p- t, qJ) 

-J d•a, d•afeiP(a;+ar) rrm t(pJ) _s_ ITn t(qj) _s_p(a z)l (2.1) 
- (211") 4 (211") 4 J~l (211") 3 Sz;(pj) J~! (211") 3 8zr(qj) ' z,~z,~o' 
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where amn(Pl,P2, ... ,pm; q1, qz, ... , qn) = a?nn(P; q) is the transition amplitude from an m-particle state to 

an n-particle one and 

P = 2::Vj = I:qj 
j j 

is the total four-momentum of the colliding particles. Inverting Eq. (2.1), we find p(a, z). 
We now show that the following proposition holds (see also [68]). 

Proposition 1. If the reduction formula holds and if the surface term vanishes, 

(2.2) 

where rJ00 is the infinitely remote hypersurface, then the generating functional p(a, z) for the multiple­
production cross sections can be represented in the factored form 

p(a, z) = e-N(~;o.,) Po(tp), (2.3) 

where the functional po(tp) is defined in Eq. (2.14) and N(tp; a, z) is defined in Eq. (2.15). 

This representation of the generating functional plays a key role in what follows because all the in­

formation about the external conditions (the dependence on the parameters a and z) is contained in the 

operator N(tp; a, z) and all the information about the interacting fields is included in the functional po(tp). 
It can be assumed that the operator N( tp; )3, z) projects the system of interacting fields onto observable 

states. Moreover, because the external effect is turned on adiabatically, it is assumed that the functional 

Po ( tp) and all its derivatives exist. 

Proof of Proposition 1. We introduce the standard definition of amplitudes (see [3] and the refer­
ences therein) through the reduction formula [69] 

m n 

amn(P; q) = II cp(pk) II ip'(qk)Z(tp), 
k=l k=l 

where the hat denotes the variational (or the usual) derivative at zero. For example, 

J . 0 J . ip(q) = dxe-•qx otp(x) = dxC'9"ip(x), 

and the auxiliary field 'P must be set equal to zero at the end of the calculation. 

The vacuum-to-vacuum transition amplitude in the external (auxiliary) field tp(x) is given by 

where So is the free part of the action, 

and V describes interactions, 

V(u) = { dxv(u). 
lc+ 
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(2.4) 

(2.5) 

(2.6) 

(2. 7) 

(2.8) 



The time integrals in (2. 7) and (2.8) are defined on the Mills time contour [70] chosen as 

C± : t .........). t ± ic, E -----+ +0, -00 :S t ::;_ +oo, (2.9) 

which is equivalent to the Feynman i< prescription. 

We consider the quantity 

r(P; z) = L +,I dwm(P; z;) dwn(q; z,) o(P- f:,Pk)o(P- t Qk) lamnl 2
, 

1n. n. 
n,m k=l k=l 

(2.10) 

where the phase volume element 

involves a "good" weight function z(q). Substituting (2.4) in (2.10) and using the Fourier decomposition of 

the o functions, we obtain 

where 

If we introduce the notation 

) }
. da; da, "P( ·+ ·) 

r(P· - = -- ---e' "' "' p(a z) 
'" (2rr)4 (2rr) 4 ' ' 

N±(\?;a,z) =I dw1 (q;z)e-iqa.p±(q),P~(q), 

po('P) = Z(cp+)Z*( -<p-). 

then Eqs. (2.13) and (2.15) define the operator N(,P; a, z) and Eq. (2.14) determines p0 (<p). 

(2.11) 

(2.12) 

(2.13) 

(2.14) 

(2.15) 

We emphasize that the main quantity under consideration, the squared modulus lamnl 2 , actually 

contains the doubled number of the degrees of freedom, i.e., is a more complicated quantity than just the 

amplitude amn· At first glance, it may therefore seem natural to draw an analogy with the thermodynamics 

using only amplitudes. Such has been attempted, but it led to unphysical pinch singularities that were 

canceled only after doubling the number of the degrees of freedom. Moreover, the experience with the 

thermofield description shows that this is a necessary complication. A sufficiently detailed discussion of 

this problem can be found in [5], [71]. 

Proposition 2. Representation (2.3) admits, instead of (2.2), the periodic boundary condition 

(2.16) 

where u+ and ·u_ are completely independent fields on the respective contours c+ and c_. 

Proof. We recall that Eq. (2.4) is a reduction formula based on an important assumption regarding 

the "sufficiently good" behavior of fields at infinity. Proposition 2 implies that in considering the quantities 

II 



lamnl 2 , we can use condition (2.16), which is weaker than (2.2) and which also ensures the absence of the 

surface term but does not assume the fields (and their first derivatives) to decrease sufficiently rapidly at 

infinity. 

In our case, it is necessary and sufficient to assume that the fields u+ and u_ and their first derivatives 

coincide on O" oo, 

(2.17) 

We call this condition the periodic boundary condition. It is the most general one and is kept to the end 

of the calculation. 

Equation (2.12) can also be written as 

p(a, z) = exp{ i I dx dx' ( ¢+ (x)D+- (x- x'; z,, a,)¢_ (x') -

- J;_(x)D-+(x- x'; z;, a,)¢+(x')) }Po(¢), (2.18) 

where D+- and D_+ with z = 1 are the standard positive- and negative-frequency Green's functions [10]. 

The function 

n+_:(x _ x'; z, a) = -i 1 t:M,(q) ze'q(x-x' -a) 

describes the propagation process of a particle produced at the moment x 0 and absorbed at the moment x0, 
x0 > x0, where a coincides with the four-coordinate of the system. These functions satisfy the homogeneous 

equations 

(82 + m 2 )xD+- = (82 + rn2 )xD-+ = 0. 

We now assume that the generating functional Z(¢) can be calculated as a power series in the coupling 

constant. It is then convenient to use the transformation (we recall that X denotes the derivative with 

respect to X at zero) 

e-iV(¢) = exp{ -i I dx }(x)¢' (x)} exp{ i / dx j(x)¢(x) }e-iV(¢') = 

= exp{ / dx ¢(x)¢' (x) }e-iV(¢') = e-iV(-i)) exp{ i I dxj(x) ¢(x)}. 

Choosing the first equation in (2.19), we then obtain 

Z(¢) = exp{ -i / dx](x)if>(x) }e-iV(<H¢) exp{ -~ / dxdx' j(x)D++(x- x')j(x') }, 

where D++ is the standard causal Green's function, 

(2.19) 

(2.20) 

Substituting (2.20) in (2.18) and doing simple manipulations with differential operators, we obtain the 

expression 

p(a, z) = e-iV(-i]+)+iV(-ij_) exp{ ~ j dx dx' (i+(x)D+- (x- x'; ai)j_ (x') -

- j_ (x)D-+(x- x'; a2)j+(x') - j+(x)D++(x- x')j+(x') + 

+ J-(x)D __ (x- .x')J-(x')) }, 

where D~~ = (D++)"' is the anticausal Green's function. 
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For a system of a large number of particles, the problem can be simplified by choosing the center-of­

mass system P =(Po = E, 0). It can then be assumed that ao.k = -if3k. Imf3k = 0, k = i, f [72], [73]. In 
this case, we have p = p({J, z). 

In what follows, we intend to use the quantity {3 along with the energy as one more parameter character­

izing the system of the produced particles. But it must be remembered that this requires special conditions 

under which {3 can be measured simultaneously with the energy. These conditions can be formulated as 

follows [7]. 

Proposition 3. The energy spectrum of secondary particles is described by the Boltzmann exponent 
if and only if the momenta K, that are central with respect to energy are sufliciently small, 

I 1

2/1 
K1(n) « K2(n), l = 3,4, .... (2.22) 

Proof. We note that these conditions resemble the Bogoliubov correlation relaxation principle in the 

course of approaching the equilibrium state [29]. 7 We recall that K 1(n) = (c:; n) is the mean energy of 

the produced particles, K2(n) = (c:2; n) - (<; n) 2 is the dispersion of the energy distribution of secondary 

particles, and K 3 (n) = (c:3 ; n)- 2(c:2 ; n)(c:; n) + 3(c; n) 3 is the third moment that is central with respect to 

energy, and so on. 

We now show how to obtain conditions (2.22) and to prove the validity of the definition 

l I 
1 1 J II d (Jn (c: ;n) =- d;.,;l(q) c(q,)d d , 

Un i=l ql''' ~ 
(2.23) 

where (Jn is the cross section of the production of n particles and d1(Jn/(dqr · · · dqi) is the differential cross 

section (see Eq. (2.29)). 
To derive conditions (2.22), we consider the integrals 

(E . ) _ f _ dz, dzr J d{J, df3r (~;Wr)E -F(,.~) 
amn 'z - +1 +1 . .e e ' 

~brizf' 27riz~ 27r~ 27rz 
(2.24) 

where z varies over a closed contour that encompasses the point z = 0 and 

F(z,{J) = -logp({J,z). (2.25) 

We now use the stationary phase method to evaluate the integrals in (2.24). For this, as in the microcanon­

ical formalism, we must find a solution of the equation of state 

i) 
E = af3k F({J, z), k = i,f, (2.26) 

which determines the most probable values of {Jk for a given E (and z). Equations (2.26) always have 

positive real solutions [73]. Because of the energy conservation law, the solutions coincide, 

{Jk = iJ(E, z), iJ > 0. 

7 The term "vanishing correlation principle" is used in the English literature [74]. 

13 



To find the most probable values of z, we must solve the equations 

8 
m=-z;-

8 
F((J,z), 

Z; 

8 
n = -zr-

8 
F((J,z). 

Z[ 
(2.27) 

Equations (2.26) and (2.27) must be solved simultaneously. In particle physics, the number of the incident 

particles is m = 2, and it therefore suffices to know only the solution Zc = z(f3c, n) = zc(E, n) of the 

equation for zr. 
The expansion of the integrand in (2.24) in a vicinity of (J(E, z) = f3c(E, n) gives an asymptotic series 

because function (2.25) is essentially nonlinear. This implies that fluctuations in the vicinity of f3c(E, n), in 

general, are arbitrarily large. It must then be assumed that the expansion in the vicinity of f3c(E, n) exists, 

for example, in the Borel sense8 This allows finding an asymptotic estimate for the series. The conditions 

for the validity of this estimate are given by the inequalities 

l > 2. (2.28) 

This makes it easy to derive conditions (2.22) and the corresponding definition in Eq. (2.23). 

We now find the explicit form of the derivative 81 F(z, (3)/8(31• We start with the case where l = 1, 

8 1 8 
8(3F((3, z) = p((J, z) 8(3p((3, z) = 

= p(;, z) L n J dwn (q; z) exp{ -(3 L c(qJ) }c(qr)lan 12 

n J 

The coefficient n appears here because the particles are identical. We next introduce the differential cross 

section that is not normalized to the flow of colliding particles) 

dla-((3, z) "L j. { "L } 2 d d d = n(n-1)···(n-l+1) dwn-l(q;z)exp -(3 c(q1 ) lanl, 
ql q2 . . . q1 . 

n?_l J 

where we again take into account that the particles are identical. If the total energy E and the number of 

particles n are given 1 we must set z = canst and consider the quantity 

(2.29) 

In general, the integrals with respect to z and (3 fix the exact conservation laws for the number of particles 

and the energy. But we now assume that these conservation laws can be taken into account approximately. 

In this case, the sum of energies of the produced particles is equal to E only with exponential accuracy. 

We then assume the same for the number of produced particles. To find the neighborhood of energy values 

1/ f3c and of the number 1/ log Zc of produced particles where the energy values and the number of produced 

particles are concentrated, we must solve Eqs. (2.26) and (2.27). Then 

8 This problem is practically not studied. but we carl use the analogy between the high-temperature expansion in 
equilibrium thermodynamics, i.e., the expansion in powers of {3, and the expansion with respect to the coupling constant. In 
this sense, a positive answer to the question of the existence of power series with respect to f3 seems natural. 
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where T,(E, n) includes Gaussian corrections coming from the integration in the neighborhoods of f3c(E, n) 

and zc(E, n). Thus, 

Proceeding similarly, we can obtain 

(2.30) 

In the general case, we then have 

a' 
B(3fF(f3c, Zc) = K,(n). (2.31) 

Substituting this in (2.28), we obtain (2.22). 

The same argument can be applied to z. If the conditions for the validity of asymptotic estimates 

are then satisfied, we could interpret (3,, as the temperature, f.i.c = (log zc)/ f3c as the chemical potential, 

and finally F(zc, f3c) / f3c as the free energy. If this interpretation is valid, then the point from which a 

particle with the momentum q is emitted can be interpreted as a "particle" with the momentum q. In 

general, however, this interpretation involves an inaccuracy related to the impossibility of simultaneously 

introducing the coordinate of this point [3]. 

The proposed interpretation of the ,!3c and Zc parameters seems natural if we note that function (2.21) 

has the same structure as the Niemi-Semenoff generating function [75] derived in the framework of the 

Schwinger-Keldysh theory [76], [77]. The only difference is in the definition of the Green's functions D;j, 

i, j = +, -, which can be essential. 

We now clarify which conditions allow the above interpretation of p(f3c, zc) as the partition function 

with the respective parameters 1/ f3c and Zc interpreted as the temperature and activity. 

Proposition 4. If periodic boundary condition (2.17) is valid and, moreover, if fluctuations in the 

vicinity of the solution of Eq. (2.26) are Gaussian and correlations vanish on the hypersurface 0"00 , then 

the thermodynamics admits an S-matrix interpretation with p((3, z) playing the role of the grand partition 

function. 

Proof. We assume [68] that our system of colliding particles is a subsystem of a larger system that also 

includes noninteracting (free) particles (which model the heat bath). As a result, the Boltzmann exponential 

e-~£ is replaced with the occupation number ·ii((3E) corresponding to the statistics. This changes only the 

form of the Green's functions D;j. The strategy that we use in the proof is as follows. The Green's functions 

occurring in the formalis1n must satisfy the equations 

(82 + m 2 )xG+- (x- y) = (82 + m 2 )xG-+(x- y) = 0, 

(82 + m 2 )xG++(:c- y) = (82 + m2);c __ (x- y) = o(x- y). 
(2.32) 
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Next, it is important to take into account that boundary condition (2.17) admits a more general solution 

of these equations) 

GiJ = 9iJ, i =fj, 

where YiJ is the solution of the homogeneous equations 

(2.33) 

(2.34) 

that must be distinguished in accordance with the property of belonging to different time contours C±. 

Therefore, 

9ii(x- x') = j dw(q) eiq(x-x')n,i(q), (2.35) 

where we recall that q2 = rn2 The unknown functions n,1(q) are determined as the means of the fields, 

The simplest of these is given by 

(2.36) 

where we take periodic boundary condition (2.17) into account. But the functions n,1 (q) must then be 

identical to the occupation number of the black-body radiation. 

The formal derivation of the final formulas repeats the argument in [68] (see also [3]). We find that 

( ) ( ( 
f3r +f3z) )-r -( f3r +f3z) n++ Qo = n __ (qo) = exp lqol 

2 
-1 = n lqol 

2 
, 

n+-(qo) = 8(qo)(1 + n(qof3r)) + 8( -qo)n( -qof3r), 

n_+(qo) = 8(qo)n(qof3z) + 8(-qo)(1 +n(-qof3z)). 

This leads to the Green's functions 

iG,1(q,(3) = - ( qz - moz + i< 

( 

_(f3r+f3zl I) rz. qo 
+ 27r6(qz- m2) 2 

n (f3rlqo I) a_ (f3r) 

where 

According to Proposition 2, the generating functional can be written in the standard form 

Pcp(/3) = e-iV(-ij+)+iV(-i)_) exp{ ~ J dxdx' j,(x)Gij (x- x', (f3))jJ(x') }, 
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(2.38) 

(2.39) 

(2.40) 
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where summation over repeated indices is assumed. If conditions (2.22) are satisfied, it follows that 

D+-(t- t') = D-+(t- t'- i(3), 

D-+(t- t') = D+_(t- t' + i(3). 
(2.42) 

These relations are the Kubo-Martin-Schwinger periodic boundary conditions. They are typically used to 
determine the temperature dependence in the canonical formulation of thermodynamics. 

As a result, we have obtained the grand partition function defined on the Mills time contour [70) 

C±: t--> t ± ic, c--> +iO, It I ~ oo. (2.43) 

For the theory defined on the Niemi-Semenoff time contour to be obtained from the above, we must have 
the right to add contributions defined on the imaginary-time contour 

Crm: t E lim (tr+ ic,tr- ic). 
tr--++oo 

But this is possible only in the case where the Green's functions vanish on Crm· It can be shown that this 
condition is satisfied at least within the canonical perturbation theory [71). 

Whenever C = C+ +C- +Crm and the Kubo-Martin-Schwinger periodic boundary condition holds [3), 
the functional p((3, z) found in (2.21) ha.s the standard integral representation 

p((3,z) = j Dc¢e'8d~>, 

where all the variables are defined on the contour C. This representation can be recast by analytic contin­
uation into the Matsubara representation for the grand partition function in the imaginary time [75). 

We note here that in our S-matrix formulation of field theory at finite temperatures, the contributions 
from Crm are absent from the very beginning. In other words, our approach and the approach based on the 
canonical Gibbs-Boltzmann formalism differ by the contributions from Crm· As noted above, the existence 
of contributions from Crm is determined by correlation properties on the infinitely remote hypersurface. 

By definition, the generating functional p((3, z) can be used as the event generator for the description 
of accelerator experiments [3), [78). For example, if 

(2.44) 

then 

where a,0 , is the total cross section and J is the standard normalization factor. In this expression, the 
integration over particle momenta is taken under the constraint s = (p1 + P2) 2 

In addition, the grand partition function can be expressed through 

(2.45) 
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where Pnm is defined in (2.44). The summation over the number of particles and the integration over the 

particle momenta are taken under restrictions: the respective mean particle energies in the initial and final 

states are 1/ (3; and 1/ f3r and the activities of the initial and final states are z; and zr. We only add that this 

description coincides with the microcanonical approach, where the temperature is introduced as a Lagrange 

multiplier. 
In [3], an attempt was made to obtain the above interpretation in the case where the system has not yet 

reached the hydrodynamic phase, where knowing the mean particle energy suffices for completely describing 

the particle energy spectrum. It can be conjectured that only local temperatures can be introduced at 

the kinetic stage preceding the hydrodynamic one. Using the Wigner formalism, we must then replace 

f3k ~ (3k(x), k = i,f, in expression (2.40), where xis the Wigner coordinate [4]. We emphasize that this 

interpretation is only possible because we define the temperature through the mean energy of noninteracting 

particles [3]. 

2.2. The unitary definition of the measure. We show that the following proposition holds. 

Proposition 5. If factored structure (2.3) occurs, then by the unitarity of the S-matrix, the generating 

function (or the generating functional) p((3, z) is given by 

where 

N((3, z; u) = n((3;, z;; u) + n*((3r, zr; u), 

n((3,z;u) = j dw1(q;z)e-O£(q)r(q,u)r*(q,u), 

r(q,u) = J dxe-iqx(82 +m2 )u(x), 

U(u,<p) = V(u + <p)- V(u- <p)- 2Rej dx<p(x)v'(u) = O(<p3
), 

c+ 

X 

2K(j<p) =Ref dx}(x)(f(x). 
c+ 

After all the calculations, we must set j = <p = 0. 

(2.46) 

(2.47) 

(2.48) 

(2.49) 

(2.50) 

(2.51) 

Proof. The derivation of representation (2.46) is given, e.g., in [7]. Factoring, we can separately 

consider 

Po(¢) = J Du+ Du_ 8iS"(u+)-iV(u++~+) 8 -iS"(u_ )+iV(u_ -~-), (2.52) 

where u_ and 'P- are defined on the complex-conjugate contour c_. The fields 'P± carry all the information 

about external conditions, and the integrals must include only closed trajectories. 

Instead of the two independent fields u+ and u_, we introduce [56] 

u(x)± = u(x) ± <p(x) (2.53) 
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with the relation 

(2.54) 

(where cr00 is the infinitely remote timelike hypersurface) ensuring the periodic boundary condition. We 
choose the solution of Eq. (2.54) as 

(2.55) 

which guarantees the validity of condition (2.17). Then the full action So( u+) - V( u+) - So( u_) + V( u_) 
describes the motion along a closed path starting with the turning points u(x E cr00 ). The integration over 
u(x E cr00 ) is assumed because precisely the periodic boundary condition is chosen [3]. For simplicity from 
here until Sec. 4.3, we assume that 

lim (So(n+)- V(u+)- So(u_) + V(u_)) = 0. 
U±--->U 

(2.56) 

We consider <pas a virtual field. Introducing the auxiliary field ¢(x, t), ¢(x, t E C±) =¢±(X, t E C±), 
and assuming that the variational derivatives are defined as 

we can write (see (2.13)) 

o¢(x, t E C,) = 6 o( _ ')6( _ ') 
6¢(x',t' E Cj) '' x x t t , 

i,j = +, ~, 

N±(<p;!),z) = jdw1 (q;z)c~<(q) { dx { dyi/5±(x)ip"(y)e±iq(x-y)_ 
lc+ lc_ (2.57) 

Using this notation, we separate the term that is linear with respect to¢+ <pin exponent (2.52), 

and 

v ( u + ( ¢ + <p)) - v ( u - ( ¢ + <p)) = u ( u, ¢ + <p) + 2 Re r dx (¢(X) + <p( X)) v' ( u) 
lc+ 

So(u + <p)- So(u- <p) = So(u)- 2i Re { dx<p(x)(8~ + m 2 )u(x). 
Jc+ 

The expansion with respect to ¢ + <p can be written as 

(2.58) 

(2.59) 

where, as usual, }(x) and ;;' (x) are the corresponding variational derivatives. The auxiliary variables (j, <p1
) 

must be set equal to zero at the end of the calculation. As a result, we have 

Po(<p) = exp{ ;iRe fc+ dx )(x)ip(x)} j fJ. du(x) 6(8~u + m
2
u + v'(u) - j) x 

x e''"(")e-iU(u.<P) exp{ 2i Re fc+ dx (j(x)- v'(u))<p(x) }, 
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where the S function is defined by 

I] S(iJ~u+m2u+v'(u) -j) = J D<p exp{-2iRe fc+ dx(iJ~u+m2u+v'(u) -j(x))'P(x)}. (2.62) 

It must be remembered here that in view of the chosen periodic boundary condition and solution (2.55), 

the product of S functions (2.62) does not involve the values x E 0'00 . This implies that the turning points 

u(x E a 00 ) are completely arbitrary. This leads to the appearance of integrals over the volume of the 

quotient space g /'H, i.e., over zero modes. 

Equation (2.61) can also be written in the equivalent form 

p0 (¢) = e-iK(jcp) J DM(u) e''c(u)-iU(u,cp) exp{ 2i Re fc+ dx¢(x)(iJ~ + m 2 )u(x)} 

if we use the fact that the relation 

is exact. 

(2.63) 

(2.64) 

To conclude, we note that the contour C+ in Eq. (2.51) cannot be displaced to the real axis. Next, 

because the exponent in Eq. (2.63) is linear in <p(t E C+) and in <p(t E C_) separately, acting with the 

operator e-N+(<ii;a,,'<)-N- (<ii;a.,,r) gives (2.46). 

To conclude this section, we give the most important consequence of the fact that the functional 

measure is S-like. 

Proposition 6. Only the exact solutions Uc of the equation 

(2.65) 

must be taken into account. 

Proof. This is obvious, because the path integral defined on S-like measure (2.50) and perturbations 

of the trajectory Uc by the source j are taken into acccount within the perturbation theory. We assume here 

that as follows from the definition of the operator e-iK(jcp) generating the perturbation series, the exact 

meaning of Eq. (2.64) is preserved for all values of j(x) and, in particular, for j(x) = 0. 

This important consequence means that contributions from approximate solutions of the equations of 

motion are eliminated from consideration. In this sense, the resulting formalism is simple, being free of 

uncertainties. 

Proposition 7. The generating functional pis given by the sum of all solutions of Eq. (2.65), including 

the trivial solution. 

Proof. This statement is true independently of "distances" between the critical points of the action 

because the S function has zero width, 

1 'i ' S(x) = lim --e-x " 
.~o ,J;W2 

We note that the expression for p does not involve interferential contributions of different solutions of 

Eq. (2.65), which necessarily occur if the amplitudes are written as the sum of contributions of the critical 

points of the action. This implies that in our approach, the orthogonality of Hilbert spaces spanned by 

solutions of Eq. (2.65) is taken into account. 

But it should be kept in mind that we must be able to select the "physical" solution if there are several 

solutions and no external conditions determine which of them must be taken into account, i.e., in the case 

of the general position. For this, we introduce the following selection rule. 
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Proposition 8. Let Uc and u~ be solutions of Eq. (2.65), and Jet W and W' be the corresponding 

quotient spaces. Also let V and V' be the respective volumes of W and W'. Assuming that V > V', the 

contributions of u~ can be omitted with the accuracy~ V' jV. If this ratio is equal to zero, we say that 
the contributions of u~ are realized on .measure zero. 

Proof. This selection rule is obvious if Proposition 7 is taken into account. Because a a-like measure 

determines the full set of contributions and all the contributions must be summed over, we must drop all 

the contributions realized on measure zero from the sum in the case of the general position. The selection 

by the dimension of W implies that the largest contribution is given by those field configurations that 
maximally violate the symmetry of the classical action. 

It must be remembered that in field theory) tunneling vacuum-to-vacuum transitions can occur that 

do not correspond to any dynamics. These contributions do not enter the full system defined by Eq. (2.65) 

in real time (we do not discuss the contributions that can be obtained by analytic continuation into the 

imaginary time domain here). We believe that they must be added to the contributions discussed here 

because they correspond to a different •topology of fields [79], [80]. 

We must begin the analysis with the trivial solution, whose quotient space is a point, i.e., has the di­

mension dim Wo = 0. The next exact solution that is regular in real time is the eight-parameter 0(4) x0(2)­
invariant solution, with dim W = 8 [6:)]. The existence of a nontrivial solution implies that trivial field 

configurations must be neglected in quantizing the Yang-Mills fields. As follows from the selection rule 

formulated in Proposition 8, the imaginary-time "vacuum contributions" can be dropped if and only if they 

are realized on the measure zero. In the Yang-Mills theory, there is an exact instanton solution that is 
regular in imaginary time and is such •that dim W;n,t = 5 [81]. Therefore, this solution can be neglected. 

There also exist approximate multi-instanton solutions, but the dimension of their quotient space does not 

exceed dim Winst [82]. 

3. Quantization on quotient manifolds 

3.1. Introduction to the theory of transformations. Having obtained the theory defined on a 

a-like measure, we must first find solutions of Eq. (2.64) as power series in j(x). At this stage, if we forget 

about the selection rule in Proposition 8, our approach has practically no differences from the standard 

WKB stationary phase method [50], [51]. It is even somewhat more complicated than the latter because, as 

noted above, it involves the doubled number of the degrees of freedom. In reality, however, the subsequent 

calculations are problematic in the framework of this WKB scheme. 

In our representation, the problem is as follows. We assume that we know the solution uc(x) of 

Eq. (2.65). In the first order in j(x), we must then solve the equation 

(8~ + v"(uc))G(x,x'; Uc) = a(x- x'), (3.1) 

which constitutes a certain difficulty. 

Despite the apparent simplicity, the problem of describing the motion of a particle in the external field 

(uc(x, t) in the present case) whose configuration depends on time is in fact as complicated as the original 

problem because a particle can freely acquire or loose energy in this field (see the discussion of this problem, 

e.g., in [83]). Formally, the problem is that because the field depends on the four-coordinate, the space in 

which the particle propagates looses its homogeneity and isotropy (see (3.1)). 

In this section, we show how this problem can be bypassed by passing to new dynamic variables 

in (2.63). Namely, we choose the variables such that the space becomes homogeneous and isotropic. 
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In what follows, we are interested in the motion in phase space. For this, instead of (2.46), we consider 

the generating function 

p((J,z) = 8 -iK(j<p) J DM(u,p)e-iU(u,<p) 8N(~,z;u), (3.2) 

where 

II ( oH ) ( oH ) DM(u,p) = du(x) dp(x) o u(x)- Jp(~) J p(x)- ou(~) 
X 

(3.3) 

and the full Hamiltonian 

(3.4) 

involves the energy of quantum perturbations j(x, t)u(x, t). 
We note that the transition to the phase space affects only the measure DM(u,p), and it can be easily 

verified that representation (3.2) coincides with (2.46) identically. This allows assuming that we have simply 

passed to a more convenient ilrst-order formalism. 

To evaluate integral (3.2), we must first find all solutions of the equation 

JH 
u(x) = Jp(~), 

JH 
p(x) =- Ju(~). 

We can next show that the following proposition holds. 

Proposition 9. If t11e conditions t11at 

a. t11e functional measure is o-like ( t11e Dirac measure), 

b. t11e operator K generating t11e perturbation theory series is known, and 

c. tl1e functional describing tl1e interactions U(u, <p) is given 

are satisfled, t11en t11e formalism admits arbitrary nonlinear canonical transformations. 

(3.5) 

This statement is based on the fact that a J-like functional measure determines the complete set of 

contributions to the path integral. (But see the discussion of selection rules in Proposition 8. In relation to 

this, we emphasize that Proposition 9 does not hold if the theory cannot be defined on the Dirac measure, 

as is the case, e.g., in Euclidean field theories.) 

Proof of Proposition 9. We consider a problem in quantum mechanics that is a (0+1)-dimensional 

analogue of the field theory. The corresponding measure is given by 

II ( 8H) ( 8H) DM(u,p) = t dudpo u- ap' J p+ a: , (3.6) 

where the full Hamiltonian 

1 2 . 
HJ=?,p +v(u)-Ju (3.7) 

turns out to explicitly depend on time through j ( t). 

We can introduce a new pair of conjugate coordinates(~, 1)) instead of (u,p). For this, we substitute 

(3.8) 
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in (3.2). Here, it is important to take into account that both measures, the one over (u,p) in (3.6) and 

the one over (~, 7J) in (3.8), are 6-like, i.e., have the same power. This allows confidently changing the 

integration order and integrating over (u,p) first. But this is true under the following condition. As noted 

above, because the measure is 6-like, it is necessary to sum over all solutions of the Lagrange equation. In 

other words, the entire phase space (u,p) must be split into subspaces separated by bifurcation lines [80[. 

Trajectories belonging to each of these subs paces then have different topologies. In this sense, each trajectory 

(phase flow) completely belongs to its subspace. It is assumed that we know the structure of the phase 

space and we consider a specific subspace in changing the above integration order. 

To evaluate the integrals, we can use the 6 functions in (3.6). In this case, the 6 functions in (3.8) impose 

restrictions on the dynamics, i.e., determine constraints, natnely, those imposed by the initial conditions 

that we specify using the coordinates ~ and 1J· Using the 6 functions in (3.8), we perform the mapping 

(u,p) _, (~, 1J). We note that the algebraic equations 

(3.9) 

completely determine the trajectory ·uc(~, ·ry) and Pc(~, 7J) in the phase space. The dynamics in the quotient 

space W are determined by the product of two 5 functions S( Uc- 8Hj I 8pc)6(pc + 8Hj I Due) remaining after 

the integrations over u and p. It can therefore be asserted that the mapping into W automatically takes 

the constraints into account because the calculation methods described above are completely equivalent to 

each other. 

Indeed, using the S functions in (3.8), we obtain 

(3.10) 

The Jacobian of the transformation is equal to one because our mapping is canonical, { ~("u,p), ry("u, p)} = 1, 

(3.11) 

is the transformed Hamiltonian, and (u,p)c(~,-ry) is a solution of algebraic equations (3.9). We note that 

the transformation of the measure does not affect the structure of the operator K and of the functional U. 
The above solution mimics canonical mappings in classical mechanics [80]. It is based on the assumption 

that the algebraic equations (see (3.9)) completely solve the mechanical problem. In this case, the problem 

is usually said to be completely integrable. 

In the above example, we have split the problem into two parts. In the first part, we found the phase 

flow (u, P)c(~, 17); in the second part, we solved the dynamic problem of finding (~, 7J) = (~, 7J)(t) E W from 

the equations 

(3.12) 

which corresponds to the quantization of the quotient space W. We note that the explicit form of Pc was 

not needed. 
We now expand the solution of Eqs. (3.12) in j, 

Ei(t) = Eo(t) + j dt' 6 (t, t')j(t') + ... , 
(3.13) 

ry1(t) = 1)o(t) + j dt1
1)1(t, t')j(t') + ... . 
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Substituting these expansions, we find that 

Then 

~o =to+ t, 

c (t t') = -6(t- t') &uc(~o, 1)o) 
'

1 
' &1)o(t) ' 

'7o =canst. 

1). (t t') = 6(t- t') &uc(~o, 1)o) 
1 

' &~o(t) · 

The Green's function g(t, t') of these equations is translationally invariant, 

&,g(t, t') = 6(t- t'). 

It can be easily seen that the following proposition holds. 

Proposition 10. If the Feynman ic prescription applies, then 

g(t- t') = B(t- t'), g(O) = 1, 

where B(t- t') is the step function. 

Proof. Indeed, with the ic prescription, the Fourier transform of Eq. (3.16) is given by 

(w + ic)g(w) = 1, 

(3.14) 

(3.15) 

(3.16) 

(3.17) 

(3.18) 

which then leads to (3.17). We note that in contrast to the causal Green's function G(t, t'), which is the 

sum of the advanced and the retarded parts, the function g(t - t') depends on only the order oft and 

t'. But, as we see in what follows, the final theory is time-reversible [52]. We also note the uniqueness of 

solution (3.17). 

We use the relations 

g(t- t')g(t'- t) = 0, 1 = g(t- t') + g(t'- t), t f t', (3.19) 

where g(t-t') is considered a distribution. We also note that the boundary condition g(O) = 1 (see (3.17)) 

has not been justified. We have chosen it based on the experience in solving quantum mechanical prob­

lems [50]. 

Having thus mapped the problem into the quotient space W, we have found a way to solve equations for 

the Green's function. But the problem of mapping into the quotient space W remains incomplete because 

the dependence on j, the Lagrangian source of quantum fluctuation, is preserved. 

Proposition 11. If the perturbation theory series generated by the operator K exists, then there also 

exists representation (3.2) with 

DM(u,p)--> DM(~,1)) =IT d~d776(~ -1- j<)6(1j- jry), (3.20) 

(3.21) 

(3.22) 
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Proof. For simplicity, we consider the (0+ 1 )-dimensional theory. Acting with the operator generating 

the perturbation series gives 

exp{- ~ Re fc+ dt](t)~(t) }e-iUT(,,,\') If 5 ( ~ _ 1 + j ~~c) 5 ( r) _ j~~c) 

= j D'PE Dcp,1 exp{ 2i Rei. dt ((~- 1)'PE + r)cpry) }e-iU-r(u"l'o), (3.23) 

where 'Pc is defined in (:l.22). The integrals over ('Ph, 'Pe) are then calculated as usual using the series 

expansion 

(3.24) 

where 
n~ n,1 

P. ( . t t t' t ) - II ~I (t ) II •I (tl) -iU-r(Uc.\':.) 
n~,n,1 Uc, 1, ... , n~,;:, 1, ... , n,1 - ~f. k e17 k e ·, (3.25) 

k=l k=l 

'P~ == 'Pc('P~,'P~), and the derivatives are evaluated at 'P/. = 0, 'P~ = 0. On the other hand, 

where the limit (j,, }ry) = 0 is assumed. Substituting (3.25) and (3.26) in (3.24), we find a new representation 

for p(E) with DM, K, and 'Pc given by Eqs. (3.20)-(3.22). In this expression, perturbations of all the 

variables are related to separate sources, and their renormalizations can therefore be analyzed separately. 

Obviously, the dimensionality of the theory cannot affect the derivation of the final formula. 

3.2. The general theory of transformations. The above example demonstrates a special role of 

canonical transformations of the integration variables. First, this allows obtaining a functional measure 

that is free of ghosts. Second, the quotient space W turns out to be homogeneous and isotropic (see (3.14)), 

which results in the equation for the Green's functions becoming solvable because we then pass to variables 

of the action-angle type. But this solution of the mapping problem seems inapplicable in the general case. 

First, we cannot be sure that the transformation to W is canonical. For example, in the Coulomb problem, 

the effect of the hidden 0( 4) symmetry is that the corresponding quotient space is not symplectic [50], [51]. 

At the same time, the general quantum theory principles (the uncertainty relation) force the condition that 

quantum degrees of freedom must belong to a symplectic subspace r•w. In other words, in general, we 

must have 

W=T'W x R, (3.27) 

where R is the space of c-number zero modes. All this also implies that the dimension of r•w can differ 

from the dimension of the original phase space. Equation (3.27) implies that we must be able to separate 

the quantum degrees of freedom belonging to r·w if we wish to map the dynamics into the quotient space 

1-l./9. 
Moreover, in integrable field theory models, there is an infinite number of (polynomial) conservation 

laws. Because of this, the above scheme of transformations to the cotangent bundle r•w (the moment 
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mapping [80]) based on solving algebraic equations of type (3.9) is inconvenient in general. In this section, 
we therefore attempt to generalize the transformation scheme. We formulate a more general way to replace 
variables in the path integral that can also be used in the field theory, i.e., in a system with an infinite 
number of degrees of freedom, and even in case where the mapping is not canonical. 

We use the following idea. As could be noticed, the classical phase flow ( u, P)c completely belongs to 
W 3 (~, 1)). We can then attempt to invert the problem, assuming that 

a. the manifold W of 0 can be reconstructed if the corresponding flows ( u, p )c are known and 
b. quantum perturbations do not take ( u, p )c outside W. 

In what follows, we show that these assumptions are justified. 

Proposition 12. The formalism of the (0+ 1 )-dimensional field theory based on a a-like measure allows 
separating the description of phase flows on the cotangent bundle T'W from the dynamics in the quotient 
space W of an arbitrary dimension if 

W = T'W = 9/H. (3.28) 

Proof. We let 

tl(u,p) = j [l d~ a1Jo(u(t)- uc(~, 'l))o(p(t)- pc(~, '7)) 
t 

(3.29) 

be a functional of u and p. We assume that (~, 71) E W. In this expression, Uc and Pc are arbitrary fixed 
functions of(~, 1))(t). Our aim is to reduce the problem to the level where Uc and Pc coincide with a solution 
of the Hamilton equation. 

We note that the relations 

u(t) = uc(~, ')), p(t) = Pc(~, 1)) 

can always be satisfied for arbitrary ~ and '7· This is indeed so because the integration over u and p also 
involves the case where these relations are valid. Therefore, tl(u, p) of 0 in general. More precisely, it is 
necessary and sufficient to assume the validity of the inequalities 

(3.30) 

We note that this is a condition only on Uc and Pc· It means that the derivatives of Uc and Pc in the 
direction of the vector (~, ~) are equal to zero if and only if all the components of this vector are equal to 
zero. 

To perform the mapping, we must substitute the unity 

1 
= tl(u,p) 

!;.c(~, '7) 

in the integral and then integrate over u and p using the li function in (3.29). As a result, we find the 
measure of the form 

1 IT ( 8H) ( 8H) DM(f., TJ) = !lc(f., '7) t d~ d71 li uc- ap: li Pc + au: . (3.31) 
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We next obtain 

j fJ d{ drys ( { - [ ~ - ~~]) s (ry - [ » + 
8
8{]) x 

where the Poisson brackets are 

{X h } = ax oh1 _ ax ah1 
' .1 a~ a'7 aTJ a~ 

and we introduce an auxiliary function h1 = hJ(~, TJ) defined by 

{ h } 
f)Hi 

uc, i --a = 0, 
Pc 

These relations can always be satisfied if the functions Uc and Pc are arbitrary. 

(3.32) 

(3.33) 

As a result, taking (3.33) into account and using the fact that the neighborhoods of { = 0 and ry = 0 

are essential in (3.30), we obtain 

·( aH1 )·(· aH1 ) IJ·(· oh1)·(· oh1 ) u ·u,--- up,--- = u ~-- u ry-- x 
ope auc , , a·ry oE, 

x j fJ d{ dry5( ~~c { + ~~cry)s( :c { + ~;ry) = 

II ( . ah ) ( ah ) 
= 5 E,- OT: 5 ry- a[ Ll.c(E,, '7)· 

t 

Using this expression, we find the sought transformed measure 

II (. f)h ) ( f)h ) 
DM(I;,'7) = , 5 ~- 8~ 5 » + a[ , (3.34) 

where the functional determinant has been canceled. 

We now recall that the variables (~, 'T}) E T*W, i.e., Eqs. (3.33) describe the motion on the cotangent 

bundle. In reality, the above transformation is a simple replacement of (u,p)(t) with composite functions 

( u, p )c ( E, ( t ), 7)( t)) . This replacement still does not have the dynamic meaning of the original problem in the 

sense that either (u,p)c(E.(t), TJ(t)) or h1(E,, 1J) remain arbitrary up to condition (3.30). We now must refine 

these quantities. The following proposition is obvious. 

Proposition 13. If the relation 

hj(~,1)) = Hj(Uc,Pc) (3.35) 

holds, then (u, P)c(~, TJ) 011 measure (3 .. 34) describes a phase Bow in the original phase space. 

Proof. A formal proof of this relation is sufficiently simple. For example, 

(3.36) 
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Here, we first use the fact that measure (3.34) is J-like and then use the first equation in (3.33). The 
same can then be easily obtained for Pc(~, TJ). In this sense, the above derivation repeats the statement in 
Proposition 12. 

Therefore, with Eq. (3.35) taken into account, if the functions (u,p)c(~(t), TJ(t)) satisfy Eqs. (3.33), 
then the measure DM(t,, ·TJ) has form (3.34), and the canonical system of equations 

. i3hj 
t, = i3T} ' (3.37) 

describes a flow in the quotient space W that has a symplectic structure. This completes the proof of 
Proposition 12. 

We note that we have considered a version of the theory where the quotient space coincides with its 
cotangent bundle, i.e., the case where W is a symplectic manifold (see (3.28)). But the following proposition 
holds. 

Proposition 14. The formalism of the (0+1 )-dimensional field theory based on a J-like measure also 
allows extending the space to a symplectic manifold (t,, r;) E T'V of an arbitrary dimension, dim T'V ;::: 
dimW. 

Proof. In other words, we want to show that we can consider a mapping into a space of an arbitrary 
dimension but one endowed with a symplectic metric. There must then exist a mechanism for separating 
"redundant" degrees of freedom of the extended quotient space T*V from the dynamic degrees of freedom 
such that the dependence on them can be canceled in what follows. This implies the possibility of reducing 
T'V to the physical quotient space W. At this stage, we assume that W is a symplectic space, W = T'W. 

We note that we could assume the dimension of T'W to be arbitrary until condition (3.35). To 
formulate the reduction scheme, we assume that W is a subspace in T'V, W C T*V, i.e., that dimT*V;::: 
dim W. We choose the physical group of variables (~, TJ) such that 

(~, TJ) E W, dim{O = dim{TJ}, (3.38) 

with the other variables (t,', TJ') assumed to be "nonphysical." We can then assume that 

(3.39) 

i.e., the dependence on the unphysical degrees of freedom disappears in the c = 0 limit. 
In view of the property selected in (3.39), the operator K can be written as 

But because of (3.39), the last two terms can be omitted in theE= 0 limit. As a result, we obtain 

(3.40) 

We now consider the measure DM. Taking the property in (3.39) and the explicit form of opera­
tor (3.40) into account, we obtain 

28 



because the dependence on the auxiliary variables disapears in the £ = 0 limit. We now note that 

j II dX(t) o(X) = j dX(O). 
t 

Therefore, 

DM(~,ry) = d€'(O)dry'(O) If o(~- ~; )o(!j + ~"!). (3.41) 

In what follows, we assume that the integrals over €' (0) and ry' (0) cancel because of normalization, which 

was to be shown. 

The following generalization of Proposition 14 is obvious. 

Proposition 15. Quantum degrees of freedom can span only even-dimensional symplectic manifolds. 

This conclusion naturally fits into the classical quantization scheme based on the uncertainty relation. 

But it is remarkable that the discussed quantization scheme is capable of selecting a subset of q-numbers. 

We let T'W denote this subset. 

Proof of Proposition 15. We intend to show that it is possible to define the splitting 

W=T'WxR, (3.42) 

where R is a subspace of c-numbers. To obtain this, we assume that instead of Eq. (3.38), we have, e.g., 

(,;, ry) E W, dim{O > dim{ry}. (3.43) 

We recall that by definition, T'V is an even-dimensional symplectic manifold. All this means that the 

operator K is given by 

where Nx = dim{ X} and the scalar product (X· Y)N contains N terms. We have thus added N,-N~ 

missing variables r/. Derivatives with respect to the ren1aining "unphysicaP' variables are omitted in view 

of Proposition 14. 

We now note that in the expression for K, the last term that is proportional to f.", can be omitted in 

the £ = 0 limit. We must therefore assume that j"· = 0 in what follows. As a result, in the c = 0 limit, we 

find the measure 

DM(~, ry) = II d(N,,)~ d(N,-N,,)e d(N,,)"d(N,-N,)"' x 

t 

where we take ah1jary' = 0 into account. Next, we can always replace !j' + ah1 ja~--> !j' because there is 

no dependence on r/'. As a result, we obtain 
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where for simplicity of notation, we omit the differential measure d(N,-N,,)r/ because none of the variables 
depend on 7)'. 

We note that the expression for the measure no longer depends on J<, where ~ is conjugate to 7]', 
dim{(}= N,- Nw Precisely this effect leads to the reduction of those quantum degrees of freedom that 
do not constitute canonically conjugate pairs. 

Obviously, if it turns out that dim{(} < dim{7J}, then~ and '7 must be transposed in the original 
expression for the operator K. Therefore, in the general case, 

DM(" 7]) = dfl rr b(min{N}) ("- 8h;) b(min{N}) (·n + 8h;) '' (N,-N,,) ' 8 ., 8< ' 
t 7] ' 

(3.44) 

where under the condition that 8(0) = 1/2, 

(3.45) 

is the measure for the integrals over c-number variables, and accordingly 

(3.46) 

where min{N} = min(N0,N"). 
We have thus shown that if the variable X does not have a canonically conjugate pair, it must be 

considered a c-number and dimT"W = min{N}. The possibility to isolate dflcN,-N,,) implies that W is 
factored into direct product (3.42). 

We can now pass to considering field variables. As an intermediate model, we can take the example 
where u(t) is an N-component quantity. The function u;(t) = u(i, t) can then be considered the image 
of the field on a spatial lattice, where i is the coordinate of a cell. As a result, we obtain the following 
proposition. 

Proposition 16. If uc(x, t; ~. 7]), Pc(x, t; ~' 7]) is an exact nonsingular solution of Eqs. (3.33) satisfying 
condition (3.30) and if Eq. (3.35) is satisfied with the full Hamiltonian given by 

H;(uc,Pc) = J d3 xH;(uc,Pc) = 

= J d3 x { ~p2 + ~(V'uc) 2 + m 2
u2 + v(u)- ju}, (3.47) 

then the differential measure of the scalar theory on the quotient space(~, '7) E W is given by 

rr ( . bh; ) (. bhJ ) DM(~, 7]) = dfl(N,-N,,) t b ~(t)- b7](t) b 7](t) + b~(t) , (3.48) 

where dim{n = dim{'l} = min{N,,N"}, the differential measure is given by (3.45), and the operator 
generating quantum perturbations is 

{3.49) 
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Proof. This statement directly follows from Propositions 12-15. It is remarkable that a field theory 

problem on the quotient space coincides with a quantum mechanical problem. 

Substituting (3.35) in (3.33), we find the relations 

{uc(x;~(t),rJ(t)),uc(Y;~(t),q(t))} = 0, 

{Pc (x; ,;(t), q(t)), Pc (y; ((t), 7J(t))} = 0, 

{uc(x; E(t), rJ(t)) .Pc(Y; .;(t), q(t))} = o(x- y) 

(3.50) 

that must be satisfied for arbitrary values of j(x, t). The quantization scheme found above thus results in 

transferring the canonical scheme into the quotient space. 

4. The 0(4, 2)-invariant scalar theory 

We start with a scalar theory, which is simpler than the theory of the vector Yang-Mills fields but pos­

sesses the highest conformal symmetry group 0( 4, 2) (which is higher than the group of general coordinate 

transformations). 

4.1. Generating functional for a massless scalar field. We evaluate the 2N-dimensional path 

integral 

p({J, z) = e-iK(je) I DM(.;, q) e-iU(u,,op,)e-N(~."u") 

for the 0(4, 2)-invariant scalar theory. Here, 

where 

and finally 

It is assumed that 

N({J, z; uc) = n({J;, z;; u,) + n*({Jr, zr; ·u,), 

f(q,u,) =I dxe-iqxEPuc(x), 

U(uc.'Pc) = 2gRe / d3xdt<p~(x,t)u,(x;.;(t),r?(t)), 
lc+ 

n ( t) = (t)8u,(x;.;(t),7J(t)) - (t)8u,(x;.;(t),7J(t)) 
'Pc x, e, 07](t) e" 8.;(1) ' 

II ( . ah . ) ( ah . ) 
DM(u) = dll t d.;(t) drJ(t) o .; - aq - J< o ·iJ + a.; - J" , 

W =T*Wx R, (.;, q) E T*W, dimW = 8, dimT*W = 2N S 8. 
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We note that, generally speaking, r(q, uc) # 0 because even if the fields sufficiently rapidly decrea;;e at 
cr"'" Uc = uc(x; ~(t), l)(t)) depends on singular (generalized) functions ~(t) and !)(t) that are defined through 
Green's function (3.17) (see Proposition 10). 

We find it convenient to replace variables in 2N -dimensional path integral ( 4.1) such that the depen­
dence on the 2N sources Jx, j~ is eliminated from mea;;ure (4.7). If we make the shift 

~(t) __, ~(t) + j at, g(t- t,)J,(t) = Wl + ~,(t), 

l)(t) __, l)(t) + J dt, g(t- t,)j"(t) = l)(t) + '7J(t), 

where g(t- t!) is Green's function (3.17), then everywhere 

Therefore, 

DM(~, '7) = df.l IJ d~(t) dl)(t) '*- w(rJ + TIJ))5(iJ), 

( 4.10) 

( 4.11) 

(4.12) 

where we take into account that ~ and I) are canonically conjugate variables and accordingly 8h/ 8~ = 0. 
We also introduce the notation w;('7) = 8h('!)/81);. 

Making shift (4.10), we must redefine the perturbation-generating operator as 

2K = Rej dt { ~1 (t). e,(t) + fiJ(t). e"(t)} = 
c+ 

4.2. The structure of the 0( 4, 2)/0( 4) x0(2) quotient space. 
tization of the 0( 4) x 0(2)-invariant solution [84] 

It is regular if the four-vectors <; and cr are complex and is real if 

<;*=a= xo + iA.'. 

Expression ( 4.14) can then be written as 

(4.13) 

We are interested in the quan-

(4.14) 

( 4.15) 

(4.16) 

where ..\ 2 = A5- >.f = 1. This solution depends on eight parameters (xoiL, .\i, '!]), where fl = 0, 1, 2, 3 and 
i = 1, 2, 3. Substituting these expressions in the formula 

( 4.17) 
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we obtain 

Equation (4.18) can be taken as the definition of the set of values of the variable '7· 

We assume that the physical quotient space W is constrained by the inequalities 

7)
2 2 0, -oo S xo~ S +oo. 

The first of these ensures the positivity of energy of the classical field. 

(4.18) 

(4.19) 

We must now find the reduction of quantum degrees of freedom that leads to Eq. (3.27). For this, we 

must once again consider Eq. (3.33), 

OH 
{uc,h}--g-=0, 

Pc 
( 4.20) 

As noted above, Eqs. (3.3;!) must be satisfied for any Ji; and j", in particular, for j~; = 0 and j" = 0. 

Therefore, with Eq. (4.18) taken into account, the first equation in (4.20) gives 

As a result, we find that the sought parameterization of the field is given by (with A o= 1>-,1) 

uc(x; ~, TJ) = 2TJ<I>'(>-) {(1J2e- q,2(>-)·ry2(x- xo)2- q,2(>-))2 + 
..;9 

+ 4172<I>2(>-)(~(1 + ,>,2)1/2- <I>(A)A,(x- xo)i)2} -1/2 

It can be easily verified that solution (4.22) identically satisfies the first equation in (4.20). 

Parameterization ( 4.22) is useful because in this case, 

Then the equations 

~(t) =<I>( A), r)(t) = 0 

determine the dynamics in the space W and have the solutions 

W) =' <I>(A)(t- to), ry(t) = 1Jo = const, 

( 4.22) 

(4.23) 

(4.24) 

(4.25) 

which completes the definition of the functional measure in the quotient space W = 0(4, 2)/0(4) x 0(2). 

Substituting (4.25) in (4.22), we find that the solution thus derived identically satisfies the original Lagrange 

equation. As a result, we obtain 

{~,7J} E T*W, dimT"W = 2, {xo,,A,}ER, dimR=6. ( 4.26) 
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4.3. Conservation laws in the quotient space. We return to boundary condition (2.17). It implies 
that 

Uc(X E oa;;:,) = Uc(X E oa;;_,), ( 4.27) 

where 8a~ are the boundaries at the infinitely remote hypersurface <700 of the respective branches C±. 
Depending on the topology of the field uc(x, t ), conditions ( 4.27) can constrain solutions of Eq. ( 4.24). 

To clarify this remark, we consider the simplest problem of the motion of a particle in a potential well 
v( u). The action is then given by 

Sy(u) = { dt { ~u2 - v(u)}, 

where (0, T) is the interval of motion (the initial coordinate is therefore not specified). If the particle energy 
E is fixed, it is necessary to integrate over the time T. The Dirac measure DM of this problem contains 
two 0 functions [56]. The standard (one-dimensional) o function leads to the equation 

where 7)q is the energy of quantum corrections and Hi ( u(T)) is the full Hamiltonian at the instant T. The 
second (functional) 0 function gives the equation of motion 

ii+m2u+v'(u) =j. 

The solution of this equation at j = 0 is specified, e.g., by the energy ry(O) and the initial instant ((0). We 
recall that the integrals over rj(O) and ((0) must be taken in general. 

In deriving the 6-like Dirac measure, we used the periodic boundary condition 

u(t E 8C+(T)) = u(t E 8C_(T)). 

Next, because we wish to describe a periodic motion in the potential well, this boundary condition can be 
satisfied for a set of values of ((0). It can be easily found that if ((t E C±) =(±,then 

~+ - ~- = L'.l; = kP(E) + t0 , k = 0, ±1, ±2, ... , 

where P(E) is the period and 0 :0: to :0: P(E). Precisely because it is necessary to sum over all k, the energy 
level quantization arises [56]. We also note that the boundary condition gives the relation '7+ = '7-, where 
ry(t E C±) = '7±· 

Because '7 and ~ constitute a canonically conjugate pair (see Sec. 3.1), they can be used as the respective 
generalized momentum and coordinate. Normalizing (to the period, we then find that the above uncertainty 
in choosing the initial condition corresponds to a rotation with the number of laps k = 0, ±1, ±2, ... , i.e., 
the number k determines how many times the circle is covered by the mapping ( u, p) -> ( (, '7). It is then 
necessary to sum over all integers k. The same effect results in the momenta and positions of topological 
solitons in the sine-Gordon model defined on the branches C+ and C_ coinciding, but only up to a certain 
number. Summation over its values leads to the quantization of the topological charge of solitons and hence 
to their "sterility'' with respect to the emission and absorption of particles [52]. 

If a problem with a closed classical trajectory is investigated, then our boundary conditions lead to 
periodic relations between the integration constants 1;(0)+ and 1;(0)_ pertaining to the respective contours 
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C+ and C_. This property of trajectories in the configuration space is usually formulated as the condition 

for the existence of the homotopy group [85]. 

There is also another possibility where the trajectory is nonclosed, i.e., does not have topological 

properties. But it is still necessary to take boundary condition (2.17) into account, ensuring the closedness 

of the trajectory on the full time contour C = C+ + c_. In this case, we conventionally speak about 

a homotopy group singlet. Therefore 1 we must first determine the relation of the contribution under 

consideration to the homotopy group. It can be easily seen that the topological charge of the 0( 4) x 0(2)­

invariant solution discussed here is equal to zero [65], and we therefore consider a homotopy group singlet. 

But we show that the following proposition holds. 

Proposition 17. The renormalized energy-momentum tensor Q~ = T~~(uc) coincides with the total 

four-momentum of incident particles. 

Proof. With solution (4.25) substituted in (4.22), it follows from (4.27) that 

r/'.. { ('l~(t + t+) 2
- 'l~(x- "'+)2

- 1)
2 + 4ry~((t + t+)(1 + ,\~) 1 1 2 - x,+(x- x+),) 2

} = 

= 1H ('7'.. (t + L )
2 

- '7:~ (x - X-)
2 

- 1 )
2 + 47)'.. ( (t+ L )(1 + x:y/2 - x,_ (x- x_ );)

2
}, 

which must be satisfied for x~ E rJ00 • This directly implies that 

'7+='7-, Ai- = Ai-, i = 1, 2, 3. ( 4.28) 

But no conditions on x~.± arise. As the result, differential measure (4.23) is in fact given by 

( 4.29) 

where 

Making the shift X_, :c- X±, we c:an isolate the dependence on X± in r(q, Uc), 

(4.30) 

where r'(q, Uc) is already independent of Xo. We then see that the variation of the field with respect to X± 

gives the factor e-iQ,,l>'', where Q~(uc) = T~~(uc) is the renormalized energy-momentum tensor. 

Expanding the integrand iu (4.1) in powers of lr(q,uc)l
2 

and taking (4.30) into account, we find that 

the integration over L'> results in the 5 function 

§(4) ( 2>- Q(uc))' 

' 

( 4.31) 

which fixes the energy-momentum conservation laws, thus relating the total four-momentum of the incident 

(or produced) particles to the four-momentum of the classical field Q~('uc)· 

We now show that the tensor Q~ involved in (4.31) is an energy-momentum tensor. By definition, 

( 4.32) 
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or, equivalently, 

U(uc,e) = { S(uc)- g J dxuc(x)e(x) 3
} - { S(uc) + g J dxuc(x)e(x) 3

} 
c+ c_ 

(4.33) 

We consider the difference oS( Uc) = Sc+ ( Uc) -Sc_ ( Uc), which was neglected in the previous expressions 
(see (2.56)). This difference is the variation of the action oS(uc) with respect to the translation group 

ox, = tl.w 

In the lowest order in tl., we then have 

( 4.34) 

where T,,(uc) is the energy-momentum tensor of the field and the last term includes higher powers of tl.. 
It can be easily verified that this term plays no role. Indeed, we can write 

(4.35) 

where a denotes the corresponding derivative at zero. Using this expression, we find that the 6 function 
fixing the conservation laws is given by 

e'f'o( l.::Pi- Q- <;)e-iSS(r) 

' 

( 4.36) 

But it is impossible to shift the argument of a 6 function because the identity 

(e-'<f- 1)6 ( l.::Pi- Q- <;) e-i6S(r) =o 0 

' 
( 4.37) 

holds. Here, we use the property of the 6 function 

This completes the proof of Proposition 17. 

As a result, we have 

( 4.38) 

where dM is defined in ( 4.29). 

5. Non-Abelian gauge theories 

In what follows, we consider only vector gauge fields, assuming that interactions with matter fields 
(quarks) can be taken into account within the perturbation theory. Therefore, a part of the results in this 
section pertaining to the Yang-Mills field theory have limited applicability. For example, we cannot claim 
that the renormalization of quark masses is absent. This problem requires additional discussion. 
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5.1. The Yang-Mills theory on the Dirac measure. The action 

S(A) = _1_ j d4 x F1wa (A)Ft"(A) 
2g 

of the theory under consideration is 0(4, 2)-invariant. The Yang-Mills fields 

are covariant under non-Abelian gauge transformations. We do not specify the gauge group. 

For simplicity, we begin with the integral 

N = e-iK(je) J DM 8 -2iU(A.e), 

where the measure 

p.,a x 

is explicitly conformally and gauge invall"iant if ]pa = 0. The covariant derivative is given by 

and the perturbation-generating operator is 

2K(je) = Re d4x P . 1 5 5 

c+ 5Ja (x, t) 5epa(x, t) 

As usual, ],a and e~ must be set equal to zero at the very end of the calculations. The functional 

(5.1) 

(5.2) 

(5.3) 

(5.4) 

(5.5) 

(5.6) 

describes interactions. All the quantities are defined on a complex Mills contour. The terms ~ e -> +0 can 

be omitted in (5.6). Therefore, U(A, e) = O(e3 ) contains only odd powers of ea,. This implies that the 

functional U(A, e) can be written as 

U(A, e)=- j d
4
x { e~(x) M:(x)} 

3 

S(A). (5.7) 

5.2. The first-order formalism. The noncovariant formalism involving the electric field E~ = F~0 

provides an introduction to the Hamiltonian description that we need here. In this case, the action is given 

by 

11 4 {· 1( 2 2 ) } Sc±(A,F)=- dx Aa·Ea+2Ea+Ba(A) -Aoa(D·E)a, 
g c± 

(5.8) 

where the magnetic field 

(5.9) 
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is not an independent quantity and is introduced only for simplicity of notation. We note that Aoa does 
not have a c:onjugate pair and the action S is linear in this quantity. 

Measure (5.4) can be written in the first-order formalism, 

DM(A, P) = II II dAa(x) dPa(x) S(D~ · Pb) X 

a x 

x s(.P ( ) SH1(A,P))s(A ( ) _ m1(A,P)) 
a X + SAa(x) a X SPa(x) ' (5.10) 

where 

(5.11) 

H1(A, P) is the full Hamiltonian, 

H1 = 
2

1

9 
J d3x (P~ + B~(A)) + J d3xjaAa, (5.12) 

Pa(x) = Ea(x) is the momentum conjugate to Aa(x), and Ba(A) is defined in (5.9). In the expression for 
the measure DM, we can introduce an additional S function 

II II S ( B~ -(rot A)~- ~Elk [Al, Ak]a). 
a x 

(5.13) 

Hamiltonian (5.12) then becomes symmetric with respect to the fields Ea and Ba. 
We note that the firstS function involved in (5.10) follows from the linearity of the action in Aoa· The 

time component Aoa indeed has the meaning of a Lagrange multiplier for the Gauss law 

(5.14) 

It must be stressed that there is no equation for Aoa· Moreover, the dependence on Aoa has entirely 
disappeared because the functional U(A, e) describing interactions is determined by the third derivative 
with respect to A~a (see (.5.7)). 

5.3. Mapping into the quotient space. Measure (5.10) does not have a physical meaning, because 
for a given a, it depends on the three-vector potentials Aa(x). The "unphysical" degrees of freedom are 
usually eliminated using the gauge-fixing Faddeev-Popov ansatz. But we prefer another approach. 

As in Sec. 2, we introduce the quantity 

f'.(A, P) = j Df_ D17 II S(Aa(x)- ua(x;f_(x), 1)(x)))o(Pa(x)- Pa(x; ~(x), 17(x))) 
a 

(5.15) 

to realize the transformation 

u: (A,P)a(x)...., (~,17)(x) (5.16) 

to space-time local functions (~,q)(x) using the composite vector functions (u,p)a(x;~(x),1)(x)). It is 
assumed that L; ¥c 0. 

After transformation (5.16), we obtain 

1 ( iiH ) ( SH ) DM(~,1)) = f'.c(u) IIII d~d1]dAadqaii(D~ ·Pb)ii i.ta(x)- iipa(~) ii Pa(x) +Sua(~) · 
a x 

(5.17) 
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In general, the set ~, rJ is arbitrary (see Proposition 14 in Sec. 3.2). Along with ~ and fJ, we can therefore 

consider the phase of gauge transformations ),a and its conjugate charge qa. The dependence on ),a(x, t) 

and qa(x, t), however, was separated from the sets ~(t) and ry(t) for convenience. 

Repeating the calculations in Sec. 2, we obtain 

DM(~,rJ,),,Q) = IT d~dryd),dqS(D~(u) ·Pb) x 
x,t,a 

(.5.18) 

Equation (5.18) is satisfied if and only if the functions hj are determined by the Poisson equations (with 

given three-vectors Ua and Pa) 

(5.19) 

where (~, rJ) and (),, q) are chosen as canonically conjugate pairs in the Poisson brackets. 

If Eq. (5.19) is supplemented by the additional relation 

hj(~,ry,),q) = Hj(Ua,Pa), (5.20) 

then, as shown above, Ua and Pa must coincide with solutions of the original equations under the condition 

that Eqs. (5.19) are satisfied on measure (5.18). It then follows that 

D~(u)·Pb'=o (5.21) 

because Pb is a solution of Eqs. (5.19) for arbitrary j 1,a. This remarkable result is a consequence of the 

mapping into the invariant space g (H to which the classical phase flow completely belongs. Therefore, the 

6 function in (5.18) corresponding to Ui.21) becomes I1x S(O) identically. This infinite factor is canceled by 

the normalization and is not explicitly written in what follows. 

The mapping described above thus gives 

(5.22) 

Here, we take into account that the functions (u,p)a are independent of qa. The Hamiltonian hj is defined 

by Eq. (5.20), 

2ghj = J ,Px (p~ + B~(u)) + J d3xjaUa '= h + J, 

where h is the Hamiltonian unperturbed by the force ja. 

In accordance with Proposition 15·, we can eliminate the dependence on qa, 

x,u 

(5.23) 

(5.24) 

with the "velocity" w = 8hj 8ry. Otherwise, nothing changes as compared with the scalar theory considered 

in the previous section. 

39 



As follows from (5.24), we must consider time-independent gauge transformations 5.a(x) = 0. 
this restriction, we must generalize Eqs. (5.19). If we therefore consider the relation 

instead of the first equation in (5.19), then we must replace 

x,a x,a 

To drop 

(5.25) 

(5.26) 

in (5.24), where !1a(x) is an arbitrary function of y and t. This is the most general representation for the 
gauge measure in our formalism. 

As a result, the basic elements of the Yang-Mills theory in the quotient space Q /H are as follows: 

1. The measure is 

DM(~, 1), .\) = dR II d.\a d~ d1) o(5.a(x)- Oa(x))o(~- w- jt;)o(iJ- )ry)· 
x,a 

It can be noted that 

J II d.\a o(5.a(x)- Oa(x)) 
x,a 

implies the integration over all functions .\a(x, t) arbitrarily depending on time. On the other hand, 

J Ilx,a d.\a o(5.a(x)- Oa(x)) 

J f1x,a d.\a 
"' 0. 

(5.27) 

(5.28) 

Therefore, our normalization to the gauge group volume differs from the standard one. But this must not 
affect the final result, because only gauge-invariant quantities are evaluated. 

2. The quantum perturbation-generating operator is 

(5.29) 

3. The functional U(u,ea) describing the interaction depends on the auxiliary field 

(5.30) 

where summation over repeated indices is understood. We note that .\a(x) is a c-number function and the 
dependence on nondynamic variables has been dropped as a result of the red1..:1ction. 

5.4. Gauge invariance and divergences. If the perturbation theory is formulated in gauge­
invariant terms of the color electric and magnetic fields Ea. and Ba, then "unphysical" degrees of free­
dom are automatically eliminated. We can therefore formulate the following proposition within the above 
formalism. 
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Proposition 18. Each order of the new perturbation theory with respect to 1/ g is explicitly gauge 

invariant. 

Proof. For the proof, we use the fact that the operator K(je) acts in the quotient subspace TW*. It 

then suffices to show that the functional U ( u, ea) is gauge invariant. For this, we use the representation 

(5.31) 

which can be obtained from the explicit form of ea (see Eq. (5.30)). This expression is manifestly gauge 

invariant because the operator 

{ (
e,- . aua, _ e . aua, ) . _!__ } 
; a.,, " iJ< au "> ak 

is a singlet of the gauge transformation group. 

Indeed, representation (5.31) can be written as the recursive relation 

1/ { a a} U(u,ea) = g dx e, · a1J- e,, ·a~ F2(u), (5.32) 

where the scalar product symbol indicates summation over all canonically conjugate pairs(~, ry) and it must 

be assumed that F2(u) = F2(u(~,1))) is a composite function of~ and 1). In precisely the same way, we 

have 

F2(u(E,17)) = {ec !, -e,1 · :~}F1(u(~,ry)), 

F1(u(~,ry)) = {e,· :1) -e,1 :~}FM""(u(~,1J))FMva(u(~,l])) 
(5.33) 

We now note that the differential operator in F1 ( u) is independent of the field ua. Therefore, F1 ( u) is a 

gauge-invariant quantity. For the same reason, all F1(u), l = 2, 3, are gauge invariant. The proposition is 

proved. 

This result implies that perturbation theory contributions cannot violate the non-Abelian gauge sym­

metry. Next, we can show the following important property of the perturbation theory considered here. 

Proposition 19. The perturbation theory in the quotient space does not contain divergences, at least 

in the vector-fleld sector, if 

jS(u)j < oo. (5.34) 

Proof. The action of the operator of quantum perturbations gives 

N = / Dli1 :e-2iU(u,jJ :, (5.35) 

where 

I dt {- a - a } -
U(u,j) =. 3! (2i)3 j<. Dry - j". a~ F2(u) (5.36) 

and 

F2(u) = J d3 x F2(u). (5.37) 

Equations (5.36) and (5.33) directly imply condition (5.34). 
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5.5. Generating functional in the Yang-Mills theory. We propose constructing the event 
generator as 

p(a,z) = J dM(~o,'lo:.\a):e-iU(u,,e),eiQ,(u,)C>.''e-N(<>,z;u,), (5.38) 

where the operator U(uc,e) is defined in (5.36). The functional N(a,z; uc) was introduced in (4.2) and is 
expressed (see ( 4.3)) through the "vertex function" 

r( ) _ Jd iq.z 8So(uc) 
q,uc- xe, (·)· 

Ullc X 

In reality, if the color charge is confined, the generating function thus defined is trivial, ap(a, z)/8z = 0. 
Therefore, in the perturbation theory formalism described here, which is closed in the sense of being 

free of divergences and therefore being applicable at any distance, the main problem is to find asymptotic 
states, i.e., the fundamental Lagrangian of the theory and the corresponding functional N(a, z; uc)· 

6. Conclusions 

It may seem that we enter a new stage in constructing the Yang-Mills theory, where the main formula 
for the generating functional p(a, z) that is capable of describing the interaction at any distance becomes 
a one-line relation. The calculations are then so complicated that they are accessible only to sufficiently 
powerful computers. As a result, all the intermediate stages of the calculations are done by computer and 
do not require our interference. 

In reality, this is not the case. The exact evaluation of integrals (5.38) is most probably beyond the 
power of modern computers and is unlikely to ever become accessible. This highlights the remark that 
the previous formulas do not make it totally obvious that the color charge is permanently confined within 
hadrons. We are currently investigating this problem. In doing so, we must of course start with simpler 
problems that admit approximations justified by specific conditions in the problem. One of these is the 
asymptotic regime with respect to multiplicity as n--> nmax· The analysis of this asymptotic regime shows 
that the process must then be "hard" in the sense that we can expect the mean transverse momentum to 
be 1r /4 greater than the mean longitudinal one. But this is then the asymptotic freedom domain, where 
a, «: 1, and QCD predictions can he used. 

Analysis of QCD predictions in this regime shows that the ideology of the leading logarithmic ap­
proximation is unacceptable in this case because the logarithmic accuracy of the contribution estimates is 
insufficient to describe the kinematic conditions under which the particle momenta are only insignificantly 
different (the inelasticity coefficient is close to unity) [7]. 9 For this reason, QCD has low predicting power 
in the domain of very high multiplicities. The proposed perturbation theory is "superconvergent," and we 
therefore hope to obtain a higher (power-law) accuracy of the predictions. 

Another class of problems that we believe to be interesting is related to deeply inelastic scatterings. 
They also assume interactions at small distances and must therefore be sufficiently simple. Our interest 
in this problem is related to the fact that the proposed theory is an expansion in powers of the inverse 
coupling constant. In this formulation, the notion of the running expansion para1neter is inapplicable [53]. 
This makes it particularly interesting to investigate how the asymptotic f~·eedom is formulated in this 
approach. In addition, our formulation does not involve the notion of a gluon and hence does not involve 
infrared divergences. It is therefore interesting to investigate the so-called "small-x problem" [86] within 
our approach. 

9 We are especially grateful to L. N. Lipatov for a discussion of this point. 
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Using the lattice expansion is natural in formulating the theory in terms of path integrals. We note 

that the integrand in (5.38) does not contain time derivatives; its representation on the temporal lattice is 

therefore free of ambiguities that are inherent in the representation of path integrals (see, e.g., [87] and the 

references therein). 

The lattice constant can depend on the conditions in the problem under investigation. For example, it 

is easy to understand that particle momenta are small in the asymptotic regime with respect to multiplicity. 

In the first approximation 1 therefore: the classical field configuration ua does not play a considerable role. 

The asymptotic regime with respect to multiplicity is the simplest case in precisely this sense. 

Finally, it is well known that the S-matrix interpretation of Wigner functions allows formulating 

the theory in terms of kinetic equations and also verifying the validity of this description in the light of 

quautum perturbations [2], [3]. This can oerve to relate the field theory description to the description of 

dissipative structures. For example, the above formalism may be useful in investigating the stability of 

ordered structures arising in dissipative systems [88] and in clarifying the role played by the topology and 

the structure of the quotient space in their formation and stability. This may have great importance for 

applications. 
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