


1 Introduction

It is known that the frequency spectrum of a point-like charge moving uniformly with
a velocity v greater than the light velocity in medium extends to infinity. The integral
radiated energy and the photon number are infinite. This is due to the point-like
structure of a moving charge whose infinite self-energy is a reservoir allowing charge
to move uniformly despite the energy losses due to the radiation, ionization and the
polarization of the surrounding medium. The easiest way of obtaining the finite
frequency spectrum is to consider the charge of finite dimensions. This was done in
a nice paper [1] where the charge density having zero dimensions in the transverse
direction and the Gauss distribution along the motion axis was considered. The
frequency spectrum obtained there, extended up to v/a, where a is the parameter
of the Gauss distribution. Obviously, this charge distribution is rather unphysical.
The next attempt was made in [2] where the charge distributions were chosen in the
form of the spherical shell, Yukawa distribution and that of {1]. It should be noted
that the authors of [1] and [2] related their charge densities to the laboratory frame.
It seems to us that it is more natural to relate charge densities to the rest frame of
the moving charge. There are two reasons for this. First, the charge form factor of a
moving charge is the Fourier transform of a charge density related to the rest frame
of a moving charge. Second, in another laboratory frame moving relative the initial
one with a constant velocity, the charge density is no longer spherically symmetric.
So, we prefer defining the charge density in its rest frame. Then, charge and current
densities in the laboratory frame are obtained by the Lorentz transformation. Solving
the Maxwell equations with these densities, we find electromagnetic field strengths
and the radiated energy flux. This is essentially the procedure adopted by us. In
addition to the current densities studied in [1,2], we considered the charge density
uniformly distributed inside the sphere and the spherical Gauss distribution.

A charge uniformly moving in medium radiates if its velocity exceeds the light
velocity in medium: If there is no external force supporting this motion, the charge
should be decelerated. In the absence of dispersion, the total energy (obtained by
the integration over the frequency spectrum) is infinite for the point-like charge. For
the charge of finite dimensions, this quantity is finite. Equating it to the kinetic
energy loss, one can find how moves a charge losing the energy due to the Cherenkov
radiation. This is done in subsection (2.1).

Another way of getting the finite radiated energy is to take into account the
medium dispersion. For the medium without damping, with dispersion law defined
by a one-pole formula broadly used in optics, the finite expressions were obtained
in [3] for the total (that is, integrated over w) radiated energy and the number of
photons. Equating the energy radiated per unit length to the kinetic energy loss we
find how varies the charge velocity due to the Cherenkov radiation.

For the medium with damping, closed expessions for frequency distributions of
the radiated energy and the number of photons were obtained in [3,4]. Yet, they
were slightly inconvenient for applications, as they involved the Bessel functions



of complex argument. In this treatment, we use simple approximate radiation in-
tensities found in (3], which, for the typical experimental conditions, agree with a
great accuracy with the exact ones. They are applied to two substances for which
the parametrization of dielectric permittivity is known. However, the following am-
biguity arises. Due to the medium absorption, the position and the value of the
frequency distribution on the surface of the observation cylinder essentially depend
on the cylinde radius and the damping parameter. This means that, in the pres-
ence of damping, the Cherenkov frequency spectrum is not properly defined (since
it depends on the observation distance).

So far, we implicitly assumed that the measuring device is in the same medium
where the charge moves. However, the charge usually moves in one medium while
observations are performed in another one. For example, in the initial Cherenkov
experiments, the electrons moved in water, while the observations were made in air.
Complications and ambiguities arising from such an experimental procedure are also
discussed.

2 Cherenkov radiation from the charge of finite
dimensions
Consider the charge of the finite dimensions moving uniformly in the medium with

the velocity v directed along the =z axis. Let its charge density in the reference frame

where it is at rest, be spherically symmetric: epci(r’) where v = /272 + y? + 2.
In the laboratory frame (relative to which a charge moves with the velocity v}, the
charge and current densities are given by

pL = eypen(r), J: = vpL,
where 7 = [p? 4+ v*(z — vt)2]'/?, p = V2T + y%, v = (1 — *)"% and B = v/c. The
Fourier transform of py is defined as

1 7 .
Po = 2—71__/ dt exp(iwt)pr(t).

Making the change of variables (¢ = z/v + pz/yv), we transform p,, to the form
e .
po = —exp(i)) f(p), ¢ =wz/v
v

where
o0

/cos (—zx)pcr(pV1 + 2%)d

The electric scalar and magnetic vector (only its z component differs from zero)
potentials are

o (2., 2) = - /—exp ik R)po(z',y, 2 )dV', A, = Bued,.



Here R = [(x — ') + (y — )2 + (2 = 2"))"%, ko =kn, k=w/c,and n =  Jfeu
is the refractive index of the medium with parameters ¢ and u. Now we take into
account the expansion

%exp(iknR Zcmcosm(d) {1 / dk, explik.(z — 2')]GH +
m=0 —kp
9 —kn 00
+3 / + / Jdk, explik.(z — )]G}, (2.1)
T —00 kn

where

G = g (k2 — k2o ) HO (k2 ~ K2p3),
1
(2) _ 1.2 2 _ L2 = -
G’ = In(\k2 — knp ) Km(VEE = kops)s e = 7.

Further, J.,, H,(n”), I, and K, are the Bessel, Hankel, modified Bessel and Mac-
donald functions, resp. Substituting this expansion into @, and integrating over 2’
and ¢, one gets

2
O(r,9.2) = 2% exp( i3, ~ VA1 + 201 - 5, Hos], A, = Beud,

where

t
o, = / / prdpdt cos(L2) Jopen(pV/1 + £2),
yv

and

t
o, = //depdt cos(%)]opc;!(pxﬂ + 12).

Here and further, we drop the arguments of the usual and modified Bessel functions
if they are kpy/n? — 1/3? and kpy/1/8? — n?, resp. The integration over p and t runs

over the (0, 00) interval.

We intend to find the energy flux in the radial direction through the surface of a
cylinder of the radius p coaxial with the motion axis. It coincides with the energy
radiated per unit cylinder length and per unit frequency, and is given by

d*E
S = dzdw
Thus, we need F, and H;. They are equal to

= —npc(EHy + E7Hy).

2relpw

E, =

(1=

i) exp(“2 )00, = DH®, + 2001 - 8.)Ko),

He = 2% exp(“2) 1/~ 73708, — D A0, + 2001 - 6K 0],

c?



Substituting them into S,. one gets

Sy(w) = F - Spp, (2.2)
where , .
_etuw 5
Str = 3 (1~ Bgnz) (2.3)

is the Tamm-Frank frequency distribution of the energy radiated by the uniformly
moving point-like charge per unit length and per unit frequency [5], and

F = 1672292 (2.4)

is the factor taking into account the finite dimension of a charge (form factor, for
short). The number of photons radiated by a moving charge per unit length of the
cylindrical surface and per unit frequency is given by

PN
Notw) = dzdw

= F- Nrr, (2.5)

where Nrp is the corresponding Tamm-Frank frequency distribution of the photon
number !
, ap
Nrp=—(1 - ——= 2.6
TF = | 1) (2.6)
and o = e?/kc is the fine structure constant.
The total energy and number of photons radiated per unit length of the cylindrical

surface are obtained by integrating S,(w) and N,(w) over w

& 7 AN T
S, = :/.5',(w~)dw-, Ny = :/.,\;,(w)r/w. (2.7)
4] 0

In what follows, when integrating (2.7}, we assume the medium to be dispersion-free,
that is, n does not depend on frequency. Consider particular cases.

1. Let the charge be uniformlyflistributed inside the sphere of the radius a:

1

pCh(T) =poO(a—r). po
Then,

€Ypo w2z . w
pL=erpo®fe = [ +9%(z —vt)1"}, py = — = exp(==)sin(_y/a? = p?).

The form factor F entering into (2.2) is given by

J32/2(y)
y>

9

4



where y = kay/n? — . The total radiated energy and the number of photons defined
by (2.7) are given by

9t L — 1/ 3%n? N Jamp 1 — 1/3%n?

S, = 2.
o da?  n?-—1 e Ba n2—1 (2.10)
for 3 > 1/n and zero otherwise.
2. The charge is distributed over the surface of the sphere
p(r) = podla—1), po=1/(dma’). (2.11)

The form factor F is

=2y = kaVvnT— 1, (2.12)
Yy

The total energy
32,2
= / Sy(w)dw = ¢ 'u l An )/~—<ln Y (2.13)

diverges while the total number of photons is finite:

0 | — 32 2
N, = /Np(w)du.' LA el Vi (2.14)
o

2a n? —1

The divergence of S, is due to the contribution of high frequencies. Formerly, fre-
quency distribution S,(w) was obtained in [2] but with the form factor given by

iny .
3 ,y V2, where ¢ = kav/.
Y

F'=(

This leads to different physical predictions: for n slightly greater than 1, the form
factor F also tends to 1 and the frequency distribution S,(w) tends to the Tamm-
Frank one while the form factor F’ and the frequency distribution S,(w), found in
{2], are rapidly oscillating function of w when € — 1.

3. The charge is distributed according to the Gauss law

»2
pea(r) = PUEXP(—(TQ)- po = 12/(7**a®) (2.15)
Then,
2 22
€ . p k*a
Pu = mexp(mﬂ)exp(—gz)exp(— e ).
The form factor F' is
, k2a®n?
' = exp(— (2.16)



The total radiated energy and the number of photons are finite now

' 2 r aprd/?
Sp= —b(1—1/8%%), N, =
an an

(1 —1/3%4). (2.17)

4. For the Yukawa charge distribution

exp(—r/a) 1
pcr(r) ZPO—T——1 =13

Ara?’

one gets
1 1 1

- _ - _ == l— 2
T 4n 1 4 K2a?(n? - 1) F [1+k2az(n2ﬂl)] ’
Ny(w) = NrpF,  S,(w) = STrF, (2.19)

The integral number of emitted photons and the integral radiated energy are given
by

o,

1
N, = [ doN(w) = e
2 1
S, = / dwS,(w) = 2@(22#_ 1)(1 - ) (2.20)

The following S,(w) was found in [2] for the Yukawa distribution

1

Sp = ‘STFF, where F = m

Obviously, this F'is not reduced to I in the limit ¢ — 0 (as it should be). This is due
to the extra factor 1/16w%c?. The are two reasons why we cannot compare step by
step our results with ones obtained in [1,2]. The first reason is a pure technical: the
authors of [1,2] make the double Fourler transform over space and time variables, and
then return to the frequency distribution using integration in k space. The advantage
of our approach is that we always operate in a space-frequency representation, no
intermediate steps are needed. The second reason is due to different definitions of
charge densities. For example, we define the spherical charge density poy in a moving
system attached to a moving charge and then recalculate it into the laboratory frame
using the Lorentz transformations, thus, obtaining p;. On the other hand. authors
of [2] postulate the spherical charge density pcs in the laboratory frame. It should be
noted that, in the laboratory frame, the charge density due to the ~ factors, cannot
be spherically symmetrical (this is observed experimentally).

2.1 Cherenkov radiation as the origin of the charge deceler-
ation .

The following ambiguity arises. The Cherenkov radiation is usually associated with
the radiation of a charge uniformly moving in medium. Since the moving charge



radiates, its kinetic energy should decrease. The energy radiated per unit length
equals

d

d—f =C(1 —1/4*%) (2.21)
for 3 > 1/n and zero otherwise. The constant C, independent of 3, is defined by
one of Egs. (2.10), (2.17) or (2.20). Obviously, (2.21) should be equal to the kinetic

energy loss: - p .
¢ 2

= mgc’—

dz a'z\/l—ﬂ?:

Or, introducing the dimensionless variable z = z/L, L =moc?/C, one gets

—C(1 —1/8%n?). (2.22)

d 1

— = —(1-1/8%n%. 2.
Integrating this equation, we get
L. 1 a+vy7t, n?32 -1
2 _ 2 0 2
(n* = 1)(Z = %) = 5=In[(~ n 70_1) g 7= (7 = ). (2.24)

Here v = 1/\1 = 8%, v = 1/y/1 = 8%, «a = /1 —1/n? and F; is the charge ve-
locity at the space point zo. This equation, being resolved relative to 3, defines the
charge velocity 3(z) at a particular point of the motion axis. It follows from (2.24)

that
1

A=l - iy

for Z - —oo and ! 1
B {1+ g expl-2(n* - 1)3])
n

for 2 = o0o. The dependence ((%) for typical parameters n = 1.5,5, = 0.8 and
29 = 0 is shown in Fig. 1.

3 Cherenkov radiation in dispersive medium

Another way of obtaining the finite value of the radiated energy and the number of
photons is to take into account the medium dispersion. We analyse two particular
substances for which the parametrization of € is known.
The first substance is iodine for which the parametrization of ¢ may be found in
the Brillouin book [6]:
2
wL

A= i (1)

e=1+

Its resonance frequency lies in a far ultra-violet region and € tends to 1 as w — co.
In this case, there is a critical velocity below and above of which the properties of



radiation differ appreciably. This parametrization is broadly used for the description
of optical phenomena (see, e.g., [7.3]).
The following parametrization of ¢:

wi

€= €5 v .
.2 2
wo we + pw

(3.2)
with p = 0 was found in [9] for ZnSe. Its resonance frequency lies in a far infra-
red region and ¢ tends to the constant value when « — oo. There are two critical
velocities for this case. The behaviour of radiation is essentially different above the
large critical velocity, between smaller and larger critical velocities and below the
smaller critical velocity. Despite the fact that parametrizations (3.1) and (3.2) are
valid in a rather narrow frequency region, we apply them to the whole w scmi-axis.
Since we will deal with frequency distributions of radiation, we can at any step limit
consideration to the suitable frequency region.

The energy flux in the radial direction through the cylinder surface of the radius
o is given by ,

&E c
pdodzdt ~ —Tl;Ez(t)H(b(t)'

Integrating this expression over the whole time of a charge motion and over the
asimuthal angle ¢, and multiplying it by p, one gets the energy radiated for the
whole charge motion per unit length of the cylinder surface

cp
— = —?J/ E. H,dt.

Substituting here instead of £. and H, their Fourier transforms and performing the
time integration. one finds

& 7
— = / dwo,(w).
=
where _
d*E .
Oo(w) = —— = —mpck(w)H (w] + c.c.
dzdw

is the energy radiated in the radial direction per unit frequency and per unit length
of the observation cylinder. The identification of the energy flux with o, is typical
in the Tamm-Frank theory [5] describing the unbounded charge motion in medium.
Finding electromagnetic field strengths from the Maxwell equations, one gets

2ie’w ., P
(1~ -ﬁ—~)x Ko(@)[K(2)* + c.c.. (3.3)

2¢

op(w) = 2

Here ¢ = /1 — 3% - (pw/v). The sign of square root should be chosen in such a
way as to guarantee the positivity of its real part. In this case, the modified Bessel
functions decrease for p — oo. Equation (3.3), after reducing to the real form, was



used for the evaluation of radiation intensities in [3.4]. In the limit p — 0, it passes
into the Tamm-Frank formulae (2.3) and (2.6). For large kp (k is the wave number,
p is the radius of the observation cylinder (7). the radiation intensity (3.3) goes into

3]

. &
ap(w) = ——[( sm(D+( cos —]e\p[——-( 24 b4 cos —;], (3.4)
where & = ¢, /(e + ). ¢ = —¢ /(¢ + €7); ¢, and ¢ are real and imaginary parts
of e
202 _ 2 2
€ =€, + Ij(i- €, = 1 + wL(“’O it ) 5 € = - 2 L

(wd — w?)? + ptuw? (wi — w?)? + ptw?’
Further,
L —Fc=a+ib, a=1-73%, b=—F%,

¢ | u /2 ¢ 1 1/2. .
Ccos E = 7§(l + \/*:L_T—m) sm E = 7.5( m) (35)
Usually, the condition kp >> 1 is fulfilled with great accuracy. For example, for the
wavelength A =4 -107% em and p = 10 cm, one gets kp & 105. Eq. (3.4) is valid
for arbitrary dielectric permittivity. We apply it to (3.1) and (3.2).

3.1 Dielectric permittivity (3.1)
3.1.1 Dispersive medium without damping

For the sake of clarity, we consider at first p = 0. Then, from (3.3) one easily obtains
the Tamm-Frank formulae (2.3) and (2.6). According to Tamm and Frank [5]. the
total radiated energy is obtained by integrating Erp(w) over the frequency region
satisfying gn > 1. It is easy to check that for 3 > 3. = 1/4/1 + w} /wd this condition
is satisfied for 0 < w < wp. For B < B. this condition is satisfied for w, < w < wy,
where w, = wpy/1 ~ 32y2/32~2. This frequency window narrows as 3 diminishes.
For 3 - 0, the frequency spectrum is concentrated near the wy frequency. The total
energy radiated per unit lentgh of the observation cylinder equals [3]

/5 Yo = &

d€ etw}
_—= - —_ - j 3.7
T 5o |1 t3 ln(l 3%)] (3.7)

In(1 — 3%)] (3.6)

[ /ﬂ2 ,32[32 3232~2

for 8 > 3. and

for 3 < 3.



3.1.2 Energy balance due to the medium dispersion

According to Section 2, the influence of charge finite dimensions becomes essential
for ka ~ 1. If for a we take 1 fm, then w; ~ 10%s7'. On the other hand, in the
presence of dispersion, the frequency spectrum of the radiation intensity extends up
to wp. If we identify wy with the ultraviolet frequency ~ 10'®s~!, then, wy << wy.
This means that the influence of the dispersion begins at a much smaller frequency
than the one due to the finite charge dimensions.

Since, in the presence of dispersion, d€/dz is finite (see (3.6) and (3.7)}, one can
extract v(z) from the energy balance condition d7'/z = —d€/dz, similarly as it was
done for the charge of finite dimensions. The following equations are valid now

d 1 1

Evi=m - ) ()
for 8 > 3. and
d 1 1 1
E\/T—_—“———BQZ(EE—UUWLEIHU—@Z)I (3.9)
for 3 < 3.. Here we put.
.2 —1__ g2yt ~_i ’_ngc i—‘
0 _[1+(53 Iin(l =397, Z=7, L= ezw%(ﬁg 1).

Then, for 3 > 3., one gets the following equation

Lty 2l ]
at+y!'’ Apr-1

| = 2%y = ). (3.10)

Here o = /1 — 1/n?%; v, v and zo are the same as in (2.24). It follows from (3.10)

that
1

201 — 1/n2 )23

for 2 & —oc. The velocity J3, is reached at

4-1-

e = 3 ! at+yt, ABE-1, A ‘
- l ’ - - \~ I,
% ZO+ 20((1.22— IJ n[( ) h?BZ_ 1] 177.2 _ 1(7 Yo (3 11)

-1
a+ Y

For 3 > 3., the dependence 3(2) extracted from {3.11) is shown in Fig.1 for typical
parameters 3, = 0.3, G = 0.9 and %, = 0. Below 4, the asymptotic form of 3 given
by 8 ~ exp|—(Z — 3.)/483%+?] and obtained from (3.9) is presented.

Although the energy balance is important from the theoretical viewpoint, it is
slightly academic. The reason is that the energy losses due to the ionization of



medium atoms are much larger than the Cherenkov radiation losses. With a good
accuracy, they are described by

dT/dz = — (3.12)

52
where C is a constant dependent on the medium properties and F is a function
weakly dependent on 3. For the electrons propagating in water C & 1.65Mev/cm.
On the other hand, the constant e?w/2c® entering into (3.6) is ~ 10"2Mev/cm for
wo & 10%8s7!, Since e?wl/2¢? << C, the ionization energy losses are much larger
than the ones due to the Cherenkov radiation. This means that one may disregard
the Cherenkov energy losses in (3.12). We can solve (3.12}, if we put F = 1. Then,

Vais(e + 91
[r(a +4) + 2 + 2172

Here » = (zy —2)/L and L = mqgc?/C; z; is the space point where 3 = 0. For z — 0,
8 ~ 22'* and for z = oo, B ~ 1 —1/z2. The dependence B3(z) is shown in Fig. 2.
The velocity 3, as a function of z, drops almost instantly for small L. This justifies
the validity of the Tamm problem [10] which involves a sudden transition from the
charge uniform motion to the state of rest.

B(z) = (3.13)

3.1.3 Dispersive medium with damping

Obviously, the nondamping behaviour of EMF is possible when the index of the
exponent in (3.4) is small. This takes place, if cos¢/2 =~ 0. This, in turn, implies
that @ = 1 — 8%, < 0, and b << |a]. We need, therefore, the frequency regions
where 1 — %, < 0. Let 8. < 8 <1, B.=1//&, e =¢€(0)=1+w?/w? Then,
1 — 3%, < 0 for 0 < w? < wf, where

. . ) 1
wf?z = wé + Q6 — 5(1?2 + ‘5272wz)~ Oy = [ (p + ﬁ?v WL) wgpz]uz'

In particular, w; = wy for 3 =1 and w; = /w2 —p?, w, =0for f=4..
Let 37 < 8% < (32, where
2pwy — p?
w} + 2pwp — p?
(it 1s therefore suggested that p is sufficiently small to guarantee the positivity of
B2, This is always fulfilled for transparent media where the Cherenkov radiation
is observed). Then, 1 — 3%, < 0 for w; < w < w;. In particular, w; = wy =
woy/1 — p/w for 3 = F,. Finally, for 0 < 8 < 3, there is no room for 1 — f%, < 0
We see that for 8 > (., the frequency distribution of the radiation differs from
zero for 0 < w < wy, while for §, < 8 < B. it is confined to the frequency window
we < w < wy. Further decrease in 3 leads to the window narrowing. The window

width disappears for 8 = (3, when w; = w; = wp4/1 — p/ws.

5 =
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Now, the non-damping behaviour of EMF strengths in addition to 1 — 3%, < 0
requires also b << |a|. This gives

2 2
2 Wp—wijtw

<<1
el P

1
G
(it was taken into account that 1 — 3%¢,. < 0). Since the r.h.s. of this inequality is
smaller than 0, its l.h.s. should also be smaller than 0. This takes place if

w < \Jwi + p*/4 - p/2.

For small damping this reduces to w < wo — p/2.

3.1.4 Application to iodine

As an example, we consider the dielectric medium with : ¢y = 1+ w? /w2 ~ 2.24. The
parameters of this medium are close to those given by Brillouin ([6], p. 56) for iodine.
As to wy, Brillouin recommends wq = 4 - 10'5~!. This value of wo is approximately
10 times larger than the average frequency of the visible region. However, since all
formulae used for calculatons depend only on the ratios wy,/wg and p/wg, we prefer
to fix wp only at the final stage.

To illustrate analytic results obtained above, we present in Fig. 3 dimensionless
spectral distributions ¢,(w) = f(w)/(e*wo/c?*) for different charge velocities 4 and
damping parameters p as a function of w/wy. For p = 0 (Fig. 3 (a)), radiation
intensities behave in the same way, as explained in section (3.1.1). The switching of
the damping parameter p affects more strongly radiation intensities for 5 < 7., than
for 3 > .. For example, the radiation intensity corresponding to 4 = 0.4 < 3. =~
0.668 is very small even for p/wy = 107 (Fig. 3(b)). For larger p, the radiation
intensity 1s so small, that it cannot be depicted in the scale used For instance, for
3 = 3., the maximal value of the radiation intensity equals 2 - 107!° for p/uwy = 10~*
(Fig. 3(c)) and 3-107' for p = 1072 (Fig. 3(d)). With the rising of p, the maximum
of the frequency distribution shifts toward the smaller frequencies. This is due to
the large value of the index under the sign of exponent in (3.4) {and, especially, to
the large value of pw/v).

So far, we did not specify the resonance frequency wg. If, following Brillouin, we
choose wy = 4 - 10%sec™ (which is approximately 10 times larger than average
frequency of the visible light), then it follows from Fig. 3 (d) that for p/wy = 1072
(Brilloin recommends p = 0.15), frequency distributions are practically zero inside
the region of the visible light corresponding to w = wy/10. This means, in particular,
that space-time distributions of the radiated energy corresponding to realistic p are
formed mainly by photons lying in the far infra-red region and, therefore, there is no
chance to observe them in the region of visible light. '

Up to now, we considered the radiation intensities on the surface of the cylinder

C of the radius p = 10cm. It is interesting to see how they look for smaller p. To
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be concrete. consider the radiation intensities corresponding to p/we = 1072, From
Fig. 3 (d) we observe that the maximum of o, is at w/wp = 2-107 for 3 = 1 and
p = 10em. For p = lam (Fig. 4 (a)), the maximum of the same radiation intensity is
ab w/wo & 6- 1073, This means that all frequency distributions shown in this figure
are shifted towards the larger w/wy. This tendency is supported by Figs. 4 (b-d)
where the radiation intensities for p = 107%cm, p = 107%em and p = 10 %cm are

presented.

3.2 Dielectric permittivity (3.2)

There is an important diflerence between parametrizations (3.1) and (3.2). It is
seen that e{w) given by (3.1) tends to unity for w — oco. This means that medium
oscillators have no enough time to be excited in this limit. On the other hand.
e(w) given by (3.2) tends to ¢ in the same limit. This leads to the appearance
of two critical velocities Joe = L/ \/ex and By = 1/\/€p, where ¢, = e(w = o)
and ¢ = ¢(w = 0) = € + wi/wl. Now we evaluate the frequency distribution
of the energy radiated by a point-like charge uniformly moving in ZnSe with the
same parameters as in [9]. For the parametrizations (3.2) with p = 0, the radiation
(1 — 3% < 0) condition is fulfilled in the following w domains:

For the charge velocity greater than the larger critical velocity (8 > 3), the
radiation condition 1 ~ 3% < 0 takes place if 0 < w < wy and w > w;. Here w? =
Wi (B%e — 1)/(F*ee — 1). At first glance it seems that for the parametrization (3.2)
the frequency spectrum of the radiation extends to infinite frequencies. Fortunately,
this is not so. According to section 2, the finite dimensions of a moving charge
lead to the cut-off of the frequency spectrum approximately at w. = ¢/a, where a is
the charge dimension. If for a we take the classical electron radius (€?/mc?), then
we ~ 10%sec™!, which is far above the frequency of the visible light (w ~ 10'%sec™!).
For 8 = ., w1 — 0o, and only the low frequency part of the radiation spectrum
survives. For the charge velocity between two critical velocities {3y < 3 < B« ), the
radiation condition 1 — 3% < 0 takes place if 0 < w < wy. Finally, for the charge
velocity smaller than the minor critical velocity (0 < 8 < o). the radiation condition
1 — 3% < 0 is realized in the frequency window wy < w < wo. There is no radiation
outside it. When 8 — 0, w; — wo and the frequency window becomes narrower.

3.2.1 Application to ZnSe
In Refs. [9], the following parameters of a dielectric permittivity (1.3) were found:

o = 5.79, € =864, 1 =63x10"Hz, wo=2rp~4-10"sec”".
The corresponding critical velocities are given by 8. = 0.416 and 3y = 0.34.
For B > P, the frequency distribution is confined to the following w regions:
0 <w < wyand w > w;. At p = 0, the radiation intensities behave in accor-
dance with these predictions (Fig. 5). Let p # 0. For g > ., radiation intensities
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corresponding to the high frequency branch (w > wy) vary rather slowly with the
rising of p (Figs. 6(a) and 7 (a})). On the other hand, the low energy branch of
radiation intensity (0 < w < wp) is more sensitive to the damping increase : it is
practically invisible even for a rather small value of p/wy, = 107% (Fig. 7(a)). Let
35 < 3 < 3. At pfwe = 1078 and p/we = 107%, the maximal values of radiation
intensities are, respectively, four and forty times smaller than for p = 0 (Figs. 6(b)
and 7 (b)}. In addition, they are shifted towards the smaller w. Still more rapidly
decrease radiation intensities with rising p for 3 < 3. For example, for g = 0.2 and
p/wo = 1076, the maximal value of the radiation intensity is &= 5 107°.

The main result of this section is that, in absorbing media, both the value and
position of the frequency distribution maximum crucially depend on the distance
where observations are made. The diminishing of the radiation intensity is physically
clear since only part of the radiated energy flux reaches observer if p # 0. Does the
frequency shift of the radiation intensity maximum mean that any discussion on
the frequency distribution of the radiation intensity should be supplemented by the
indication of the observation distance? In the absence of absorption {p = 0), the
index of the exponent in (3.4) is zero and the dependence on the cylindrical radius
p drops out. At first glance, it is possible to associate the p independent frequency
distribution of the radiation intensity with the pre-exponential factor in (3.4) which
is the p = 0 limit of (3.4). But (3.4) is not valid at small distances. Instead, the
exact Eq. (3.3) should be used there which is infinite at p = 0 (since a charge moves
along the z axis).

4 Radiation of a charge moving in a cylindrical
dielectric sample

Up no now we implicitly suggested that the radiation intensity is observed in the
same medium where the charge moves. However, a charge usually moves in one
medium (water, glass) while the observations are made in another medium (air,
vacuum) (see, e.g., the nice Cherenkov review [11]). We intend now to consider
arising complications. Consider a cylindrical sample C of the radius « filled with
medium with the parameters ¢; and p,. This sample is surrounded by another
medium with parameters ¢; and p; such that ny < n;. Let a charge move with
a constant velocity v along the axis of C' with a constant velocity v satisfying the
inequality 1/n; < 8 < 1/n; (that is, medium inside C is optically more dense than
outside it). Formerly, this problem was considered by Frank and Ginzburg [12], who
having written the general solution for arbitrary n, and n, applied it to a concrete
case when the medium inside C' was vacuum, while outside C was medium with the
refractive index ny. They obtained a remarkable result that despite the absence of
the energy flux inside C, it reappears outside C if fn; > 1.

As to other possibilities, they remark that "Similarly, as it was done above, one
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may easilv consider other particular cases (fn; > 1,8n, < 1;0n; > 1,8n; > 1),
which will not be considered here. We note only, that for Bn, < 1, there are no
radiation energy losses for both gn; < 1 and fn; > 17.

We consider in some detail the case corresponding to ny, < ny,8n; > 1,8ny < 1. One
easily finds that the electromagnetic field arising from an unbounded charge motion
along the axis of C equals

A = Coppexp(it)Ko(2), Hy = Cokexp(iy)y/1/87 — 1K,(2),
E, = —thCou,(1/B8% — 1) exp(1¢)Ko(2), E, = Hy/Pe; (4.1)
outside, (" and _
A, = prexp(iv)[5-H' (1) + Cido(L)],
Hy = exp(iv)knyy/1 — 1/[33[2—‘2}1}”(1) +C (1),

E. = ik expli)(1 = /BB (1) + Cob(V)], B, = Hofper  (42)

inside it. Here ¢ = kz/83, 8, = Bn,, 33 = Bny. The arguments of the Bessel functions

are 2 = kp\/1/8% —nl for p > a and 1 = kpy/nt — 1/32 for p < a.The coefficients
C'y and C; are found from the continuity of H, and E, at p = a:

1 , — .
C, = i[z(nluﬂ/l/ﬁ% — 1KoN, + nopn /1 — 1/B2K\No) — i), (4.3)

ef) 1-1/32
= kel \ 15 = D O =mpa/1/88 - 1Koy + pnay/1 = 1B KL Jo.

The arguments of the usual and modified Bessel functions entering into (4.3) are

kan;y/1 — 1/P? and kangy/1/82% — 1, respectively. We evaluate now the energy fluxes.
i 2 g

4.1 Radial energy flux

The radial energy flux is

. = d2&
7 dzdw

= —mpc(E.Hj + c.c.). (4.4)
Obviously, it equals zero outside C and

0y = —mpekPpimi(1 = 1/ {(—— Hy" +iCrJo)(~ - HP + C )+
e . e
Hg D = iCHI) (Y + G = O
c 2c
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inside C (it was taken into account that ImC; = —e/2¢). Thus, the radial energy
flux equals zero inside C too. This is due to the fact that the contribution of the
terms with the product of Hankel functions in the energy flux is compensated by the
terms with the product of Bessel and Hankel functions. The following complication
arises. Let the detector be placed outside C, that is, in medium where Gn; < 1. In
fact, this is a typical sitution in Cherenkov experiments. For example, in classical
Cherenkov experiments [11], the electrons moved in a vessel filled with water, while
the observations of the Cherenkov light were made in air , in a dark room, by a
human eye. There is no radial energy flux outside C. Then, how the Cherenkov

radiation can be observed there? One may argue that since the human eye is filled
with the substance having the refractive index approximately equal to that of water,
the Cherenkov radiation reappears in it (similarly to the appearance of the radiation
in the medium surrounding the vacuum channel with a charge moving along its axis
[12]) and, therefore, it could be detected. However, now there are known substances
with large refractive indices. Does this mean that the radial energy flux cannot be
detected outside C (for this, it is enough to use the collimator selecting only the
photons emitted in the radial direction) if the measuring device is fabricated from
the substance with the refractive index n, smaller than 1/8 and n; 7 The possible
answer gives the following section where the energy flux in the direction parallel to
the motion axis will be evaluated.

4.2 Energy flux along the motion axis

The energy flux parallel to the motion axis is

d*’E
g, = M = TFpC(EpH‘; + C.C.). (45)
It equals ) 2 )
1-1
o, = £ M:Zimz /61)[1{1(’“10"2\/1/52 - 1) (4.6)

outside C and
2
o, = mpem k(1 = 1/88) g5 (7 + N + J2ICH = S(MChe = LGl (47)

inside it. Here C,, and Cj; are the real and imaginary parts of D:

1 . e
Cir = 5w (ma\/1/85 = 1KoN: + napun\/1 = 1/ Ka No), - Cui = —o-.

In general, o, is exponentially small outside C, except for w satisfying A = 0.
For these w, o, is infinite. For large ka, equation A = 0 is reduced to

€ /ﬂZ —1 .
kan\/B2 -1 = % — arctan 2——1—42 + mm, (4.8)
61\/1 - 3



where m is integer. The distance between the neighbouring maxima of o, is Hw =
me/(anyy/di — 1). For the cylinder radius @ ~ 10cm, the Aw is about 109", The
typical optical frequency is about 5 - 10"s~!. Since the real Cherenkov detector has
the finite frequency resolution width (several 10'*s~! units) it inevitably covers many
maxima of 7. and. therefore, the measuring device oriented parallel to the motion
direction will detect the almost continuous radiation.

5 Optical interpretation

A charge uniformly moving inside the dielectric cylinder C' emits the light ray at the
Cherenkov angle 8; (cosf; = 1/8n;) towards the charge motion axis. Let this ray
intersect the cylinder surface at some point and let ¢ be the incidence angle (Fig.
8). It is easy to check that sini = cos6;. According to classical optics (see, e.g.,
[7.8]), the incidence 7, reflected i’ and refractive r angles are interrelated as follows:
i =1, sinr = (n;/ny)sini. 1t follows [rom Fig.8 that sinr = cos 8, where 8, is the
inclination angle of the light ray moving in medium 2 towards the = axis. Therefore,
cosfy = (ny/ny)cosdy = 1/0Bn,. That is, if gny > 1, the light ray in medium 2
propagates at the angle d, towards the motion axis. Otherwise (Jn; < 1), the total
internal reflection takes place. Due to the translational symmetry of the problem.
the same total internal reflection takes place in all other points where a given light
ray meets the cylinder surface. This means that the light ray emitted by a moving
charge remains within the infinite cylindrical sample if gny < 1.

The situation slightly changes if the cylindrical sample has a finite length. In
order not to deal with the transition radiation (arising when the moving charge
passes through the boundaries of mediums 1 and 2), we consider the charge motion
completely confined within C' (Fig. 9). This situation was realized iu the original
Cherenkov experiments where Compton electrons were completely absorbed in water.
Usually, this situation is described in terms of the so-called Tamm problem [10].
where the charge moves uniformly with the velocity 3 > n; on a finite space interval.
After a number of reflections at the surface of (7, a particular light ray reaches the
bottom of a cylindrical sample. 1t is easy to check that its incidence angle coincides
with ;. The refractive angle is given by

i m [T
sinr’ = ;;;sm 0 = E — Fnr
Obviously, the light ray leaves C through its bottom if sinr’ < 1. This is equivalent
to
1

-1
g < nmun(—, —m—=—=).
n2 o fnd —nd

It follows from this that if ny > ny/v/2, then the light ray passes through the bottom
of ' and propagates in medium 2 at the angle 8, = ' towards the motion axis. Let
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ny < ny/V2. Then, for 3 < 1/y/n? — n?, the light ray propagates in medium 2 at
the same angle 8, towards the motion axis. On the other hand, for
1 1
—_—— <3,
n? — n? n2
the total internal veflection takes place on the bottom of €' as well. Therefore, in
this case the light ray emitted by a moving charge remains within C'.

Consider the dielectric sphere S of the radius R filled by the substance with
refractive index n, and surrounded by the substance with refractive index n, (Fig.
10). Let a charge move uniformly in the space interval (—zp, z0) lving completely
inside S and let its velocity be such that 1/n, < 3 < 1/n;. Elementary calculations
show that the Cherenkov v ray emitted at the point z of the motion axis, outside S
propagates under the angle

Loy
0, = 6 + arcsin[— sin(f; — 0)] (5.1)
na
towards the motion axis. Here 8, is defined by cos 8, = 1/3n and 8 is related to the
charge particular position z as follows

/ L2
cos = %sin(h +cos b/l — ~Efsinzf)l.

Obviously, cos 8 changes in the interval

2 2

20 . 20 . 2 20 . 35 . 2
——sinf; + cos@\/1 — —sin*f; < cos@ < —=sinb, -+ cos b1/l — —sin*h
R 1 1 72 1 R ] 1 Rz S
when a charge moves from z = —2¢ to z = zp. Substituting this into (5.1), we find

the angular interval, where the Cherenkov radiation differs from zero outside S.
This means that the Cherenkov radiation has more chances to leave the sphere

than the cylinder. The reason is that the Cherenkov 4 ray meets the sphere sur-

face at different incidence angles depending on the charge position on the motion axis.

The semi-intuitive consideration of this section:
1) shows that the observation of the Cherenkov radiation strongly depends on the
houndaries surrounding the volume where a charge moves;
1i) defines conditions under which the Cherenkov radiation can penetrate from tae
medium 1 with 8n; > 1 into the medium 2 with 8n, < 1 without exhibiting the
total internal reflection on their boundary. However, only concrete calculations can
determine the value of the radiation intensity in the nedium 2.

6 Discussion

Sections 3-5 rise uneasy questions concerning the observation of the Cherenkov ra-
diation for the unbounded and bounded charge motions.

18



10 T T ¥ 2 T3 g ) ot St I ML AL B S p S B B B

00 F IS S0 TG NN NN N YN SN WA N TN VY T W D OO WO Y TN IO SO TR Y T A, TS0 PO TN 1

-20 -16 -10 _ -6 0 6 10
Z

Figure 1: This figure shows how a moving charge is decelerated when all its energy losses
are due to the Cherenkov radiation. The solid curve corresponds to the charge of finite
dimensions moving in dispersion-free medium. The charge velocity approaches 1/n for
3 — o0o. The pointed curve corresponds to the point-like charge moving in dispersive
medium. Its velocity equals 8. at 7 = z.. Below f., the asymptotic form of 8 given by
B ~ Beexpl—(z — %.)/482?] was used.
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Figure 2: This figure shows how a charge is decelerated due to the ionization energy
losses described by (3.8). Here x = (25 — z)/L, zs is the space point where 8 =0 and L
is the same as in (3.10).
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Figure 3: Radiation intensities corresponding to dielectric permittivity (3.1) for a number
of velocities and damping parameters p (in wp units). The radius of the observation
cylinder p = 10cm. Other medium parameters are the same as suggested by Brilluoin
for jodine. It is seen that the radiation spectrum shifts towards low frequencies with the

rising of p.
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Figure 4: Radiation intensities corresponding to dielectric permittivity (3.1) for p/wy =
102 and for a number of velocities and observation cylinder radii p (in cm). [t is seen
that the frequency distribution of the radiation crucially depends on the radius p. This
leads to the ambiguity In Interpretation of experimental data. The p dependence of the
frequency specttum disappears in the absence of damping.
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Figure 5: Radiation intensities corresponding to dielectric permittivity (3.2) for p = 0
and a number of a charge velocities. The medium parameters are the same as for ZnSFE.
There are two critical velocities: 8, &~ 0.416 and [y ~ 0.34. For 8 > fw, there are two
frequency regions (0 < w < wp and w; < w < o) to which frequency distributions are
confined (a). When 3 — B, w; — 00. For §y < B < B, the radiation is confined to the
frequency region 0 < w < wy ((b), 8 = 0.4 and 0.34). For 0 < 8 < f3;, the radiation is
confined to the frequency region w; < w < wg. When # — 0, w; — wq and the frequency
window becomes narrower ((b), 4 = 0.3 and 0.2).
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Figure 6: The same as in Fig.5, but for the nonzero damping parameter p/wg = 1078, It
is seen that for 8 > B, (a), the high-frequency branch of spectrum is almost the same
as in the absence of damping. Radiation intensities in the low-frequency part of the
spectrum are two times smaller than for p = 0. For § < (3 (b), the frequency spectrum
is more sensitive to the change of p. Its position is shifted towards the smaller w. For
3 < f3, the radiation intensities are very small. For example, for 8 = 0.2, the maximal
value of the radiation intensity is & 5 - 1078. The cylinder radius p = 10cm
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Figure 7: The same as in Fig.6, but for the larger p/wg = 107¢. For 8 > [, the
low-frequency part of the spectrum practically disappears (a). For 8y < 8 < f« (b),
the frequency spectrum is shifted towards the smaller w and the radiation intensities
are approximately ten times smaller than those in Fig. 6. The radiation intensity
corresponding to § = Jy = 0.34 is multiplied by 100 (that is, the shown curve should be
decreased in 100 times). For 8 < By the radiation intensities are small and cannot be
presented in this scale. The cylinder radius p = 10cm. Comparing this figure with Figs.
5 and 6, we observe that the position of the frequency spectrum maximum crucially
depends on the damping parameter.

Figure 8: The infinite cylindrical dielectric sample C with refractive index n; surrounded
by the medium with refractive index n,. A charge moving in C, emits v ray at the
Cherenkov angle #,. This v ray leaves C if fn, > 1. Otherwise, it exhibits the total
internal reflection and remains within C.
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Figure 9: A charge movesin a finite dielectric sample C. There are additional possibilities
for the Cherenkov 7 ray to leave C through its bottom (see the text).

Figure 10: There are more chances for the Cherenkov v ray emitted by a moving charge
to leave the sphere S, than the dielectric cylinder C. The reason is that the Cherenkov
¥ ray meets S under different incidence angles depending on the charge position z in the
motion interval (—zp, zp). Here ¢ and r are the incidence and refractive angles, resp.
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In fact, it was shown in section 3 that for the charge moving in an absorptive
medium not only the value of the maximum of the radiation frequency distribution
(this is not surprising), but its position as well, crucially depend on the observation
distance and damping parameter. Does this mean that experimentalists should in-
dicate the observation distance when presenting measured frequency distributions of
the radiated energy?.

In section 4, the complication was discussed arising when a charge moves in
medium | for which the Cherenkov radiation condition 8n; > 1 is fulfilled, while
measurements are made in another medium 2 with 3n, < 1. If we associate the
energy radiated by a charge moving in the medium 1 with the radial (in the cylindrical
geometry) energy flux (this is a usual thing in the Tamm-Frank radiation theory),
the theory tells us that the energy radiated into the mediumn 2 is zero. Then, how
to interpret the results of experiments performed under the same conditions and in
which the Cherenkov photons were detected?. On the other hand. if we associate
the radiated energy with the energy flux in the direction paraliel to the motion
axis, the energy radiated into the medium 2 is exponentially small for all frequencies
except for the infinite set of discrete frequencies. Probably, the radiation observed
in Cherenkov-like experiments with cylindrical geometry is due to this energy flux.
The distance between the neighbouring representatives of this set is so small than the
discrete nature of the frequency spectrum could hardly be resolved experimentally.

A precaution is needed. Sometimes, experimentalists (see, e.g., [13,14]) install
inside the cylindrical volume C (especially, when it is filled with a gas) a mirror
inclined under the angle 7/4 towards the motion axis, This mirror reflects the o.
component (4.7) of the internal energy flux in the direction perpendicular to the
motion axis, thus, making possible to observe the energy flux in the radial direction
outside (.

Optical considerations presented in section 5 show that the above ambiguity
partly disappears when a charge moves inside the dielectric sphere. Does this mean
that the observation of the Cherenkov radiation crucially depend: on the experimen-
tal installation geometry ?

7 Conclusion

We briefly summarize the main results obtained:

1. Tt is analysed how finite dimensions of a moving charge affect the frequency
spectrum of the radiated energy. It is shown that the frequency spectrum extends
up to ka, where k and a are the wave number and the typical dimension of a moving
charge, respectively.

2. It is shown how a charge should move in medium if, in the absence of external
force, all its energy losses were due to the Cherenkov radiation. The analytic formula
is obtained for the charge moving in medium with ionization losses.

3. Frequency distributions of the energy radiated by a charge moving in medium
are evalualed for two concrete substances for which the parametrizations of dielectric
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permittivity are known. The difficulties associated with the definition of the radiated

energy flux, when the measurements are made in absorptive medium, are discussed.

4. There are discussed complications arising when a charge moves in the mediun

where the Cherenkov radiation condition is fulfilled, while the observations of the
radiated energy are made in another medium where this condition is not fulfilled.
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