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1 Introduction

It is knowni that the frequency spectrum of a point-like charge moving uniformly with
a velocity v greater than the light velocity in medium extends to infinity. The integral
radiated energy and the photon number are infinite. This is due to the point-like
structure of a moving charge whose infinite self-energy is a reservoir allowing charge
to move uniformly despite the energy losses due to the radiation, ionization and the
polarization of the surrounding medium. The easiest way of obtaining the finite
frequency spectrum is to consider the charge of finite dimensions. This was done in
a nice paper [1] where the charge density having zero dimensions in the transverse
direction and the Gauss distribution along the motion axis was considered. The
frequency spectrum obtained there, extended up to va, where a is the parameter
of the Gauss distribution. Obviously, this charge distribution is rather unphysical.
Thbe next attempt was made in [2] where the charge distributions were chosen in the
form of the spherical shell, X'ukawa, distribution and that of [1]. It should be noted
that the authors of [1] and [2] related their charge densities to the laboratory frame.
It seems to us that it is more natural to relate charge densities to the rest frame of
the moving charge. There are two reasons for this. First, the charge form factor of a
moving charge is the Fourier transform of a charge density related to the rest frame
of a moving charge. Second, in another laboratory frame moving relative the initial
one with a constant velocity, the charge density is no longer spherically symmetric.
So, we prefer defining the charge density in its rest frame. Then, charge and current
densities in the laboratory frame are obtained by the Lorentz transformation. Solving
the Maxwell equations with these densities, we find electromagnetic field strengths
and the radiated energy flux. This is essentially the procedure adopted by us. In
addition to the current densities studied in [1,2], we considered the charge density
uniformly distributed inside the sphere and the spherical Gauss distribution.

A charge uniformly moving in medium radiates if its velocity exceeds the light
velocity in medium:. If there is no external force supporting this motion, the charge
should be decelerated. In the absence of dispersion, the total energy (obtained by
the integration over the frequency spectrum) is infinite for the point-like charge. For
the charge of finite dimensions, this quantity is finite. Equating it to the kinetic
energy loss, one can find how moves a charge losing the energy due to the Cherenkov
radiation. This is done in subsection (2.1).

Another way of getting the finite radiated energy is to take into account the
medium dispersion. For the medium without damping, with dispersion law defined
by a one-pole formula broadly used in optics, the finite expressions were obtained
in [3] for the total (that is, integrated over w) radiated energy and the number of
photons. Equating the energy radiated per unit length to the kinetic energy loss we
find how varies the charge velocity due to the Cherenkov radiation.

For the medium with damping, closed expessions for frequency distributions of
the radiated energy and the number of photons were obtained in [3,4]. Yet, they
were slightly inconvenient for applications, as they involved the Bessel functions



of complex argument. In this treatment, we use simple approximate radiation in-
tnities found in [3], which, for the typical experimental conditions, arewt 

great accuracy with the exact ones. They are applied to two substances for which
the parametrization of dielectric permittivity is known. However, the following am-
biguity arises. Due to the medium absorption, the position and the value of the
frequency distribution on the surface of the observation cylinder essentially depend
on the cylinde radius and the damping parameter. This means that, in the pres-
ence of damping. the Cherenkov frequency spectrum is not properly defined (since
it depends on the observation distance).

So far, we implicitly assumed that the measuring device is in the same medium
where the charge moves. However, the charge usually moves in one medium while
observations are performed in another one. For example, in the initial Cherenkov
experiments, the electrons moved in water, while the observations were made in air.
Complications and ambiguities arising from such an experimental procedure are also
discussed.

2 Cherenkov radiation from the charge of finite
dimensions

Consider the charge of the finite dimensions moving uniformly in the medium with
the velocity v directed along the z axis. Let its charge density in the reference frame
where it is at rest, be spherically symmetric: PCh(r') where r' - Vr'2 +yp 2 +z' 2.
In the laboratory frame (relative to which a charge moves with the velocity v), the
charge and current densities are given by

PL = epch(r), . = VPL,
where r = [p2 + -y2(Z -v)]!,p-V~7 1-f 2 -/ and fi = vc. The

Fourier transform f PL is defined as

ps= dt exp(iwt)PL(t).27

Making the change of variables ( = z/v ± px/'yv), we transform p, to the form
e

PW= - exp(iO)f (p), 4' = wUz/v
7EV

where

f (p) = fCos( 'Vt)PCh(PI 1+x2)dx-
0

The electric scalar and magnetic vector (only its z component differs from zero)
potentials are

D(x' y', Z') I exp(ikR)p,( x' , y', z')dV', A~, =pb,
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Here ? [(a _ *')2 + ( _ VI) 2 + (s Z/)2]1/2, k, kn, k = wic, and n = /-Fty
is the refractive index of the medium with parameters and p. Now we take it
accotint the expansion

Iexp(ikR) = SCmCOS m(O- 0V){i dk, exp[ik,(z -z'G()
R f O _

-0

+_( f + f)dk2 exp[ik2 (z - z')]12)1, (2.1)

where

Further, Jm, H Im and Km are the Bessel, Hankel, modified Bessel and Mac-
donald functions, resp. Substituting this expansion into ~D, and integrating over z
and O', one gets

lb(X, y, Z) -ex( )H((')4 1, + -(1I - 13,3KoA2J, A 3A,
exp(¶i'cz . 7r

where

= J~~dpdCos(Wp)JOPCh(P I ±P0),

and

I f P2 dpdt cos(W) Iopc (P I + t2).

Here and further, we drop the arguments of the usual ad modified Bessel functions
if they are kp n2 - 1132 and kp 1132 -

2, resp. The integration over p and t runs
over the (0, c) interval.
We intend to find the energy flux in the radial direction through the surface of a
cylinder of the radius p coaxial with the motion axis. It coincides with the energy
radiated per unit cylinder length and per unit frequency, and is given by

dzdw

Thus, we need E and Hk. They are equal to

13 n2 V 7r

27re I.Wz 2)f~
- exp(--)k 1- 1//32[i0(3, - -0()(~+ E(1 - 1)K 1I]HO=C V 7 D2
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Substituting them into S, one gets

Sp(w F 5
T F, (2.2)

where

ST j - ~ ~ (2.3)

is the Tamm-Frank frequency distribution of the energy radiated by the uniformly
moving point-like charge per unit length and per unit frequency [.51, and

F 6w$ (2.1)

is the factor taking into account the finite dimension of a carge (form factor, for
short). The number of photons radiated by a moving charge per unit length of the
cylindrical surface and per unit frequency is given by

d2A'
IV, = F NTF,(2)

dz dw

where NTF is the corresponding Tamm-Frank frequency distribution of the photon
number

NTF = 1l 26

and =/bc is the fine structure constant.
The total energy and number of photons radiated per unit length of the cylindrical
surface are obtained by integrating .w)and AN,(w) over,

= J S~~(w~dw. N~ = J .v~iw~tc. (2.7)
dz

(1 ~~~~~~~~0

In what follows, when integrating (2. 7)., we assume the medium to he dispersion-free,
that is. n does not depend on frequency. Consider particular cases.

1. Let the charge be uniformly distributed inside the sphere of the radius a:

pc)= p,,e(a - r). P-(4n/)(2.8)

Then.

PL = CYPOOjla - + I'(,Z Vt]), fw = exp( _ si(- '1 p)

The form factor F entering into (2.2) is given by

9 '22(y)
F = T (2.9)
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whIere =~ ka - Thie totalI ra d iated ernergy aidt the nu Iber of photons defined

bY (2. 7) are gi ven l)y

yk2P -9(1 _ t/blf2l1 3or/ I - 13 2 (210

12 12 5a~O~i 

for A'i > In and zro otherwise.
2. The ch]arge is distributted over the surface of the sphere

p(r) =poJ(a - vl, po = 1/(47ra 2 ). (2.11)

The formi factor F is

V -(Y )2 y = ka n7 -1I. (2.12)

The total energy

-
2 (1- 3Wt 2) dyJ •i2 y(.3

- 1) 

(liverges wvhiile the total iiuimber of photons is finite:

l/132 2
N, J Np()d,' = "" I (2.1 4)

0 ~~2a v/ 2 

The divergence of S, is due to the contribution of high frequencies. Formerly. fre-
quency distiibution Sp(w) was obtained in [2] but with the form factor given by

F'= (SiPlf) 2 , where y' kafi-.

This leads to different physicaI predictioiis: for ni slightly greater than 1, the form
factor F also tends to I and the frequency distributioii 5,(~O) tends to the Tairini-
Fraiik one while the form factor F' and the frequency distribution S(W), found il
(2J, are rapidly oscillating fnction of Le when - .

:3. The charge is distributed according to the Gauss law

pc =r poexp(--)j, po) = 12/(7r31 2a3). (2.15)

Then,

The form factor F is

= exp(- ). (2.16)
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The total radiated energy and the number of photons are finite now

_ 2 n) 0op 7r3/2
- p( / 2 2 ,., = (I -11/2,2) (2.17)a2n2 P a

4. For the Yukawa charge distribution

P~h~) poexp(-r/a) 1
r 4ira2 '

one gets

47i + k2a2(n2 - 1)' 1 ± k2a2(n2 1

N,(w) = NTFF, S,(W) = STFF, (2.19)

The integral number of emitted photons and the integral radiated energy are given
by

N 5 =fdw Nw a 1 i2n)
2 1~~2 

S d"5P 2, 1(----) (2.20)
]UW.Jp~W) 2a2(n2 - 1) ~'0n

The following 50,(w) was found in 2] for the Yukawa distribution

S =5 TFF, where F =I
167w2c2 (1 + k2 okj

Obviously, this F is not reduced to in the limit -s 0 (as it should be). This is due
to the extra factor 1/167-r2c2 . The are two reasons why we cannot compare step by
step our results with ones obtained in [1.2]. The first reason is a pure technical: the
authors of 1,2] make the double Fourier transform over spare and time variables, and
then return to the frequency distribution using integration in ik space. the advantage
of our approach is that we always operate in a space-frequency representation, no
intermediate steps are needed. The second reason is due to different definitions of
charge densities. For example. we define the spherical charge density PeA in a mo~ving
system attached to a moving charge and then recalculate it into the laboratory, framne
using the Lorentz transformations. thus, obtaining p. On the other hand,. authors
of 2] postulate the spherical charge density Pfi'h in the laboratory framne It should be
noted that, in the laboratory frame, the charge density due to the ~ factors, cannot
be sphericaly symmetrical (this is observed experimentally).

2.1 Gherenkov radiation as the origin of the charge deceler-
ation

The following ambiguity arises. The Cherenkov radiation is usually associated with
the radiation of a charge uniformly moving in medium. Since the moving charge
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radiates, ts kinetic energy should decrease. The energy radiated per unit length
equals

-E C(l _ 1/32,n2) (2.21)

dz
for /3> 1/n and zero otherwise. The constant C, independent of /3, is defined by
one of Eqs. (2.10), (2.17) or (2.20). Obviously, (2.21) should be equal to the kinetic
energy loss:

~Zi=moc2• /32= -C(l - 1//32n2 ). (2.22)
dz dz ~A -3

Or, introducing the dimensionless variable i = zL, L = mnoc 2 IC, oegt

d I__ -(1 - 1//32 n2). (2.23)

Integrating this equation, we get

(n 2 -). I)=--n[( a Y 2 f ] - n(y -y). (2.24)

Here - = I/ / 73I - - = / 1 23, a = 1- I1/n, and /3o is the charge ve-
locity at the space point z. This equation, being resolved relative to /3, defines the
charge velocity /3(z) at a particular point of the motion axis. It follows from (2.24)
that

-4 1~~~~2(1 - n)~

for ~ -* - and

,3 11 + exp[-2(n 2_1)]
n 2

for - oc. The dependence /3(i) for typical parameters n = 1.5,/3 = 0.8 and
zo = 0 is shown in Fig. 1.

3 Cherenkov radiation in dispersive medium

Another way of obtaining the finite value of the radiated energy and the number of
photons is to take into account the medium dispersion. We analyse two particular
substances for which the parametrization of is known.

The first substance is iodine for which the parametrization of may be found in
the Brillouin book [6]:

W2

Its resonance frequency lies in a far ultra-violet region and tends to 1 as w - oo.
In this case, there is a critical velocity below and above of which the properties of
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radiation differ appreciably. This parametrization is broadly tiseti for the description
of optical phenomena (see, e.g.,[,])

The following parametrization of c:

2

C L ~~~~~~~~~~~~(3.2)

with p = 0 was found in E[91 for Zn Sc. Its resonance frequency lies in a far infra-
red region and c tends to the constant value when c -~ o. There are two critical
velocities for this case. The behaviour of radiation is essentially (different above te
large critical velocity, between smaller and larger critical velocities and below the
smaller critical velocity. Despite the fact that parametrizations (3.1) and (3.2) ar
valid in a rather narrow frequency region. we apply them to the whole Lo scani-axis.
Since we will deal with frequency distributions of radiation, we can at any step limit
consi'deration to the suitable frequency region.

The energy flux in the radial direction through the cylinder surface of the radius
p is given by

d 3 5 c E()60
pdodz~dt 4-w

Integrating this expression over the whole tme of a charge motion and over the
asimuthal angle , and multiplyVing It by p one gets the energy radiated for the
whole charge motion per unit lengthi of the cylinder surface

dz 2 

Substituting here instead of E- and IiP their Fourier transforms and performning the
time integration, one inds,

wvhere
12F
=dat= _-pcE 2 (cc)H;(cl ± cc.

is the energy radiated in the radial direction per unit, frequency and per unit length
of the observation cylinder. The identification of the energy flux with 0 is typical
in the Tamm-Frank theory 5J describing the unbounded charge motion in mediumi.
Finding electromagnetic field strengths from the Maxwell equations, one gets

O" 2 iw 1 V x I()+c .
5 (W) = 2 (1 - 2 -- W)I or[ixP+cc.(3.3)

Here x = 1' - /3k . (pcc/v). The sign of square root should be chosen in such a
way as to guarantee the positivity of its real part. In this case, the modified Bessel
functions decrease for p -~ o. Equation (3.3), after reducing to the real form, was
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115Cel for t e eall-nat iou of radliat ion i nteuisitijes i [3.4]. I the limit - 0 it passes
nto te [a inn iEra uk foruilae (2.3) ad( (2.6). or large 4Ap ( is the wave nu1-mber,

p) is t lie radins of the observat ion ylinder C ). te radiation intensity (3.3) goes into

[:3]

C2 1~ 2p9 (x~zia~ 2 
2 )'1 4 COS

-7 [ - in- j COS- + (3.4)

where + r.( ±2). i, = _C/I(( ± f2) c andl ri are real and imaginary parts

of c:

2W ,2) 2
((.±C (1+ 0 2 PWL

(W2~ -
2 )2 + pi2~2' 2 -

2 )2 + p 2

Fl-rther.
- 32 = a + ib, a I - 2C, b = 3(,

COS -(-I _- ( (I )112 (3.5)
v1±b \/ 2 ±+b2

U.sually. the condition kp >> I is fulfilled with great accuracy. For example, for the
wavelength A = 4 10-- cin and p = 10 cm, one gets kp 1. Eq. (3.4) is valid
for arbitrary dielectric permittivity. We apply it to (3.1) and (3.2).

3.1 Dielectric permittivity (3.1)
3.1.1 Dispersive miedium without damping

For the sake of clarity, we consider at first p) = 0. Then, from (3.3) one easily obtains
the Tanini-Frank formulae (2.3) and (2.6). According to Tarnil and Frank [5]. the
total radiated energy is obtained by integrating TF..(w) over the frequency region

satisfying dn7 > 1. It is easy to check that for /3 > tic = / 1l ± , W.2w this condition
is satisfied for 0 < w < wo. For 3 < 3, this condition is satisfied for Lw < < w0.

where w, = wo - ji 2-y2//3'2-y2. This frequency window narrows as 3 diminishes.
For 3-+0, the frequency spectrum is concentrated near the w'o frequency. The total
energy radiated per unit entgh of the observation cylinder equals [3]

dE ~~2 2
1

J=S P(w)dW y~![j _ //32 _ /3/32 r(l - ti')] (3.6)

for /3 > /3, and
dE e2W2 1

for ti< ~~~~ dz 2c2 [1±- 32 I-(2) 37
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3.1.2 Energy balance due to the mnedium dispersion

According to Section 2 the influence of charge finite dimensions becomes essential
for k - 1. If for a we take Ilfm. then ~o 10 3S'1. On the other hand, in the
presence of dispersion, the frequency spectrum of the radiation intensity extends up
to ,;O. If we identify wc with the ultraviolet frequency 10I6.s-!, then, uo << -,j.

This means that the influence of the dispersion begins at a much smaller frequency
than the one due to the finite charge dimensions.

Since, in the presence of dispersion, d/dz is finite (see (3.6) and (3.7)), one can
extract (z) from the energy balance condition dT/lz = -d(/dz, similarly as it was
done for the charge of finite dimensions. The following equations are valid now

d I 
- _______ = -(1 - 32-2) ~~(3.8)

d~i V/132

for 3 > 0, and
____=_ ( - 1)[I + l -In) (3.9)

for 3 < 3 Here we put,

i-2 = I + IT l 2rn0c4

Then, for 3 > 3, one gets the following equation

1 o~~-
(i3 -)(~ - ) = -In[(. + ~ 2 . 0 2- _Y). (3.10)

2a n+y fi20 2.. I.

Here a = 1 - 1/ui2; -y, %o and z are the same as in (2.24). It follows from (3.10)
that

I
-*1-2(1 - j21~

for -* -c. The velocity ~, is reached at

I____ +< ii32~ u2I

z, =io + 2(2-h l2 ). 3 _ - o) (3.11)

For 3 > 3c, the dependence 3()extracted from (3.11) is shown in Fig.1 for typical
parameters 3, = 0.5, f30 = 0.9 and o = . Below /3c, the asymptotic form of /1 given
by 3 -. exp[-(i - ic)/4023y'] and obtained from (3.9) is presented.

Although the energy balance is important from the theoretical viewpoint, it is
slightly academic. The reason is that the energy losses due to the ionization of
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medium atoms are much larger than the Cherenkov radiation losses. With a good
accuracy, they are described by

dT/dz = F,(3.12)

where (9is a constant dependent on the medium properties and F is a function
weakly dependent on /3. For the electrons propagating in water C ~1.65 tvev/cmn.
On the other hand. the constant 2

Li2/2 C2 entering into (3.6) is _ 1 l2 Mev/cmn for
lo:Z 0' 6 S. Since Cek.,2/2C2 << C, the ionization energy losses are much larger

than the ones due to the Cherenkov radiation. This means that one may disregard
the Cherenkov energy losses in (3.12). We can solve (3.12), if we put F =1. Then,

vl/2[x(x + 4))]i/4 (3.13)
0(x+ 4) +x +211/2

Here x = (zf - z)/L and L = moc2/C; z is the space point where /3=0. For x 0
/3 - /2"' and for x - oo, /3 -1 - l/x 2 . The dependence /3(x) is shown in Fig. 2.
The velocity 3, as a function of z, drops almost instantly for small L. This justifies
the validity of the Tarmm problem [10] which involves a sudden transition from the
charge uniform motion to the state of rest.

3.1.3 Dispersive medium with damping

Ohviously,, the nondamping behaviour of EME is possible when the index of the
exponent in (3.4) is small. This takes place, if cos 0/2 0. This, in turn, implies
that a = I - 3k,. < 0, and b << al. We need, therefore, the frequency regions
where - /32(r 0. Let /3, < /3 < 1, 3L = /y~ vf-o o (0) 1 ±) 4/W2.Thn
1 - 32(' < 0 for 0 < Lw2 < 2 wer

2 2 ± go -(p
2 + 32, 2W2), go= [(p + /3, 22 ) 2

-
2 1 2 .

In particular,L),= wo for /3=lIand Lo,= Wu-p 2
2 = 0for/3 =3,.

Let /32 </32 <31 were

2pwo _ p2

=3 - Lo2+2p-wo -p2

(it is therefore suggested that p is sufficiently small to guarantee the positivity of
,-P. This is always fulfilled for transparent media where the Cherenkov radiation
is observed). Then, 1 _ /32. < 0 for W2 < < In particular, w = 2 =

wo 1 - plwo for /3 = Op~. Finally, for 0 </3 </Op there is no room for I - fl3k < 0.
We see that for 3 > /3,, the frequency distribution of the radiation differs from

zero for 0 < w < W1 , while for /3, < /3 < /3. it is confined to the frequency window
W2 < < W1. Further decrease in /3 leads to the window narrowing. The window

width disappears for / /3,when WI = W2 = w0 1 - p/we.
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Now, the non-damping behaviour of EMF strengths in addition to I - 32c < 0
requires also «< al. This gives

2~ _ _ _ _ __2 _ 1
L2 20 o « -

(it was taken into account that 1 _-2f < 0). Since the r.h.s. of this inequality is
smaller than 0, its .h.s. should also be smaller than 0. This takes place if

w;< wL2±+p2 /4- p/2.

For small damping this reduces to w < o - p/2.

3.1.4 Application to iodine

As an example, we consider the dielectric medium with o= 1 w 2 /W2 2.24. The
parameters of this medium are close to those given by Brillouin ([6), p. 56) for iodine.
As to wo, Brillouin recommends w0 ~ 4.-1016<'. This value of wo is approximately
10 times larger than the average frequency of the visible region. However, since all
formulae used for calculatons depend only on the ratios WL/wo and pw0, we prefer
to fix wo only at the final stage.

To illustrate analytic results obtained above, we present in Fig. 3 dimensionless
spectral distributions c5,(w) = f(wu)/(e'Lwo/c 2 ) for different charge velocities 3 and
damping parameters p as a function of w/wo. For p= 0 (Fig. 3 (a)), radiation
intensities behave in the same way, as explained in section (3.1.1). The switching of
the damping parameter po affects more strongly radiation intensities for 3 < .L, than
for 3 > ft. For example, the radiation intensity corresponding to 3 = 0.4 < 4. ~
0.668 is very small even for p/wo = 0' (Fig. 3(b)). For larger p, the radiation
intensity is so small, that it cannot be depicted in the scale used For instance, for
.3 f3t the maximal value of the radiation intensity equals 2 -10" for jp/wo = 0'
(Fig. 3(c)) and 3 -'- for p = 10'2 (Fig. 3(d)). With the rising of p, the maximum
of the frequency distribution shifts toward the smaller frequencies. This is due to
the large value of the index under the sign of exponent in (3.4) (and, especially, to
the large value of pw/c).
So far, we did not specify the resonance frequency wo. If, following Brillouin, we
choose wo0 4 .10

1 6
sc- (which is approximately 10 times larger than average

frequency of the visible light), then it follows from Fig. 3 (d) that for p/WO = 10'
(Brilloin recommends p 0.15), frequency distributions are practically zero inside
the region of the visible light corresponding towL z wo/lO. This means, in particular,
that space-time distributions of the radiated energy corresponding to realistic p are
formed mainly by photons lying in the far infra-red region and, therefore, there is no
chance to observe them in the region of visible light.

Up to now, we considered the radiation intensities on the surface of the cylinder
C of the radius p = 10cm. It is interesting to see how they look for smaller p. To
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be concrete, consider the radiation intensities correspondling to p/wo = I O'. From
Fig. I3 (d) we observe t hat the Tnaxilroom Of o7, s at w/o-2 i 0' for /3 1 and
p 10cm. For p Icini (Fig. -1 (a)), the inaximn'11- Of te ame radiation intensity is
at Le /,'O P~ 6 iO10. This means that all frequency distributions shown in this figure
are shifted towards the larger L,L.;o. This tendency is upported by Figs. 4 (b-d)
where the radiation intensities for p = I 0'cin, p 10-4CInn and p IO10-cn are

p~resentedl.

3.2 Dielectric permittivity (3.2)

There is an important difference between pararnetrizations (3.1) and (3.2). It is
seen that ((u) given by (3.t) tends to unity, for w - oo. This means that medium
oscillators have rio enorigh tinie to be excited in this limit. On the other and.
t(w') given by (3.2) tends to c. in the same limit. T'his leads to the appearance
of two critic al velocities /3 = / c~7 and ~3 '/V/'(o where c = c(w =c

and o = 0) = C_ ± Lo2/W2. Now we evaluate the frequency distribution
of the energy radiated by a point-like charge uniformly moving in ZnSe with the
same parameters as in [9]. For the parametrizations (3.2) wit I p = 0, the radiation
(1 - 032 < 0) condition is fullfilled in the following w doniairis:

For the charge velocity greater than the larger critical velocity (3 > 3,), the
radiaton coditio 02~ 3( < 0 takes place if 0 < w < w ad w > , Here Lo=

-(0( _ )/(O/3. - 1). At first glance it seems that for the parametrization (3.2)
the frequency spectrLIrrn of the radiation extends to infinite frequencies. Fortunately,
this is riot so. According to section 2, the finite dimensions of a moving charge
lead to the cut-off of the frequency spectrum approximately at w,- = ca, where a is
the charge dimension. If for a we take the classical electron radius (171ic 2 ), then

l,- 02 3sc-, which is far above the frequency of the visible light ( - 10lSecc1).
For 3 - , Lo - oo, ad only the low freqrrency part of the radiation spectrum
survives. For the charge velocity between two critical velocities (o < 3 < /3/3, te
radiation condition I - 32r < 0 takes place if 0 < < oo. Finally, for the charge
velocity smaller than the minor critical velocity ( < /3 < /3o). the radiation condition
I- 32r < 0 is realized in the frequency window w < i < Wo. There is no radiation

outside it. When / - 0, w - wo and the Frequency window becomes narrower'.

3.2.1 Application to ZnSe

In Refs. [9], the following parameters of a dielectric permittivity (1.3) were found:

0o~ 5.79, to 8.64, vo = 6.3 x 012 Hz, wo = 27ru'0 ; 4 10'13,.;1

The corresponding critical velocities are given by /3 = 0.416 ad 30 0.34.
For / > O., the frequency distribution is confined to te following regions:
0 < w wt and w > w. At p = 0, the radiation intensities behave in accor-
dance with these predictions (Fig. 5). Let jp j 0. For /3 > /3. radiation intensities
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corresponding to the high frequency branch ( > ) vary rather slowly with the
rising of p (Figs. 6(a) and 7 (a)). O the other hand, the low energy lbranich of
radiation intensity ( < < ~eo) is more sensitive to the (lamping increase it is
practically invisible even for a rather small value of 1P/,.O 10' (Fig. 7(a)). Let
3 < 3 < .3,. At po = 10-' and po = 10', the maximal values of radiation
intensities are, respectively, four and forty times smaller than for p 0 (Figs. 6(b)
and 7 (b)). In addition. they are shifted towards the smaller w,. Still more rapidly
decrease radiation intensities with rising p for 3 < 30. For example, for 3 0.2 and

p/,o= 10', the maximal value of the radiation intensity is .~5 1-6.

The main result of this section is that, in absorbing mnedia, both the value and
position of the frequency distribution rmaximum crucially depend on the distance
where observations are moade. The diminishing of the radiation intensity is physically
clear since only part of the radiated energy flux reaches observer if p 7$ 0. Does the
frequency shift of the radiation intensity maximum mean that any discussion on
the frequency distribution of the radiation intensity should be spplemented by the
indication of the observation distance? In the absence of absorption (p 0), the
index of the exponent in (3.4) is zero and the dependence o the cylindrical radius
p drops out. At first glance, it is possible to associate the p independent frequency
distribution of the radiation intensity with the pre-exponential factor in (3.4) which
is the p = 0 limit of (3.4). But (3.4) is not valid at small distances. Instead, the
exact Eq. (3.3) should be used there which is infinite at p = 0 (since a charge moves
along the z axis).

4 Radiation of a charge moving in a cylindrical
dielectric sample

Upno now we implicitly suggested that the radiation intensity is observed in the
same medium where the charge moves. However, a charge usually moves in one
medium (water, glass) while the observations are made in another medium (air,
vacuum) (see, e.g., the nice Cherenkov review 11]). We intend now to consider
arising complications. Consider a cylindrical samnple C of the radius a filled with
medium with the parameters el and pi. This sample is surrounded by another
medium with parameters 2 and /P2 such that n2 < n. Let a charge move with
a constant velocity v along the axis of C with a constant velocity v satisfying the
inequality /ni < 3 < /n2 (that is, medium inside C is optically more dense than
outside it). Formerly, this problem was considered by Frank and Ginzburg (12], who
having written the general solution for arbitrary n and fl2, applied it to a concrete
case when the medium inside C was vacuum, while outside C was medium with the
refractive index n2. They obtained a remarkable result that despite the absence of
the energy flux inside C, it reappears outside C if fin 2 > .

As to other possibilities, they remark that "Similarly, as it was done above, one
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may easily consider other particular cases (n > ,fln 2 < 1;,3,n > 1,,3n 2 > 1),

which will not e considered here. We note only, that for !3n2 < 1, there are no
radiation energy losses for oth fin1 < and fin > ".
We consider in some (detail the case corresponding to n2 < n 1 3n > ,fin 2 < 1. One
easily finds that the electromagnetic field arising from an unbounded charge motion
along the axis of C equals

Az= 2p2 exp(iVb)AK0(2), Ho, = C2kexp(1b) 1/022 - K1 (2),

1E, = -kC 2 P 1l/Q32 _ 1) exp(iV')K'o(2), E, = Ho/*3 2 (4.1)

outside, C and

A, = pii exp(iip)[!¶H 0(1) ± CiJo(1)],
2c

HI exp(io~)kni 1 - 1 /0i~2 HI(1) ±CJ(1]

E= ikli, exp(ilI)( - 1 2c + CAJ(l)], E, = Hq,/fi1 (4.2)

inside it. Here ~'=kz/3, 1 = 03nI, 02 = fin. The arguments of the Bessel functions
are 2 = kpV1/fl2

- n2 for p > a and I = kp a -/ 2 fop< heceiint

Ci and 2 are found from the continuity of HO and E, at p = a:

C1 =2 -[--(n 1 2 1//3 1KoNj + n2 PI 1 I 1/iK 1 N.) - ], (4.3)

2c 

The arguments of the usual and modified Bessel functions entering into (4.3) are

ka1I- 1/fl2 and kan2 \fi/02 -1 respectively. We evaluate now the energy fluxes.

4.1 Radial energy flux

The radial energy flux is

01 dzd - 7-rpc(E H + c.c.). (4.4)

Obviously, it equals zero outside C and

a>, -rpck ini(1 - 113H + ICiJo)(-±~ H~2 + i
2c 2c

2c 0 C, 2c 1 ± 1 1 ] 
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inside C (it was taken into account that IC 1 = -e/2c). Thus, the radial energy
flux equals zero inside C too. This is due to the fact that the contribution of the
terms with the product of Hankel functions in the energy flux is compensated by the
terms with the product of Bessel and Hankel functions. The following complication
arises. Let the detector be placed outside C, that is, in medium where fin2 < 1 In
fact, this is a typical sitution in Cherenkov experiments. For example, in classical
Cherenkov experiments [11], the electrons moved in a vessel filled with water, while
the observations of the Cherenkov light were made in air , in a dark room, by a
human eye. There is no radial energy flux outside C. Then, how the Cherenkov
radiation can be observed there? One may argue that since the human eye is filled
with the substance having the refractive index approximately equal to that of water,
the Cherenkov radiation reappears n it (similarly to the appearance of the radiation
in the medium surrounding the vacuum channel with a charge moving along ]its axis
[12]) and, therefore, it could be detected. However, now there are known substances
with large refractive indices. Does this mean that the radial energy flux cannot be
detected outside C (for this, it is enough to use the collimator selecting only the
photons emitted in the radial direction) if the measuring device is fabricated from
the substance with the refractive index n2 smaller than 1/fl and n ? The possible
answer gives the following section where the energy flux in the direction parallel to
the motion axis will he evaluated.

4.2 Energy flux along the motion axis

The energy flux parallel to the motion axis is

d28
a, = dpw= 7rpc(E0H; + c.c.). (4.5)

It equals

Pe 2 ALPLa2 2 - (pn2 1/3 )12 (4.6)

outside C and

a, = rpcglk 2( - -(, N) + fCI (Ni C,, - Ji Ci)], (4.7)

inside it. Here Ci, and 0 li are the real and imaginary parts of D:

Cir =-(ni12Vf1/,322 - KoN, + n2p1l 1 - 1//3?K1 No), Ci - 2

In general, a, is exponentially small outside C, except for w satisfying A =0.

For these w, a,, is infinite. For large ka, equation A = 0 is reduced to

½ /N-i
kaniV32 I - - arctan + mir, (4.8)
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where t is integer. Thel( distance between the neighbouring maxima of a,, is A~w

7rc/(an I) For the cylinder radius a - 0cm, the ~sw is about 101 0s- . The

typical optical frequenc y is about .5 10' 5s- . Since the real Cherenkov detector has
thle finlite f~jequecy resolution width (several I0 5 1 units) it inevitably covers many
maxima of a- antI, therefore, te measuring device oriented parallel to the motion
direct on) will detect the almost continuous radiation.

5 Optical interpretation

A charge uniformly moving inside the dielectric cy linder C eits the light ray at the
Cherenkov angle 01 (cos 0 = 1mi) towards the charge motion axis. Let this ray
intersect the cylinder, surface at some point and let i be the incidence angle (Fig.
8). It is easy to ceck that sin i = cos 0j. According to classical optics (see, e.g.,
[7,8)), the incidence i, reflected iP and refractive angles are interrelated as follows:
i= C, Sille7 = (1 /712) Sin i It follows from Fig.8 that siner cos 02, where 02 is the

inclination angle of the light ray moving in medium 2 towards the z- axis. Therefore,
02 =(n 1112)cos 1 = 1/10. Tat ii n 1, the light rav in medium2

propagates at the angle 2 towards the 1`o1tion axis. Otherwise (30 < ). the total
internal reflection takes place. Due to the translational symmetry of the problem.
the saute total internal reflection takes lplace i all other points where a given light
ray meets the cylinder surface. This m-eans that the light ray emitted by a moving
charge remains within the infinite cylindrical sample if 302 < .

The situation slightly changes if the cylindrical sample has a finite length. In
order not to (heal with the transition radiation (arisig when the moving charge
passes through the boundaries of mediums I and 2), we consider te charge motion
completel y confined within C (Fig. 9). This situation was realized in the original
(Cherenkov experimients where Compton electrons were completely absorbed in water.
Usually, this situation is described in terms of the so-called Tanmm problem [10).
where te har-ge mov0\es uniforMly, with the velocity 03 > it, o a finite space interval.
.After a number of reflections at the surface of C, a particular light ray reaches the
bottom (of a cylindrical sample. It is easy to check that, its incidence angle coincides
with 01. The refractive angle is given by

Sine ' n -.sin 1 - It 2 ____

712 ?2F-~111

Obviously, the light ray leaves C through its bottomn if sin r' < . This is equivalent
to

$3 < ?07i1( -

It follows fl tis that if 712 > ??I /v,/2, then the light ray pass(\s trough the bottomn
of (7 and propagates in medium 2 at, the angle 0' = r' towards he motion axis. Let
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022 < n1 / v'2. Then, for 3 < I / n' n2, the light ray propagates in mnedium 2 at
the same angle O' towards the motion axis. On the other hand, for

2 ~ ~~~

1n, 212

the total internal reflection takes place on the bottomn of C as well. Therefore, I
this case the light ray emitted by a moving charge remains within C.

Consider the dielectric sphere S of the radius R filled by the substance with
refractive index 01 and surrounded by the ubstance with refractive index 2 (Fig.
10). Let a charge move uniformly in the space interval (-S-o, Zo) lying comJpletely
inside S and let its velocity be such that 1/ni < 3 < 112. Elementary calculations
show that the Cherenkov y ray emitted at the point of the motion axis, outside 5
propagates under the angle

02 =9- +arcsin(- sin(O -)] (5.1)

towards the motion axis. Here 01 is defined by cos901 = /n and is related to the
charge particular position z as follows

CosO -sin 01 + cosi 1 -I-- sin .
R R2

Obviously. cos9 changes in the interval

-- sin~i~cos~i 1- in, 91 < os9 < -Sini IcoO 1- siri2 0
RR RR

when a charge moves from z -zo to z = z. Substituting this into (5.1). we find
the angular nterval, where the Cherenkov radiation differs from zero outside S.

This means that the C'herenkov radiation has, more chances to leave the sphere
than the cylinder. The reason is that the Cherenkov - ray mneets the sphere sur-
face at different incidence angles depending on the charge position on the motion axis.

The semi-intuitive consideration of this section:
i) shows that the observation of the Cherenkov radiation strongly depends on thce
boundaries surrounding the volumet where a charge moves;
ii) defines conditions under which te Cherenkov radiation can penetrate from h
medium ith 3n, ;> into the medium 2 with 3n < without exhibiting the
total internal reflection on their boundary. However, only concrete calculations can
determine the value of the radiation intensity in the nedium 2.

6 Discussion

Sections 3-5 rise uneasy questions concerning the observation of the Cherenkov ra-
diation for the unbounded and bounded charge motions.
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1.0T- . .

1/n --- - - - - - - - - -

0.0 
-20 -16 -10 -6 0 6 10

Figure 1: This figure shows how a moving charge is decelerated when all its energy losses
are due to the Cherenkov radiation. The solid curve corresponds to the charge of finite
dimensions moving in dispersion-free medium. The charge velocity approaches /n for
i-~ o. The pointed curve corresponds to the point-like charge moving in dispersive

medium. Its velocity equals /3. at = i,. Below 3,, the asymptotic form of /3given by
/3 - flexp[-(i - was used.

0.8

QQ_
0.6

0.4

0.2

0 1 2 3 4 6
x

Figure 2: This figure shows how a charge is decelerated due to the ionization energy
losses described by (3.8). Here x = (zf - z)/L, z is the space point where 3 = 0 and L
is the same as in (3.10).
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0 ~ ~ ~ ~~~~.

b 0.8
.1.0 .0. 0.7

0 I 0.6

0.6 .

0.0 01 02 0.3 0.0 0.1 0.2 0.
w,/Cwo 10 (w/W~O

0.20 .0.6 -

C ~p= 10-4 0.4 ___o-,

0.16 ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~~.

0.06, -~~~~ oIL - - -0.

0.100 0.--- .

0.0 0.2 0.4 0.6 0.8 1.0 1.2 0.0 0.2 0.4 0.6 0.8 1.0

Figure 4: Radiation intensities corresponding to dielectric permittivity (3.1) for p/,~O

11Y' and for a number of velocities and observation cylinder radii p (in cm). It is seen
that the frequency distribution of the radiation crucially depends on the radius p. This
leads to the ambiguity In Interpretation of experimental data. The p dependence of the
frequency spectrum disappears in the absence of damping.
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1.0

a 0.8b

0.8 0 4
-0.6 - - - ~~0.6 0.34

b ~~~0.45 .......b 0.3
4 0.4~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ .

2 0.2 -
-, -- ..... 04 .2 0. -0. 08 .

0 0.0
0 2 4 6 8 10 0.0 02 04 0. 8 t0

Figure 5: Radiation intensities corresponding to dielectric permittivity (3.2) for p =0

and a number of a charge velocities. The medium parameters are the same as for ZnSE.
There are two critical velocities: 3_ zz 0.416 and /3o ;,0.34. For /3 > O., there are two
frequency regions ( < w < wo and w < w < c) to which frequency distributions are
confined (a). When / - /3, w - o. For 13o < 3 < 3, the radiation is confined to the
frequency region 0 < < wo ((b), 3 = 0.4 and 0.34). For 0 < 3< flo, the radiation is
confined to the frequency region w, < w < wa. When 3-*0, w, Loaw and the frequency
window becomes narrower ((b), /3=0.3 and 0.2).

to 0.3

a b
8 p 

6 1 - - ~~~~~~~~~0.2 - 0.4
-- 0.8 ---- 34

C . .... 0.6 ----- 0.3

4 . ..... .4

2 - - - - .... ~~~ ~~0.1 I I

..~ ~~.....

C 0.0 -- , 1
0 2 4 6 6 t0 0.0 0.2 0.4 0.6 0.8 1.0

w/cwo w

Figure 6: The same as in Fig.5, but for the nonzero damping parameter p/we lo-08. t
is seen that for / > O- (a), the high-frequency branch of spectrum is almost the same
as in the absence of damping. Radiation intensities in the low-frequency part of the
spectrum are two times smaller than for p = 0. For 3 < 3 (b), the frequency spectrum
is more sensitive to the change of p. Its position is shifted towards the smaller W. For

3 < /3o, the radiation intensities are very small. For example, for /3 = 0.2, the maximal
value of the radiation intensity is 5 10'. The cylinder radius p = 10cm
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Figure 7: The same as in Fig.6, but for the larger pwo = 10-6. For fl > /3, the
low-frequency part of the spectrum practically disappears (a). For g < 3 < /3 (b),
the frequency spectrum is shifted towards the smaller w and the radiation intensities
are approximately ten times smaller than those in Fig. 6. The radiation intensity
corresponding to 03 = 1% : 0.34 is multiplied by 100 (that is, the shown curve should be
decreased in 100 times). For 3 < /3o the radiation intensities are small and cannot be
presented in this scale. The cylinder radius p 10cm. Comparing this figure with Figs.

5 and 6, we observe that the position of the frequency spectrum maximum crucially
depends on the damping parameter.

Figure 8: The infinite cylindrical dielectric sample C with refractive index n1 surrounded
by the medium with refractive index n2 . A charge moving in C, emits -y ray at the
Cherenkov angle 01 This -y ray leaves C if /3n2 > 1. Otherwise, it exhibits the total
internal reflection and remains within C.
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C

02

Figure 9: A charge moves in a finite dielectric sample C. There are additional possibilities
for the Cherenkov -y ray to leave C through its bottom (see the text).

S
r

Figure 10: There are more chances for the Cherenkov y ray emitted by a moving charge
to leave the sphere S, than the dielectric cylinder C. The reason is that the Cherenkov
-f ray meets S under different incidence angles depending on the charge position z in the
motion interval (-zo, zo). Here i and r are the incidence and refractive angles, resp.
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I fact, it was shown in section 13 that for the charge moving in an absorptive
iedituin not onl te value of the mnaximumn of the radiation frequency distribution

(this is tiot srprisinig), but its position as well, crucially depend on the observation
distance and damping parameter. Does this mean that experimentalists should in-
dicate the observation distance when presenting Measured frequency distributions of
the radiated energy?.

In section 4, the complication was discussed arising when a charge moves in
medium I for which the Clierenkov radiation condition Qon > I is fulfilled, while
measurements are made i another niediur 2 ith OQn2 < . If we associate the
energy radiated by a charge moving in the nmedium with the radial (in the cylindrical
geometry) energy flux (this is a usual thing in the Tanim-Frank~ radiation theory).
the theory' tells its that the energy radiated into the m-edium 2 is zero. Then, how
to interpret the results of experiments performed tinder the same conditions and in
which the Clierenkov photons were detected?. On the other hand, if we associate
the radiated energy with the energy flux in the direction parallel to the motion
axis, the energy radiated into the miediuim 2 is exponentially sniall for all frequencies
except for the infinite set of discrete frequencies. Probably,\ the radiation observed
in Cherenkov-like experiments wit i cylindrical geometry is due to this energy flux.
Thae distance between the neighbouring representatives of this set is so small than the
discrete nature of the frequeiacv spectrum could hardly be resolved experimentally.

A tprecaution is needed. Sometinies, experimentalists (see, e.g., [13.14]) install
inside the cylindrical volume C (especially, when it, is filled with a gas) a mirror
inclined under the- angle r/-I towards the motion axis, This mirror reflects the a.,
component, (4.7) of the i terital energy Hu x in the direct ion perpendicotar to the
motion axis, thus, making. possible to observe the energy flux in the radial direction
outside C'.

Optical considerations presented] in section 5 show that the above ambiguity
partly disappears when a charge moves inside the dielectric sphere. Does this mean
that the observation of the Cherenkov adiatioii crucially depend on the experimen-
tal installation geomnetry 

7 Conclusion

We briefly summarize the mnain results obtained:
1. It is analysed how finite dimensions of a moving charge affect the frequency

spectrum of the radiated energy. It is shown that the frequency spectrum extends
tip to kra, where kr and a are te wave number and the typical dimension of a moving
charge, respectively.

2. It is shown how a charge should move in medium if, in the absence of external
force, all its energy losses were due to te Clmerenkov radiation. The analytic formula
is obtained for the charge moving in niediuin with ionization losses.

3. Frequency distributions of te energy radiated by a charge moving in medium
are evaluated] for two concrete substances for which the paranetrizatiomis of dielectric
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permittiv ty are known. The difficulIt Ies a ssoc ated with lthed(efinit ion of the rad(IiatIed
energy flux, when the measurements are made i asorptive medium, are dliscuissedl.

4. There are discussed complications arising when a charge moves in the mnediumn
where the Cherenkov radiation condition is fulfilled, while the oservations of the
radiated energy are made in another medium where this condition is not fulfilled.
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