


1 Introduction

For a complete understanding of the low-energy quantum phenomena of Yang-Mills
theory, it is necessary to have a nonperturbative, gauge invariant description of the
underlying classical theory including the #-dependent Pontryagin term [1]-[4]. Sev-
eral representations of Yang-Mills theory in terms of local gauge invariant fields have
been proposed [5]-{24] during the last decades, implementing Gauss law as a genera-
tor of small gauge transformations. However, dealing with such local gauge invariant
fields special consideration is needed, when the topological term is included, since
it is the 4-divergence of a current changing under large gauge transformations. In
particular, consistency of constrained and unconstrained formulations of gauge the-
ories with topological term requires to verify that, after projection to the reduced
phase space, the classical equations of motion for the unconstrained variables remain
f-independent!. Furthermore the question, which trace the large gauge transforma-
tions with nontrivial Pontryagin topological index leave on the local gauge invariant
fields, has to be addressed.

Having this in mind, we extend in the present paper our approach [22, 27, 28],
to construct the unconstrained form of SU(2) Yang-Mills theory, to the case when
the topological term is included in the classical action. We generalize the Hamil-
tonian reduction of classical SU(2) Yang-Mills field theory to arbitrary é-angle by
reformulating the original degenerate Yang-Mills theory as a nonlocal theory of a self-
interacting symmetric second-rank tensor field. The consistency of the Hamiltonian
reduction in the presence of the Pontryagin term is demonstrated by constructing
the canonical transformation, well-defined on the reduced phase space, that elimi-
nates the #-dependence of the classical equations of motion for the unconstrained
variables.

With the aim to obtain a practical form of the nonlocal unconstrained Hamil-
tonian, we perform an expansion in powers of the inverse coupling constant, equiva-
lent to an expansion in the number of spatial derivatives. We find that a straightfor-
ward application of the derivative expansion violates the principle of #-independence
of the classical observables. To cure this problem, we propose to exploit the prop-
erty of chromoelectro-magnetic duality of pure Yang-Mills theory, symmetry under
exchange of chromoelectric and -magnetic fields. The electric and magnetic fields
are subject to dual constraints, the Gauss-law and Bianchi identity, and only when
both are fulfilled, the classical equations of motion are #-independent. Thus any
approximation in resolving the Gauss law constraints should be consistent with the
Bianchi identity. We show how to use the Bianchi identity to rearrange the deriv-
ative expansion in such a way, that the #-independence is restored to all orders on
the classical level.

1The question of consistency of the elimination of redundant variables in theories containing
both constraints and pure divergencies, the so-called " divergence problem”, has for the first time
been analyzed in the context of the canonical reduction of General Relativity by P. Dirac [25] and
by R. Arnowitt, S. Deser, C.W. Misner [26).



In order to have a representation of the gauge invariant degrees of freedom suit-
able for the study of the low energy phase of Yang-Mills theory, we perform a
main-axis transformation of the symmetric tensor field and obtain the unconstrained
Hamiltonian in terms of the main-axis variables in the lowest order in 1/g. Car-
rying out an inverse Legendre transformation to the corresponding unconstrained
Lagrangian, we find the explicit form of the unconstrained analog of the Chern-
Simons current, linear in the derivatives.

Finally we expand the action around the minimum of the classical potential and
derive an effective classical theory of a unit vector field interacting with a scalar
field. Using typical boundary conditions for the unit-vector field at spatial infinity,
the Pontryagin topological charge density reduces to the Abelian Chern-Simons
invariant density [4]. We discuss its relation to the Hopf number of the mapping
from the 3-sphere S3 to the unit 2-sphere S? in the Whitehead representation[29)].
The Abelian Chern-Simons invariant is known from different areas in Physics, in
fluid mechanics as “fluid helicity “, in plasma physics and magnetohydrodynamics
as “magnetic helicity” [30}-[33]. In the context of 4-dimensional Yang-Mills theory
a connection between non-Abelian vacuum configurations and certain Abelian fields
with nonvanishing helicity established already in [34, 35].

The paper is organized as follows. In Section II the #-independence of classi-
cal Yang-Mills theory in the framework of the constrained Hamiltonian formulation
is revised. Section III is devoted to the derivation of unconstrained SU(2) Yang-
Mills theory for arbitrary f-angle. The consistency of our reduction procedure is
demonstrated by explicitly quoting the canonical transformation, which removes
the @-dependence from the unconstrained classical theory. In Section IV the un-
constrained Hamiltonian up to order o(1/g) is obtained. Section V presents the
long-wavelength classical Hamiltonian in terms of main-axis variables. Performing
an inverse Legendre transformation to the corresponding Lagrangian up to sec-
ond order in derivatives, the unconstrained analog of the Chern-Simons current,
linear in the derivatives, is obtained. In Section VI, the unconstrained action is
expanded around the minimum of the classical potential, and a non-linear o-model
type effective theory of a unit vector field coupled to a scalar field with an Abelian
Chern-Simons term obtained. Section VII finally gives our conclusions.

2 Constrained Hamiltonian formulation

Yang-Mills gauge fields are classified topologically by the value of Pontryagin index?
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ZNecessary notations and definitions for SU(2) Yang-Mills theory used in the text have been
collected in Appendix A.



Its density, the so-called topological charge density @ = — (1/8#2)tr F A F, being
locally exact @ = dC, can be added to the conventional Yang-Mills Lagrangian
with arbitrary parameter 8

1 . 0
;C:—‘gEtI‘F/\ F—WtIFAF, (2)
without changing the classical equations of motion. In the Hamiltonian formulation,

this shifts the canonical momenta, conjugated to the field variables A,;,

ar . ]
Hai = 6A ) = Aai - (Di(A))ac ACO + 8_;3 Bai ! (3)

by the magnetic field (8/8 7?) B,;. As a result, the total Hamiltonian [36, 37] of
Yang-Mills theory with #-angle as a functional of canonical variables (A, [1,) and
(Aqi, T1,;) obeying the Poisson bracket relations

{Aai(t, ), IL(t, )} = 6 8 6P (Z - ), (4)
{Aaﬂ(t$ f) ) Hb(t: 17)} = 6ab 6(3) (f - ZT) ’ (5)
takes the form
s |1 0 21,
Hy= | d°z -2- [ — 87530,' + EBM — Agp (D"(A))ac i+ 2.1, . (6)

Here, the linear combination of three primary constraints
Ma(z) =0, (M)

with arbitrary functions A,(z) and the secondary constraints, the non-Abelian Gauss

law
(Di(4))

reflect the gauge invariance of the theory.

Based on the representation (6) for the total Hamiltonian, one can immediately
verify that classical theories with different value of the @-angle are equivalent. Per-
forming the canonical transformation

My =0 (8)

ac

Aai(z) — Aai(z) y
9
yj(z) v By = IIy(2) ~ g5 Bei(z), 9)
to the new variables A,; and E,;, and using the Bianchi identity

(Di(A))ab Byi(A) =0, (10)



one can then see that the #-dependence completely disappears from the Hamiltonian
(6). Note that the canonical transformation (9) can be represented in the form

)
E, =1, — HmW[A], (11)

where W|[A] denotes the winding number functional,
WIA] = /d3xK°[A], (12)
constructed from the zero component of the Chern-Simons current
K*A] = —-—1—6“"‘97 tr| Fog Ay — —2—A& AgA, ) . (13)
16 72 T3 K

The question now arises, whether, after reduction of Yang-Mills theory including
topological term to the unconstrained system, a transformation analogous to (9)
can be found, that correspondingly eliminates any @-dependence on the reduced
level, proving the consistency of the Hamiltonian reduction.

3 Unconstrained Hamiltonian formulation

3.1 Hamiltonian reduction for arbitrary #-angle

In order to derive the unconstrained form of SU(2) Yang Mills theory with §-angle
we follow the method developed in [22] . We perform the point transformation

Adi (9, 8) = Our(q) Ski + §1§€abc (8:0(g) 0"(q)),, (14)

from the gauge fields Ay (z) to the new set of three fields ¢;(z), j = 1,2, 3, parame-
terizing an orthogonal 3 x 3 matrix O(q) and the six fields Si(z) = Swi(z), 1,k =
1,2, 3, collected in the positive definite symmetric 3 x 3 matrix S(z). Eq. (14) can
be seen as a gauge transformation to new field configuration S(z) which satisfy the
“symmetric gauge” condition £,4c Sk = 0. The transformation (14) induces a point
canonical transformation linear in the new momenta Py (z) and p;(z), conjugated
to Si(z) and g;(z), respectively. Their expressions in terms of the old variables
(Agi(z) , I,i(x)) can be obtained from the requirement of the canonical invariance
of the symplectic 1-form

3 3 3
1 i=1

i,0= 4,j=1

3The decomposition (14) is a generalization of the well-known polar decomposition valid for
arbitrary quadratic matrices used in a similar form in [10].
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with the fundamental brackets

{Si; (¢, %), Put,9)} = % (83 850 + 63 656) 63(F — ), (16)
{g:(t, %), p;(t, N} = 6:; 6 (F - 9) , (17)

for the new canonical pairs (S;;(z), P;;(z)) and (g:(z),pi(z)). The brackets (16)
account for the second class symmetry-constraints S;; = S;; and F;; = Py and
therefore are Dirac brackets. As result we obtain the expression

Mo = Oak(@) | P ri + g€xin" Dy (S) (Sm — Qap5) | (18)

of the old momenta II,; in terms of the new canonical variables, (for a detailed
derivation see [22]). Here *D,} (S) denotes the inverse of the dual covariant deriva-

tive,
* mn(s) = Enje (DJ(S))mc s (19)

the vector S is defined as

Sm= j; (D5(S))mnPos » (20)

and the matrix ! the inverse of

%ula) 1= —geme (070 552 o)

9g;
The main advantage of introducing the variables S;; and g; is, that they Abelianise
the non-Abelian Gauss law constraints (8). In terms of the new variables the Gauss’s
. law constraints

9045(9) 2 35(q) p: = 0, (22)

depend only on (g;,p:), showing that the variables (S;;, P;;) are gauge-invariant,
physical fields. Hence the reduced Hamiltonian, defined as the projection of the
total Hamiltonian onto the constraint shell, can be obtained from (6) by imposing
the equivalent set of Abelian constraints

pi=0. (23)

Due to gauge invariance, the reduced Hamiltonian is independent of the coordinates
¢; canonically conjugated to p; and is hence a function of the unconstrained gauge-
invariant variables S;; and Fj; only

H:/d%[% ( i — = BLF (S))2+ (P,,——LB‘E‘)(S))2+%V(S)]. (24)
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Here the P, denotes the nonlocal functional, according to (18) defined as solution
of the system of differential equations

*Dis(S)Ps = (D;(S)) knPrj - (25)

Furthermore,

B(S) = 5 (Bu(S) + Bu(S)),  BOUS) = 5cacBulS),  (26)

denote the symmetric and antisymmetric parts of the reduced chromomagnetic field
Bm‘(S) = Eijk (ajsak + geabc Sbj Sck) - (27)

It is the same functional of the symmetric field S as the original B,;(A), since the
chromomagnetic field transforms homogeneously under the change of coordinates
(14). Finally the potential V'(S) is the square of the reduced magnetic field (27),

V(S) = %tr FO A FO (28)
with the curvature 2-form in 3-dimensional Euclidean space
F®=dS+SAS, (29)
in terms of the symmetric 1-form
S = g7 Sk dzy, k,1=1,23, (30)

whose 6 components depend on the time variable as an external parameter. The
reduced chromomagnetic field (27) is given in terms of the dual field strength *F®)
as Bm(S) = %Eijk F(B)

ajk *

3.2 Canonical equivalence of unconstrained theories with
different -angles

For the original degenerate action in terms of the A, fields the equivalence of classical
theories with arbitrary value of f-angle has been reviewed in Section 2. Let us
now examine the same problem for the derived unconstrained theory considering
the analog of the canonical transformation (9) after projection onto the constraint
surface,

Sui(z) — Sulz),
9

Py(z) +— &y(z) := Pyla) - g5 By (). (31)



One can easily check that this transformation to new variables S,; and &; is canon-
ical with respect to the Dirac brackets (16). In terms of the new variables S,; and
&v; the Hamiltonian (24) can be written as

H=/d3x[%<€fi+63+%V(5) , (32)

with &, defined as
E =P, — % B, (33)
Now, if P, is a solution of equation (25), then &, is a solution of the same equation
Dis(S)Es = (D;(S))knéns , (34)

with the replacement P,; —— &, since the reduced field B,; satisfies the Bianchi
identity

(Di(S8))ab Bri(S) = 0. (35)
Hence we arrive at the same unconstrained Hamiltonian system (32) and (34) with
vanishing f-angle. Note that after the elimination of the three unphysical fields
g;(z) the projected canonical transformation (31) that removes the #-dependence
from the Hamiltonian can be written as

£5(z) = Pylz) — 0 50— WIS], (36)
1
which is of the same form as (11) with the nine gauge fields A;;(x) replaced by the
six unconstrained fields Si(z).

In summary, the exact projection to reduced phase space leads to an uncon-
strained system, whose equations of motion are consistent with the original degen-
erate theory in the sense that they are 6-independent. Thus if our consideration is
restricted only to the classical level of the exact nonlocal unconstrained theory, the
generalization to arbitrary 6-angle can be avoided®. However, in order to work with
such a complicated nonlocal Hamiltonian it is necessary to make approximations,
such as for example expansion in the number of spatial derivatives, which we shall
carry out in the next section. For these one has to check that this approximation is
free of the "divergence problem”, that is all terms in the corresponding truncated
action containing the #-angle can be collected into a 4-divergence and all dependence
on @ disappears from the classical equations of motion.

4 Expansion of the unconstrained Hamiltonian in
1/g

Let us now consider the regime when the unconstrained fields are slowly varying in
space-time and expand the nonlocal part of the kinetic term in the unconstrained

4The extension of the proof of f-independence to quantum theory requires to show the unitarity
of the operator corresponding to transformation (31).



Hamiltonian (24) as a series of terms with increasing powers of inverse coupling
constant 1/g, equivalent to an expansion in the number of spatial derivatives of
field and momentum. Our expansion is purely formal and we shall in this work
not study the question of its convergence. We shall see, that for nonvanishing -
angle, a straightforward expansion in 1/g leads to the above mentioned ”divergence
problem”, and suggest an improved form of the expansion in 1/g of the unconstrained
Hamiltonian exploiting the Bianchi identity.

4.1 Divergence problem in lowest-order approximation

According to [22], the nonlocal funtional P, in the unconstrained Hamiltonian (32),
defined as solution of the system of linear differential equations (25), can formally be
expanded in powers of 1/g. The vector P, is then given as a sum of terms containing
an increasing number of spatial derivatives of field and momentum

[e o]

P,(S,P) =Y (1/g)"a{(S, P). (37)

n=0

The zeroth-order term is

ol = v3lekim (PS)im » (38)
with 7 := Sy — 0 tr S, and the first-order term is determined as
agl) = — ’ys_ll [(I‘Ot C-L‘(O))[ + BkPk;] (39)

from the zeroth-order term. The higher terms are then obtained by the simple

recurrence relations
a™™ = — 3 (rot @ ™), (40)

Inserting these expressions into (24) we obtain the corresponding expansion of un-
constrained Hamiltonian as a series in higher and higher numbers of derivatives.

Let us check, whether the truncation of the expansion (37) to lowest order is con-
sistent with #-independence, that is, whether all #-dependent terms can be collected
into 4-divergence after Legendre transformation to the corresponding Lagrangian.
In o(1/g) approximation (38), the Hamiltonian reads®

1 9 2 0
(2) _ 3 it _ _—_ g (0) _ 7 g
H /dm[2tr (P 87r2B ) +(as (S, P) g2 B} )
(41)

where M = SP — PS is the spin part of the angular momentum tensor of the
gluon field and B and B() denote the symmetric and antisymmetric parts of the
chromomagnetic field, defined in (26).

L |

5When all spatial derivatives of the fields and momenta are neglected, Yang-Mills theory reduces
to the so-called Yang-Mills mechanics and its #-independence has been shown in [27].



After inverse Legendre transformation of the Hamiltonian (41), the #-dependent
terms in the corresponding Lagrangian cannot be collected to a total 4-divergence,
as is shown in Appendix B, and therefore contribute to the unconstrained equations
of motion. Hence applying a straightforward derivative expansion to the Yang-Mills
theory with topological term after projection to reduced phase space we face the
”divergence problem” dicussed above.

4.2 Improved 1/g expansion using the Bianchi identity

In order to avoid the “divergence problem” one can proceed as follows. Let us
consider additionally to the differential equation (25), which determines the non-
local term P,, the Bianchi identity (35) as an equation for determination of the

antisymmetric part Bg_) of the chromomagnetic field
"Deo(S) B = (D)) B, (42)

in terms of its symmetric part B,E:'). The complete analogy of this equation with (25)

expresses the duality of chromoelectric and chromagnetic fields on the unconstrained
level. Hence one can write

"Dy (S) [Ps - i

0 - (+)
WBﬁ )] = (Di(S))u [Pu - WB“ . (43)
Using the same type of the spatial derivative expansion as before in (38)-(40), we

obtain

O B Z S (1/0)7 0 6
Py~ g5 B =3 (1/9)"a(’(5, P~ g BY). (49)

n=0
In this way we achieve a form of the derivative expansion such that the unconstrained
Hamiltonian is a functional of field combination P,; — (8/8 7%) B,(:)

1 o 2 (@ 6 1
H= /d% [5 (Pai ~ 57 B,‘j)) +<;0(1/g)" a™ (S, P — 8—7§B<+>)) +5 V(S)] :
(45)
explicitly showing the chromoelectro-magnetic duality on the reduced level and
hence free of the "divergence problem”. To obtain the unconstrained Hamiltonian
up to leading order o(1/g), only the lowest term ai” (S, P — (8/8 72) B()) in the
sum in (45) has to be taken into account, so that

1 4 ? 4 2

H® = 5/(13:1: [ tr (P - WB“)) _det127 tr (’y (S, P — —8——7r—2-B(+)] 7) +V(S)] .
(46)

The advantage of this Hamiltonian compared with (41}, derived before, is that the

classical equations of motion following from (46) are f-independent. In order to

obtain a transparent form of the corresponding surface term in the unconstrained

action, it is useful to perform a main-axis transformation of the symmetric second-

rank tensor field S.




5 Long-wavelength approximation to reduced the-
ory

In this section we shall at first rewrite the unconstrained Hamiltonian (46) in terms
of main-axis variables of the symmetric tensor field S;;. The corresponding second-
order Lagrangian L(® is then obtained via Legendre transformation and the form of
the corresponding unconstrained total divergence derived in an explicit way.

5.1 Hamiltonian in terms of main-axis variables

In [22] it was shown, that the field S;;(z) transforms as a second-rank tensor under
the spatial rotations. This can be used to explicitly separate the rotational degrees
of freedom from the scalars in the Hamiltonian (46). Following [22] we introduce
the main-axis representation of the symmetric 3 x 3 matrix field S(z),

#1(x) 0 0
S)=R"(x(z)) | 0 (=) 0 |R(x(@). (47)

The Jacobian of this transformation is

7 (B2 o T | i) - a0 (48)

i#7

and thus (47) can be used as definition of the new configuration variables, the three
diagonal fields ¢, ¢2, @3 and the three angular fields x1, x3, X3, only if all eigenvalues
of the matrix S are different. To have the uniqueness of the inverse transformation
we assume here that
¢1 (113) < ¢2(ZL') < ¢3($) . (49)
The variables ¢; in the main axes transformation(47) parameterize the orbits of the
action under the SO(3,R) group. The configuration (49) belongs to the so-called
principle orbit class, whereas all orbits with coinciding eigenvalues of the matrix S
are singular orbits [38].
The momenta m; and p,,, canonical conjugate to the diagonal elements ¢; and
Xi, can be found using the condition of the canonical invariance of the symplectic

1-form
3

3 3
E F)ij Sij dt = Z un ¢1dt + Z Pxi det . (50)

i,3=1 =1 i=1
The original physical momenta Py, expressed in terms of the new canonical variables,
read

}i(m (@)@ + P( ) ) R(z). (51)

=1
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Here @; and o; denote the diagonal and off-diagonal basis elements for symmet-
ric matrices with the orthogonality relations tr (@;@;) = di;, tr(me;) = 246y,
tr (@; ;) = 0, and

&i(x)
¢;(z) — ¢x(z)’

The &; are the three SO(3,R) right-invariant Killing vector fields given in terms of
the angles x; and their conjugated momenta p,, via

Pi(z) = — (cyclic permutations? # j # k). (52)

61' = Mj—ilpxi b (53)
where the matrix M is
1 8R
MJ'.— —§Ejab (6_x.R )ab . (54)

The physical chromomagnetic field B(S) can be regarded as the components
of the curvature 2-form F®, defined in terms of the symmetric 1-form S in (29).
Starting from the coordinate basis expression of S in (30), we observe that the
main-axis transformation (47) corresponds to the representation

3
S=Zea ¢awa’ (55)
a=1
with the 1-form basis elements
Wy 1= R‘l’j (X(x))dxj ’ 1= 1) 2:3 (56)

and the su(2) Lie algebra basis elements
ea := Rap(x{(z)) 78, a=1,2,3. (57)
In this basis the components of the non-Abelian field strength F® read

F() = 84j X; $5—6a: Xj &i+i Taji—8; Tatj+Lafis) fa+9€aij ¢: ¢;, (no summation),

aij

(58)
with the components of connection 1-form I' defined as
Tus == (X;RRT) , , (59)
and the vector fields
X,; = R{j 6j , (60)
dual to the 1-forms w;, wi{X;) = 5,-j, and acting on the basis elements e, as
X,' e,,'= —I“,,.;aeb . (61)

11



From the expressions (58) we obtain for the potential (28) (see {22] and Erratum
(23]),

3
Vg, x) = Z (Cuii(di — &5) — Xj¢i)2+Z (Tije(ds — b)) — Dins(di — dx) — 90;0%)°
i#£j cyclic
(62)
The explicit expressions for the diagonal components §; and the off-diagonal
components b; of the the symmetric part of the chromomagnetic field

3

B =R'(x) Y (ﬁ,-a,- + %biai) R(x), (63)

=1

are given in terms of the diagonal fields ¢; and the angular fields x; in the cyclic
form

Bi = gdjdr — (¢ — ¢;)Tikj + (di — )iz » (64)
= Xi(¢; — d&) — (di — ¢;)Tij5 + (i — D) ik - (65)
and the antisymmetric part B,(_) of the unconstrained magnetic field is
1
B{) = 'Q“R;Fi (Xi(¢; + b)) + (&5 — ¢i)Tiz5 + (dr — )ik - (66)

The zeroth-order term of the expansion (44) of the combination P, — (8/872)BS™,
finally, reads

a® = — i— &+ i( i — dr) by (cyclic permutations? # j # k)
a (¢] + ¢k) i ] k) Vi y p 7 -
(67)

Altogether, the o(1/¢) Hamiltonian (46), as a functional of main-axis variables,
becomes

o =L [ [Z(w ) C%jck(g, o —¢k)b,-)2+V<¢,x)J,
(68)

with y )
é; + ok

(92— 43)?’
The transformation (31), finally, that excludes the #-dependence from the Hamil-
tonian (68) reads

ki = (cyclic permutations ¢ # j # k) . (69)

7]
+§;§ﬂn i — bi,

g
&r— & — 8_7rE (¢j - ¢lc) b;, (70)

T > Ty
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in terms of angular and scalar variables, and reduces the Hamiltonian to its expres-
sion with zero #-angle [22]

g = 1 [ e [Zﬂ +Z£2(¢j’;+¢ +V($%) (71)

cyclic

5.2 Second-order unconstrained Lagrangian

We are now ready to derive the Lagrangian up to second-order in derivatives corre-
sponding to the Hamiltonian (68). Carrying out the inverse Legendre transforma-
tion,

e
87r2'3 (72)

%o = Ga(Pu—g7 S ME, - 40b). (73)

cyclic

¢ = mi—

with the matrix M given in (54), and the 3 X 3 matrix G
G=M"1kMT, (74)

similar to the diagonal matrix k = diag||ky, k2, k3| with entries k; of (69), we arrive
at the second-order Lagrangian

L?(4,x) / &’z [Z é+ Z %Gy X; — ,x)} -6 / d*z QP(¢,x), (75)

1,j=1

with all 8-dependence gathered in the reduced topological charge density

Q® = s Z (qbaﬁa + JZ XaM, )b,-) . (76)

cyclic

Using the Maurer-Cartan structure equations for the 1-forms w;
dwg = Taoedt A we + Dgpews Awe (77)

with the space components of I' given in (59), and the time components correspond-
ingly defined as
Tas = (RRT) (78)

ab

Eq. (76) can be rewritten as
Q¥ =ac®, (79)
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with the 3-form

3
1
c@ = o Z(d’ﬂ ~ ¢5)% Tanpdt A wo Ay ~

a<b

3
—8—25 }: [(% —~ ¢)? Tacp — gsabc¢l¢2¢3] Wa Awp Aw, . (80)

cyclic

This completes our construction of the second-order Lagrangian with all #-contributions
gathered in a total differential (76). The Q@ in the effective Lagrangian (75) can
be represented as the divergence

Q® =K, (81)

of the 4-vector K®¥ = (KB K®), with the components

K$ = Iél?g [(#2 — #3)*Ta1s + (B3 — ¢1)°Taz1 + (A1 — $2)°T132 — 2961 6203)(§2)
KO = [RE(62 — 93)Toos + R(ds — 91T + Bh(r — 62)'Toos] (33)

Thus we have found the unconstrained analog of the Chern-Simons current K,(?),
linear in the derivatives. Under the assumption, that the vector part K,-(z) vanishes at
spatial infinity, the unconstrained form of the Pontryagin index p; can be represented
as the difference of the two surface integrals

Wi = / Bz KO (t = +o0, 7) , (84)

which are the winding number functional (12) for the physical field S in terms of
main-axis variables (55) at ¢ — +oo respectively, since Ké2)(¢, x) of (82) coincides
with the full Ky[S{¢, x]] of (13). In the next Section we shall show, how for certain
field configurations, it reduces to the Hopf number of the mapping from the 3-sphere
S?% to the unit 2-sphere S2.

6 Nonlinear o-type model with Hopf invariant
as infinite coupling limit of SU(2) Yang-Mills
theory

Following [22], let us consider the behavior of the classical system for the configu-
rations that correspond to the minima of the homogeneous potential

VO =g $i2)d(2) , (85)

i)
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which is the zeroth-order term of the derivative expansion for the potential term
in the Hamiltonian (68). The stationary points of the potential (85) are the three
field configurations ¢; = ¢; = 0, ¢, — arbitrary (i#j#k), each of them
forming a continuous line, a“valley”, of degenerate absolute minima at zero energy.
As mentioned in Section 5.1, these configurations correspond to singular orbits of
the SO(3,R) group action, whereas, in our consideration above, we have restricted
ourselves to the principle orbits ¢, < ¢2 < ¢3. In order to consider the contribution
from the singular configuration ¢; = ¢; = 0, it is in principle necessary to investigate
the dynamics on singular orbits using a decomposition of the S field different from
the main-axis transformation (47). Instead of this, we shall use here the fact, that
the singular orbits can be regarded as the boundary of the principle orbits and find
the corresponding dynamics using a certain limiting procedure. ¢

Suppose now that the classical system spontaneously chooses one of the zero
energy minima of the potential (85) with two scalar fields vanishing,

d1(x) = ¢do(z) =0, and ¢s3(x)  arbitrary. (86)

For the classical vacuum configuration (86), the potential term in the second order
Hamiltonian (68) reduces to the expression [22, 23]

V@ = ¢2[(Ta1s)® + (Ta2)® + (Tass)® + (T311)? + (T321)? + (Tan1)? + (Tapug)?]
+[(X183)* + (X23)*] + 263 [T331X1 63 + T332 Xa03] (87)

which can be rewritten as (22, 23]
V® = (V¢3)? + ¢2 [(8in)? + (n - rot n)?] — (n- V¢3)® + ([m x rot n] - V3) , (88)

introducing the unit vector

ni(z) := Rai(x(2)). (89)
Hence the unconstrained second-order Lagrangian (75) reduces to the nonlinear o-
model type effective Lagrangian

18 = 3 [@]0.607 + G0m) - Gim 1ot 0+ (n- V)’
—([n x rot n} - V¢§)] - 0/d3x QY (90)

for the unit vector n(z) coupled to the scalar field ¢3(z). The Q in the effective
Lagrangian (90) can be represented as the divergence

Q¥ =KD (91)

5Note that for the study of the limit ¢;, ¢; — 0 for (i, # k) in the Hamiltonian formalism, the
conditions that follow from the dynamical invariance of the singular orbits, have to be taken into
account. In particular, it is obvious from the representation {71) of the unconstrained Hamiltonian,
that it is necessary to have £ — 0 for some fixed k, in order to obtain a finite contribution of the
kinetic term to the effective Hamiltonian in the limit ¢;,¢; — 0 for (i, 7 # k).

15



of the 4-vector
K@k — o 2¢3 ((n(z) - rot n(z)), [n(z) x n(z))) . (92)

If we impose the usual boundary condition that the field n becomes time-independent
at spatial infinity, the contribution from the vector part ng) vanishes and the un-
constrained form of the Pontryagin topological index p; can be represented as the
difference

h=ny—n. (93)
of the surface integrals
1 _. -
ny = @/daz (V1(Z) - rot V() (94)
of the fields
Vi@ = lim gs(@)n (05)
— 00

We shall show now that the surface integrals (94) are Hopf invariants in the repre-
sentation of Whitehead [29).

Under the Hopf mapping of a 3-sphere to a 2-sphere having unit radius, N :
S3 — S2, the preimage of a point on S2 is a closed loop. The number Qy of times,
the loops corresponding to two distinct points on S? are linked to each other, is the
so-called Hopf invariant. According to Whitehead [29], this linking number can be
represented by the integral

1
QH=§7T—2/53w1Aw2, (96)

with the so-called Hopf 2-form curvature w? = H;;dz* A dz? given in terms of the
map N as
Hij = eacha (asz) (aJNc) > (97)

and the 1-form w! related to it via w? = dw!. Since the curvature H; is divergence-
free,

ngkaiij =0 , (98)
it can be represented as the rotation
H,‘j = 8,-.,4]- - 8J.A, y (99)

in terms of some vector field A; (i = 1,2, 3) defined over the whole of S%. Thus the
Hopf invariant takes the form

H

o /d3a: (A 1ot A) . (100)

Therefore, the surface integrals (94) are just Hopf invariants in the Whitehead
representation (100) and the unconstrained form of the topological term Q) is an
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3-dimensional Abelian Chern-Simons term [4] with “potential” V; and the corre-
sponding “magnetic field” rotV.

The topological term in the original SU(2) Yang-Mills theory reduces in our ef-
fective non-linear o-model not to a winding number, but the linking number Q# of
the field lines. The importance of the linking number for the stability of the solitons
has been emphasised in (39}, studing solitonic solutions of the O(3) Faddeev-Skyrme
o-model. Furthermore we point out, that the stabilising term in the Faddeev-Skyrme
model, used in [40] as an quantum effective theory for the infrared sector of Yang-
Mills theory, is the square of the Hopf curvature in the form (97), quadratic in deriv-
atives, whereas in our effective theory the Hopf curvature appears in the Whitehead
form (99), linear in derivatives. A Hopf invariant as topological characteristic of low
energy gluon field configurations has been introduced [41] also in the context of the
Faddeev-Niemi (FN) effective theory [40]. In difference to our case it is quadratic
in derivatives and is obtained from the 3-dimensional non-Abelian Chern-Simons
action. A similar such relation was obtained also in [42] using the representation of
gauge fields in terms of the complex two-component CP! variables.

7 Conclusions and remarks

We have generalized the Hamiltonian reduction of SU(2) Yang-Mills gauge the-
ory to the case of nonvanishing #-angle, and shown that there is agreement be-
tween reduced and original constrained equations of motions. We have employed
an improved derivative expansion to the non-local kinetic term in the obtained un-
constrained Hamiltonian and investigated it in long-wavelength approximation. The
corresponding second order Lagrangian has been constructed, with all #-dependence
gathered in a 4-divergence of a current, linear in the derivatives, which is the uncon-
strained analog of the original Chern-Simons current. Close to the minimum of the
classical potential the obtained long-wavelength Lagrangian reduces to a classical
effective theory with an Abelian Chern-Simons term originating from the Pontrya-
gin topological functional. The obtained reduced topological term is not a winding
number, but the linking number of the field lines.

Such a “metamorphosis” of non-Abelian topological invariants to Abelian fields
with nonvanishing helicity sheds some light on the relation between the derived clas-
sical effective theory of unit vector field n(z) and FN quantum effective theory. The
stabilising term in the FN model is the square of the Hopf curvature in the form (97),
quadratic in derivatives, whereas in our effective theory the Hopf curvature appears
in the Whitehead form (99), linear in derivatives. Furthermore we point out, that it
has been emphasized in [43, 44], that the FN action has the same symmetry break-
ing properties, SU(2) — U(1), as the nonlinear o-model, and thus two unwanted
Goldstone bosons should appear. In order to overcome this problem, therefore, ex-
plicit symmetry breaking terms have been introduced in the lattice study of the FN
action {44]. Our classical effective theory already contains such terms, for example
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(n-V@3)? in (77), that, in the corresponding quantum effective theory, can break
the symmetry explicitly and thus avoid the appearance of Goldstone bosons.
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Appendix A: Conventions and notations

In this Appendix, we collect several notations and definitions for SU(2) Yang-Mills
theory used in the text following [4].

The classical Yang-Mills action of the su(2)-valued connection 1-form A in 4-
dimensional Minkowski space-time with a metric 7 = diag||1, -1, —1, —1|| reads

1 . [
with the curvature 2-form
F=dA+ANA (102)

and its Hodge dual *F. The trace in (101) is calculated in the antihermitian su(2)
algebra basis 7¢ = ¢2/2¢ with Pauli matrices ¢, a = 1,2, 3, satisfying [r,, 7] =
Eabe Te, and tr (1,7) = —% bap-

In the coordinate basis the components of the connection 1-form A are

A=g7" A} de*, (103)

and the components of the curvature 2-form F' are

1 . v )
F = §gT“F”,,d:r“ A dz”, (104)
Fi, = 8,A% - 8,A% +geALAC. : (105)
Its dual *F" are given as
1

Fo= §g'r“*F:,,dz“/\dx", (106)

LS aliY ]' a po
Fuu = EeuupaF s 3 (107)
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with totally antisymmetric Levi-Civita pseudotensor &,,,, using the convention

60123 = —€p123 — ] (]08)

The #-angle enters the classical action as coeflicient in front of the Pontryagin index
density

1
Q=—-g5tr FAF. (109)
The Pontryagin index density is a cIosed form d @ = 0 and thus locally exact
Q=4d4dC, (110)
with the Chern 3-form
1 2

The corresponding Chern-Simons current K* is a dual of the 3-form C,

K* = (1/3)e"% C, 0 = — 1611r25“°ﬂ7tr (Fa,, A, - %AaAﬂA,) L (12

with the notations A, := g7° A% and F,, := g7° Fj},. The chromomagnetic field is
given as

B® = ! 5 €k Eie = €k (ajAak + %&bc Av; Ack) ) (113)
and the covariant derlvatlve in the adjoint representation as
(Di(A)) ge = 8acO; + gEabcAbi - (114)
Finally, we frequently use the matrix notations
A = A7, B, = B}. (115)

Appendix B: Unconstrained Lagrangian in 1/g ap-
proximation

In this Appendix it is shown that straightforward application of expansion of the
nonlocal part P, of the kinetic term in the unconstrained Hamiltonian to zeroth-
order discussed in Section 4.1, leads to the appearance of 6-dependence of the re-
duced system on the classical level. Expressing the Hamiltonian (41), in terms of

the main-axis variables, defined in Section 5, and performing an inverse Legendre
transformation, one obtains the Lagrangian density

2
[’(2)(¢’ - (Z ¢,2 + Z X’GU X] ¢ X)) (871’2) Z ¢’2A ¢2

3,j=1

o ¥ 5, 60
—E}E (‘f’aﬂa + Z Xa - ¢’k) (b, + ?;_7:-A ) 116)

cyclic
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denoting the difference
1
A= §(¢j = de)bi — (&5 + ¢x) RisB{T) (117)
with b; of (65) and B{™) of (66), or explicitly,

A; = —[Xi(¢;0%) + (Tijj + Ticn) 0% — i(d;Tiex + dxTi55)] - (118)

It easy to convince oneselves that the term proportional to 82 is not a surface term.
Indeed, considering for simplicity configurations of spatially constant angular vari-
ables x; and ¢; = ¢ = ¢3 =: ¢ ,it reduces to

9 2 3
- <8—7r—2) Z Gi¢ Gi¢ (119)
i=1

which is not a 4-divergence. For A; = 0 the Lagrangian density (116) reduces to
(75), obtained from the improved Hamiltonian (46), free of the divergence problem.
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