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Shirköv D.V. E2-2000-298
Analytic Perturbation Theory for QCD Observables

The connection between ghost-free formulations of RG-invariant perturbation
theory in the both Euclidean and Minkowskian regions is investigated. Our basic
tool is the «double spectral representation», similar to the definition of Adler func-
tion, that stems from first principles of local QFT. It relates real functions defined
in the Euclidean and Minkowskian regions.

On this base we establish a simple relation between
— The trick of resummation of the 7i2-terms (known from early 80s)

for the invariant QCD coupling and observables in the time-like region and
— Invariant Analytic Approach (devised a few years ago) with «analyticized»

coupling otanCß2) and nonpower perturbative expansion for observables

in the space-like domain which are free of unphysical singularities.
As a result, we formulate a self-consistent scheme — Analytic Perturbation

Theory (APT) — that relates a renorm-invariant, effective coupling functions
a a n ( ß 2 ) a nd S(s), as well as nonpower perturbation expansions for observables

in both space- and time-like domains, that are free of extra singularities and obey
better convergence in the infrared region.

Then we consider the issue of the heavy quark thresholds and devise a global
APT scheme for the data analysis in the whole accessible space-like and time-like
domain with various numbers of active quarks.

Preliminary estimates indicate that this global scheme produces results
a bit different, sometimes even in the five-flavour region, on a few per cent level
for as — from the usual one, thus influencing the total picture of the QCD para-
meter correlation.

The investigation has been performed at the Bogoliubov Laboratory of Theo-
retical Physics, JINR.
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1 Introduction

1.1 Preamble: perturbation theory and as

The issue of the strong interaction behavior at the low and medium energy
W = y/s and momentum transfer Q = y/Q2 attracts more and more
interest along with the further experimental data accumulation.

As a dominant means of theoretical analysis, here one uses the per-
turbative QCD (pQCD), in spite of the fact that in the given domain the
power expansion parameter as is not a "small enough" quantity. Physi-
cally, this region corresponds to three (/ = 3) and four ( / = 4) flavors
(active quarks). Just in the three-flavour region there lie unphysical sin-
gularities of central theoretical object — invariant effective coupling as.

These singularities, associated with the scale parameter A/=3 ~ 350
MeV, complicate theoretical interpretation of data in the "small energy"
and "small momentum transfer" regions (yfs, Q = y/Q2 < 3A3.) On the
other hand, their existence contradicts some general statements of the local
QFT.

It is important to notice that in the current literature for the effective
QCD coupling in the time-like domain as(s); s = W2 one uses literally the
same expression, like one in the Euclidean domain. By the way, implanting
the mentioned singularities into the three-flavor region of small energies
W ~ 350 MeV.

Meanwhile, the notion of invariant electron charge (squared) a(Q2) =
e~2(Q) in QED has initially been defined in the early papers[l] on renor-
malization group (RG) only in the space-like region in terms of a product
of real constants Z{ of finite Dyson renormalization transformation. Just
the Euclidean invariant charge e(Q) is related by the Fourier transforma-
tion to the space distribution e(r) of the electric charge (around a point
"bare" electron) introduced by Dirac[2].

Analogous motivation in the RG formalism (for detail, see chapter
"Renormalization group" in the text [3]) underlies a more general notion
of invariant coupling g(Q), defined only in the space-like domain. Inside
the RG formalism, there is no simple means for defining g in the time-like
region.

Nevertheless, in modern practice, inspired by "highly authoritative
reviews" [4, 5] and some monographs (like [6]) one uses the same singu-
lar expression for the QCD effective coupling as both in the space- and
time-like domains.
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Technically, this "implanting" of the as Euclidean functional form into
Minkowskian is accompanied by some modification of numerical expansion
coefficients. To the initial coefficient calculated by Feynman diagrams, one
adds specific terms (containing TT2 and its powers) with coefficients of some
lower orders. These "TT2 -terms" are the only "atonement for the Styx river
crossing" from the Euclid realm to the Minkowski domain.

1.2 Time—like region, TT2— terms

Meanwhile, as it easy to show, the "7T2-procedure" is valid only at small pa-
rameter 7r2/ln2(s/A2) values, that is in the region of high enough energies
W » Ae*/2 ~ 3 GeV.

Here, it is useful to restore the ideas proposed by Radyushkin[7] and
Krasnikov—Pivovarov[8] (RKP procedure) at the beginning of the 80s.

To introduce an invariant as in the time-like region, both the authors

used integral transformation R, "reverse" to the Adler function definition.

The last one can be treated as the definition of integral operation

^L^R(s)=-D{R(s)}, (1)
[b T Z)

transforming a real function R(s) of positive (time-like) argument into the
function D(z) defined in the cut complex plane with analytic properties
adequate to the Kallen-Lehmann representation. In particular, D(Q2) is
real at the positive semi axis z = Q2 + iO;Q2 > 0 .

The reverse operation R can be expressed via the contour integral

= £ / ^
Z 7 r J s-ie z

By operation R one can define RG-invariant, effective coupling a(s) =
R [as(Q

2)] in the time-like region. A few simple examples are in order

— For the one-loop effective coupling as = [/?oln(Q2/A2)]~ one has
[9, 7, 10]x in terms of L = ln(s/A2)

R [a«l = a« (s) = i- [I - - arctan -1 = - L arctan \ . (2)
1 Later on, this idea has been discussed by several authors — see Refs. [12] — [15].



— At the two-loop case, to the popular approximation

there corresponds [7, 11]

Both the expressions (2) and (3) are monotonously decreasing with
finite IR limit d(0) = 1/A)(/ = 3) ~ 1.4.

— At the same time, square and cube of as transform into simple
"pipizated" expressions [7, 8]

which are not powers of a^(s).

Note also that transition from singular as and its powers to "pip-
izated" expressions, that is operation R, can be performed [12, 14]
by the differential operator

7t = — — - ; V = Q2 -j-yi with the substitution Q2 —»• s, e.g.,

Ka3{Q2) = a(s).

The most remarkable feature of all presented expressions for a(s) and
2tfc(s) (valid in a more general case) is the absence of unphysical singu-
larity (the "log pole" at the one-loop case)2 which is "screened" by 7r2 -
contributions.

Besides, a common "Euclidean" perturbation expansion

a*(Q2) (5)
fc>i

in powers of the standard RG-summed effective coupling as(Q
2), with its

unphysical singularities in the IR region (at Q2 < A2.,) being transformed
2 This feature -was not mentioned in the pioneer papers of the 80s we have cited

above.



by R to the time-like region, transits into the asymptotic expansion over
a nonpower set of functions

= R [Dpt(Q
2)] = 1 + Y,d&k(s); 5lk(s) = R [ak

s(Q
2)} , (6)

with better properties of decreasing[7] of subsequent terms .
At the same time, higher functions, like (4), vanish 21 (̂0) = 0; k > 1

in the IR limit.
On the other hand, in the UV region at ln(s/A2) » ix, i.e., for W »

Ae*7"2 ~ 3 GeV, the functions a and 2lfc can be represented as a series in
powers of the parameter n2/L2, L = ln(s/A2). Such expressions sometimes
can be reformulated into expansions in powers of as . For instance, in the
one-loop case

Without going into detail, note3 that, qualitatively, the functions 2lfc be-
have very similarly to the functions Ak involved into non-power Euclidean
asymptotic expansion for observables[18] arising in the Analytic Perturba-
tion Theory (APT) - see below Section 1.3 and Figure 2. In particular,
they oscillate at small argument values and form an asymptotic set a la
Erdelyi.

As it follows from eqs. (2) and (4), one-loop "pipizated" functions sat-
isfy the recursion relation (d/dL)Qlk (s) — — kPQW^^S) which is analo-
gous to the one-loop differential equation for the invariant coupling. Ac-
cording to [18], this recursion is valid for analyticized functions Ak .

Quite recently [17] the two-loop generalization has been found

It can be considered as (at k = 1) a mould of two-loop differential equation
for as . Analogous relation is valid for analyticized Ak .

For the reverse transition from Minkowski to Euclid, one could try to
use the transformation D defined by (1). However, it is evident that we

3 See, also the first version of this paper [16]. A more minute numerical information
on functions a , a&n , £2,3 and ^2,3 can be found in recent paper by Magradze [17].



shall not return to the initial coupling as and to series in its powers (5). To
elucidate the issue, it is useful to turn to the foundation of the Invariant
Analytic Approach mentioned above.

1.3 Space-like region : APT

Indeed, as it has been well-known from the late 50s [19], there exists a
method of getting rid of Euclidean unphysical singularities by combining
RG-summed expressions with Kallen- Lehmann analytical representation
for as(Q

2) in the Q2 variable. In the mid-90s this idea was used in
QCD [20, 21, 22] under the name of Invariant Analytic Approach. Its
further development and application to perturbative expansion for observ-
ables yielded Analytic Perturbation Theory — [23].

We remind here the basic features and results of APT ( — see also a
recent review [24]).

By combining three elements
1. Usual Feynman perturbation theory for effective coupling(s) and

observables,
2. Renormalizability, i.e., renormalization-group (RG) invariance, and
3. General principles of local QFT — like causality, unitarity, Poincare

invariance
and spectrality — in the form of spectral representations of the Kallen-

Lehmann and
Jost-Lehmann-Dyson type
it turns out to be possible to formulate an Invariant Analytic Approach

(IAA) for the pQCD invariant coupling and observables in which the cen-
tral theoretical object is a spectral density.

• Being calculated by the usual RG-improved perturbation theory,
it defines and relates $2-analytic, RG-invariant expressions for ef-
fective RG-invariant coupling and perturbative observables in the
Euclidean channel.

• In particular, the IAA results in the modified ghost-free expression
for the invariant QCD coupling aan(Q

2;f) which is free of ghost



troubles and obey reduced [21] - [28] higher-loops and renormalization-
• scheme sensitivity4. See Fig.l.

© The IAA change the structure of perturbation expansion for observ-
ables: Instead of common power series, as a result of integral trans-
formation, there appears non-power asymptotic expansion [18] a la
Erdelyi over the sets of specific functions Ak{Q2] f) , free of unphys-
ical ghosts. These functions are defined via integral transformations
of related powers ak

s(Q
2;j) in terms of relevant spectral densities.

This nonpower expansion for an observable, with the coefficients ex-
tracted from the relevant Feynman diagrams, we call the Analytic
Perturbation Theory.

At small and moderate arguments, Ak diminish with the k growth
much quicker than the powers of a*n (and even oscillate in the region
Y ŝ, Q ~ A ) thus improving essentially the convergence of perturba-
tion expansion for observables.

The first purpose of this work is to elucidate relation between the
Radyushkin-Krasnikov- Pivovarov procedure leading to effective summa-
tion of 7r2-terms ("pipization" trick) [7, 8] for observables and the Solovtsov
[10, 15] construction of the effective QCD coupling within the IAA scheme
in the s-channel.

In the course of this analysis — see Section 2 — we discuss the APT
proliferation to the time-like region, remind a spectacular effect of "dis-
torting mirror" correlation[27] between analyticized and pipizated invari-
ant QCD couplings in space-like aan(Q2;f) and time-like 5(s; / ) regions
(see Fig.l below), and establish this effect for corresponding expansion
functions Ak{Q2\ / ) and 2lfc(s; / ) - see Fig.2.

Then, in Section 3, we consider an the transition across the heavy quark
thresholds, to construct a "global" picture for the whole physical region
MT < y/s, Q < Mz — see Fig.2.

It should be noted, that all precedent papers Refs.[8] - [36] dealt only
with the massless quarks in the case with fixed flavour number / . This
can be justified, to some extent, when analyzing inside a narrow interval of
the relevant energy y/s or momentum transfer Q values. Meanwhile, the

4This analyticized QCD coupling a&n has been successively used[29, 30] in analysis
of the pion and 7*7 —> w° formfactors.



ultimate goal of all the pQCD is a correlation of effective coupling values
extracted from different experiments.

Main results of this investigation are reviewed in the Conclusion.

2 Self-consistent scheme for observables

2.1 Modification of the APT

As it has been mentioned above, applying operation D to a does not re-
store a usual effective coupling as far as representation (1) is not compatible
with ghost singularity of as .

Instead, we arrive at

n2 roo j n

a(s;f)=aao(Q
2;f), (9)

{£> T j

i.e., to effective Euclidean coupling aan of APT. This simple fact has first
been established in [10]. We see that operations D and R relate "pip-
izated" and "analyticized" coupling functions in space- and time-like re-
gions. Hence, in this case R = D"1 . Note, however, that the relation
DR = 1 is valid only for the class of functions F{Q2) 6 CKL satisfying
the Kdllen-Lehmann representation.

Now, we have the possibility of extending the APT to the time-like
region. We shall do it in the form of a recipe, using operation of analyti-
cization

F(Q2) ^ F a n ( Q 2 ) =A-F(Q2), (10)

first introduced in Refs.[20, 21] in terms of the Kallen-Lehmann represen-
tation

^Q2PM; Ppi(o-) = ZF(-a), (11)
o

with spectral density defined via straightforward continuation of F on the
cut.

Relations (10) and (11) together define A the analyticization operation.
Now, we can formulate the APT anew.



Firstly, one has to transform the common singular coupling function
as(Q

2) or some power expansion of an observable

a*(Q2;/) (12)

into the corresponding analytic Euclidean expression aan or DZU(Q2), free
of ghosts

* A ( Q 2 ; / ) ; ^ ( Q 2 ; / ) = A ( Q 2 ; / ) , (13)

^ - Pki°\ f); pk(a\ f) = ̂  [<*5(-<r; /)]
0

with spectral densities p,pk introduced according to (11).

Secondly, by operation R one defines[10] in the Minkowskian region
invariant coupling function5

(15)

or some other quantity like

Rr{8) = R [Dpt(Q
2)] =l + J2d*a*(s): **(*) = R

jt>i

with
oo

= J ^:Pk(a) I Pk(c) = 9 [aj(-a)] . (16)

Finally, we have a simple possibility of reconstructing an Euclidean ob-
ject from the corresponding Minkowskian one with the help of the dipole
operator D like

«an(Q2; / ) = D {a(s;

5 As it follows from this expression, the spectral function can be considered as a beta-
function. However, contrary to Schwinger's hope[37], this p(s; f), being a spectral
function for the Euclidean invariant coupling, happens to be the RG generator for
another, Minkowskian, invariant coupling[15].
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In particular, by substituting a^(s; f) into the integrand, we obtain after
integration by parts

da ( I I In (cr/A2)
' arctan ———-
.2 ir 7T

This simple calculation elucidates the relation between ghost-free ex-
pressions in the Minkowskian and Euclidean regions. They are related by
a reverse transformation as well. For instance, in accordance with (15),

In Fig.l, we give a concise summary of the IAA results for invariant
analytic couplings ascn(Q

2,3) and a(s,3) calculated for one- , two- and
three-loop cases in both the Euclidean and Minkowskian domains.

Here, the dash-dotted curves represent the one-loop IAA approxima-
tions (2) and (17). The solid IAA curves are based on the exact two-loop
solutions of RG equations6 and approximate three-loop solutions in the
MS scheme. Their remarkable coincidence (within the 1-2 per cent limit)
demonstrates reduced sensitivity of the IAA with respect to the higher-
loops effects in the whole Euclidean and Minkowskian regions from IR to
UV limits.

For comparison, by the dotted line we also give a usual a$(Q
2) two-loop

effective QCD coupling with a pole at Q2 = A2.
As it has been shown in [21, 24, 25], relations parallel to eqs.(15) and (9)

are valid for powers of the pQCD invariant coupling. This can be resumed
in the form of a self-consistent scheme. Consider now new functional sets
of nonpower perturbation expansions.

6 As it has recently been established the exact solution to the two-loop RG differential
equation for the invariant coupling can be expressed in terms of a special function W,
the Lambert function, defined by the relation W(z)ew^ = z with an infinite number
of branches Wn(z). For some details of analyticized and pipizated solutions expressed
in terms of the Lambert function, see Refs. [31, 32, 33, 17, 34, 38].
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Figure 1: Space-like and time-like invariant analytic couplings in a few
GeV domain

2.2 Expansion of observables over nonpower sets {A}
and {21}

To realize the effect of transition from expansion over the "traditional"
power set

{ak
s(Q

2,f)} = as(Q*),al...ak
s...

to expansions over nonpower sets in the space-like and time-like domains

{Ak(Q
2,f)} = a&n{Q2J),A2{Q\f),A3...

it is instructive to learn properties of the latter.
In a sense, both nonpower sets are similar
— They consist of functions that are free of unphysical singularities.
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— First functions, the new effective couplings, A \ — aan and 2li — d
are monotonically decreasing. In the IR limit, they are finite and equal
o;aT, (0,3) = d(0 ,3 ) ~ 1.4 with the same infinite derivatives. Both have the
same leading term ~ 1 / l n x in the UV limit.

— All other functions ("effective coupling powers") of both the sets
s ta r t from the zero IR values ^4fc>2(0,/) = 2lfc>2(0, / ) — 0 and obey the
UV behavior ~ l / ( l n x ) * corresponding to ak(x). They are no longer
monotonous. The second functions A2 and 2l2

 a r e positive with maximum
around s, Q2 ~ A2. Higher functions Ak>3 and 2lfc>3 oscillate in the
region of low argument values and obey k — 2 zeroes.

Remarkably enough, the mechanism of liberation of unphysical singu-
larities is quite different. While in the space-like domain it involves non-
perturbat ive, power in Q2, s tructures, in the time-like region, it is based
only upon resummation of the "TT2 t e rms" . Figuratively, (non-perturbat ive
!) analyticization in the Q2--channel can be treated as a quanti tat ively dis-
tor ted reflection (under Q2 —> s = — Q2) of (perturbative) "pipization" in
the s-channel. This effect of "distorting mirror" first discussed in [27] is
illustrated in figures 1 and 2.

Summarize the main results essential for d a t a analysis. Instead of
power per turbat ive series in the space-like Dpt(Q

2) = 1 + dpt(Q
2)

k>\

and time-like regions Rpt{s) = 1 + rpt(s)

TT2/32
rpt(s) = 2^rkd

k(s;f); (r l | 2 = rfl|2, r3 = d3 - c?i 3
L J , r4 =

one has to use asymptotic expansions (13) and (6)

with the same coefficients dk over non-power sets of functions {A} and
{21}.

3 Global formulation of APT

To apply the modified APT to analyze QCD processes, it is necessary to
formulate it "globally", for the whole domain accessible to modern experi-
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ment, that is for regions with various flavour numbers / of active quarks.
To this goal, one has to consider the issue of heavy quark threshold cross-
ing.

3.1 Threshold matching.

In a real calculation, the procedure of the threshold matching is in use. One
of the simplest is the matching condition in the massless MS scheme[39]

as(Q
2 = M2:J-l) = as(Q

2 = M2;f) (18)

related to the mass squared Mj of the f-th quark.
This condition allows one to define a "global" function as(Q

2) consist-
ing of the smooth parts

as(Q
2)= as(Q

2;f) at M2_, < Q2 < M2 (19)

and continuous in the whole space-like interval of positive Q2 values with
discontinuity of derivatives at the matching points. We call such functions
the spline-continuous ones.

At first sight, any massless matching, yielding the spline-type function,
violates the analyticity in the Q2 variable, thus disturbing the relation
between the s- and Q2 -channels7.

However, in the IAA, the original power perturbation series (12) with
its unphysical singularities and possible threshold non-analyticity has no
direct relation to data, being a sort of a "raw material" for defining spectral
density. Meanwhile, the discontinuous density is not dangerous. Indeed,
an expression of the form

Pk(<r) = Pkfa 3)

with pfe(a; / ) = 3a ' ( -o" , / ) defines, according to (14) and (16), the
smooth global

oo

7Any massless scheme is an approximation that can be controlled by the related
mass-dependent scheme [40]. Using such a scheme, one can devise [41] a smooth tran-
sition across the heavy quark threshold. Nevertheless, from the practical point of view,
it is sufficient (besides the case of data lying in close vicinity to the threshold) to use
the spline-type matching (18) and forget about the smooth threshold crossing.
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and spline-continuous global

oo

2tfc(s) = I —Pk(a) (22)
J ®
s

functions 8.
We see that in this construction the role of the input perturbative

invariant coupling as(Q
2) is twofold. It provides us not only with spectral

density (20) but with matching conditions (18) relating A/ with A^+1 as
well.

Note that the matching condition (18) is tightly related [39, 41] to
the renormalization procedure. Just for this profound reason we keep it
untouched (compare with Ref. [27]).

3.2 The s-channel: shift constants.

As a practical result, we now observe that the "global" s-channel cou-
pling a(s) and other functions 2lfc(s) generally differ from the effective
coupling with a fixed flavor number / 6t(s; f) and 2lfc(s; / ) by constants.
For example, at Ml < s < Ml

&{s) = / ^ W ) = I yP(̂ ;5) + J%(a;6) =a(s;5) + c(5)

Generally,

a{s) = a{s; f) + c(f) at M) < s < M2
f+1 (23)

with shift constants c(/) that can be calculated in terms of integrals over
p(a; f + n) n > 1 with additional reservation c(6) = 0 related to the
asymptotic freedom condition.

More specifically,

c(f - 1) = a(MJ; f) - a(MJ; / - 1) + c(f) , c(6) = 0 .
8Here, by eqs.(21),(22) and (20) we have introduced new "global" effective invariant

couplings and higher expansion functions different from the previous ones with a fixed
/ value.
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These c(f) reflect the a(s) continuity at the matching points Mj.
Analogous shift constants

2lfc(s) = Ms;f) + cfc(/) at M'j<s< Mj+l (24)

are responsible for continuity of higher expansion functions. Meanwhile,
c2(/) relates to discontinuities of the "main" spectral function (20).

The one-loop estimate with P[/]p{a; f) — {ln'2(<7/A2) + TT2}" ,

c ( / - 1 } - c ( / ) =4 i a r c t a n ^k~^arctan ^k" ^ ^ ^
(25)

and traditional values of the scale parameter A3) A4 ~ 350 — 250 MeV
reveal that these constants

c(5) ~ 3.10"4 , c(4) ~ 3.10"3 , c(3) ~ 0.01 ; c2(/) ~ 3 a(M]) c (/)

are essential at a few per cent level for a and at ca 10% level for 2I2 •
This means that the quantitative analysis of some s-channel events like,

e.g., e+e" annihilation [24], r-lepton decay [25] and charmonium width [8]
at the / = 3 region should be influenced by these constants.

3.3 Global Euclidean functions.

On the other hand, in the Euclidean, instead of the spline-type function as,
we have now continuous, analytic in the whole Q2 > 0 domain, invariant
coupling denned, along with (21), via the spectral integral

with the discontinuous density p(a) (20).
Unhappily, here, unlike the time-like region, there is no possibility of

enjoying any more explicit expression for aan(Q
2) even in the one-loop

case. Moreover, the Euclidean functions aan and Ak, being considered
in a particular /-flavour region Mj < Q2 < Mj+l , do depend on all
A 3 , . . . , A6 values simultaneously.

14
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Figure 2: "Distorted mirror symmetry" for global expansion functions

Nevertheless, the real difference from the / = 3 case, numerically, is
not big at small Q2 and in the "few GeV region", for practical reasons, it
could be of importance .

This situation is illustrated by Fig. 2. Here, by thick solid curves with
maxima around ^/s, Q = A, we draw expansion functions Ai and 2t2 in
a few GeV region. Thin solid lines zeroes around A and negative values
below, represent A3 and 2t3. For comparison, we give also second and
third powers of relevant analytic couplings aan and & .

All these functions correspond to exact two-loop solutions expressed in
terms of Lambert function 9.

9Details of these calculations can be found in Ref.[17]. Assistance of D.S. Kura-
shev and B.A. Magradze in calculation of curves with Lambert functions is gratefully
acknowledged.

15



4 Illustrations

Another quantitative effect stems from the nonpower structure of the IAA
perturbative expansion. It is also emphasized at the few GeV region.

4.1 The s—channel

To illustrate the qualitative difference between our global scheme and com-
mon practice of data analysis, we first consider the / = 3 region.

The process of Inclusive e+e~ hadron annihilation provides us with an
important piece of information on the QCD parameters. In the usual
treatment, (see, e.g., Refs.[4, 6]) the basic relation can be presented in the
form

^ = l + r ( S ) ; rpt(s) = ^ + r2a
2(S)+r3al(S). (27)

Here, the numerical coefficients rt = 1/TT = 0.318, r2 = 0.142, r3 =
—0.413 (given for the / = 5 case) are not diminishing. However, a rather
big negative r3 value comes mainly from the —rt 7r2/3,j,/3 contribution equal
to —0.456. Instead of (27), with due account of (6), we now have

r (g) ~ _i£i. + d0 %-y(s) + dt ̂ it(s) • (281

with reasonably decreasing coefficients d\ = 0.318; rf2 = 0.142; d3 =
0.043, the mentioned TT2 term of r3 being "swallowed" by a(s) 10

Now, the main difference between (28) and (27) is due to the term
d2 2I2 standing in the place of d2 a

2. The difference can be estimated by
adding into (27) the structure r4 a

4 with r4 ~ —1. This effect could be
essential in the region of a(s) ~ 0.20 - 0.25. Here, in the APT analysis,
the third, three-loop term contributes about half of a per cent, compared
with 5,5% in the usual case.

10This term contributes about 8.10~4 to the r{M\) and, correspondingly, 0.0025 to
the extracted a^M'^) value. This means that the main part of the "traditional three-
loop term" r^a^ in the r.h.s. of (27), being of the one-loop origin, is essential for the
modern quantitative analysis of the data. In particular, it should be taken into the
account even in the so-called NLLA which is a common approximation for the analysis
of events at y/s ~ Mz • For a more detailed numerical APT analysis of the / = 5 region,
see [42].
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The APT algorithm with fixed / = 3 has recently been used [43] for
the analysis of Inclusive r-decay. Here, the theoretical expression for an
observed quantity, the time-life of r lepton, contains QCD correction A
expressed via an integral of an s-channel matrix element over the region
0 < s < MT

2.
As a result of the three-loop analysis of a modern [44] experimental

value Aexp(s0 = 3.16raB2) = 0.191, it was obtained that a(M2) = 0.380 .
Remind here that under usual treatment one obtains as(M?) = 0.334
that can hardly be related to any a s(M2) value as far as the parameter
7r2/ln2(M2/A2) is close to unity.

Note also that the third term of (28) contributes here about one per
cent.

4.2 The Q2-channel : Sum Rules
In the Euclidean channel, instead of power expansion like (12), we typically
have

i7T

Here, the modification is related to a non-perturbative power structures
behaving like A2/Q2 at Q2 ^> A2 . As it has been estimated above, these
corrections could be essential in a few GeV region.

In the paper [26], the IAA has been applied to the Bjorken sum rules.
Here, one has to deal with the <32-channel at small transfer momentum
squared Q2 < 10 GeV2 .

Due to some controversy of experimental data, we give here only a part
of the results of [26]. For instance, using data of the SMC Collaboration
[45] for Ql = 10GeV2, the authors obtained a^(Qg) = 0.301 instead
of oipf (Ql) — 0.275. Here, the contribution of the third term is also
suppressed.

The same remark is valid in the analysis of the Gross-Llywellin-Smith
(GLS) sum rules. Indeed, as it was shown in paper [28], instead of propor-
tions (65 : 24 : II^TB1 1 of usual analysis, the APT gives (75 : 21 : 4)A P T

(for further details, see Section lie in [28]. The same effect for the Bjorken
sum rules turns out[26] to be more pronounced (55 : 26 : 19)TB -> (80 :
19 :1)ATB •

11 That is, the contribution of the first, linear in as , is 65 % , while the contributions
of the second and third are 24 and 11 per cent.
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Some comments are in order:
— We see that, generally, the extracted values of aan and of a are both

slightly greater in a few GeV region than the relevant values of as for the
same experimental input. This corresponds to the above-mentioned non-
power character of new asymptotic expansions with a suppressed higher-
loop contribution.

—- At the same time, for equal values of aan(x*) = <5(i») = as(xt) ,
the analytic scale parameter Aan values extracted from aAn and a are
a bit greater than that A-^ taken from as. This feature is related to a
"smoother" behavior of both the regular functions aan and d, as compared
to the singular as.

4.3 Conclusion

To summarize, we repeat once more our main points.

1. We have formulated a self-consistent scheme for analyzing data in
both the space-like and time-like regions.

The fundamental equation connecting these regions is the dipole spec-
tral relation (1) between renormalization group invariant nonpower expan-
sions DaniQ2) and Rn(s).

Just this equation (equivalent to the Kallen-Lehmann representation),
treated as a transformation, is responsible for non-perturbative terms in
the Q2 -channel involved into aari (Q

2) and non-power expansion functions
{Ak{Q2)}- These terms, non-analytic in the coupling constant a, are a
counterpart to the perfectly perturbative 7r2-terms effectively summed in
the s-channel expressions a(s) and {21* (s)}.

2. As a by-product, we ascertain a new qualitative feature of the IAA,
relating to its non-perturbativity in the Q2- domain. It can be considered
as a minimal non-perturbativity or minimal non-analyticity12 in a as far as
it corresponds to perturbativity in the s-channel.

Physically, it implies that minimal non-perturbativity cannot be re-
ferred to any mechanism producing effect in the s-channel.

3. The next result relates o the correlation between regions with differ-
ent values of the effective flavor number / . Dealing with the massless MS
renormalization scheme, we argue that the usual perturbative QCD expan-
sion provides our scheme only with step-discontinuous spectral density (20)

l2Compatible with the RG invariance and the Q2 analyticity — compare with [46J.
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depending simultaneously on different scale parameters A/ ; / = 3 , . . . , 6
connected by usual matching relations.

This step-discontinuous spectral density yields, on the one hand, smooth
analytic coupling aan(Q2) and higher functions {Ak(Q2)} in the space-like
region— eq.(21).

On the other hand, it produces the spline-continuous invariant coupling
a(s) and functions {2tjb(s)} in the time-like region — eq.(22).

As a result, the global expansion functions {Ak{Q2)} and (2lfc(s)}
differ both from the ones {Ak{Q2;/)} and {21* (s;/)} with a fixed value
of a flavour number.

4. Thus, our global APT scheme uses the common invariant coupling
as(Q

2,f) and matching relations, only as an input. Practical calculation
for an observable now involves expansions over the sets {Ak{Q2)} and
{2lfc(s)} , that is non-power series with usual numerical coefficients <4
obtained by calculation of the relevant Feynman diagrams.

In particular, this means that we have now three QCD effective couplings:
& , ot&n — of the APT formalism, and traditional as,. This usual one can
be used for approximate expression of two first ones in four and five-flavor
regions, for the comparison reasons.

This means that, generally, one should check the accuracy of the bulk of
extractions of the QCD parameters from diverse "low energy" experiments.
Our preliminary estimate shows that such a revision could influence the
rate of their correlation.

5. Last but not least. As it has been mentioned in our recent publica-
tions [21, 24], the IAA obeys immunity with respect to higher loop and
renormalization scheme effects.

Now, we have got an additional insight into this item related to observ-
ables and can state that the perturbation series for an observable in the
IAA have better convergence properties (than in the usual RG-summed
perturbation theory) in both the s- and Q2 - channels.
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Ширков Д.В. Е2-2000-298
Аналитическая теория возмущений
для наблюдаемых квантовой хромодинамики

Исследуется связь между свободными от призрачных сингулярностей
ренорминвариантными разложениями теории возмущений КХД во времени-
и пространственноподобных областях. Основным средством является «двой-
ное спектральное представление» (подобное представлению для функции
Адлера), вытекающее из основных аксиом локальной КТП и связывающее
между собой действительные функции в евклидовой и минковской (т.е. вре-
мениподобной) областях.

На этой основе установлено простое соответствие между
— известным с начала 80-х гг. приемом суммирования я2-членов в инва-

риантную функцию связи д. (s) и наблюдаемые КХД во времениподобной
области и

— развитым несколько лет назад «инвариантным аналитическим подхо-
дом», приводящим к свободным от нефизических сингулярностей «аналити-
зированным» инвариантной функции связи a a n ( g 2 ) и нестепенным разложе-
ниям для наблюдаемых в пространственноподобной области.

В итоге мы формулируем самосогласованную схему, «аналитическую тео-
рию возмущений» (АТВ), связывающую между собой ренорминвариантные
эффективные функции связи а а п (Q2) и ä(s), a также нестепенные разложе-
ния теории возмущений для наблюдаемых в евклидовой и минковской обла-
стях, свободные от нефизических сингулярностей и отличающиеся улучшен-
ной сходимостью в инфракрасной области.

Проведено «глобальное» обобщение новой схемы АТВ на случай реаль-
ной КХД, включающий области с различным числом активных кварков.

Предварительные оценки показывают, что вычисления по глобальной
АТВ могут приводить к результатам, заметно отличающимся от обычных рас-
четов для äs даже в пятикварковой области. Приведены численные примеры.

Работа выполнена в Лаборатории теоретической физики им. Н.Н.Бого-
любова ОИЯИ.

Препринт Объединенного института ядерных исследований. Дубна, 2000


