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1 Preamble 

Usually, physical quantities in the time-like channel, like the cross-section 
ratio of the inclusive e+ e- -t hadron annihilation or the T-decay process, 
are presented in the form of two- or three-term perturbation expansion 

R~) =1+r(s); r(s)=c1 &,(s)+c2 a;+csii~+... (1) 

(our coefficients Ck = Ck r.-• are normalized differently from the commonly 
adopted, like in Refs.[1, 2, 3]) over powers of effective QCD coupling &, 
which is supposed ad hoc to be of the same form as in the Euclidean 
domain, e.g., 

-<3l _ 1 b1 In L , 1 [ 2 2 , J . a, (s) - " L - 82 £2 ..,- /33£3 b1 (In L-In L- 1) ..,- b2 , 
PO , 0 0 

1 [ 3 ( 3 5 2 1) bs] .,.. .BJL4 b1 -In L+ 21n L+21nL- 2 -3b1b2 lnL+"2 

Here, L = ln{s/A2) and for the beta-function we use normalization 

/3{a) = -.B0 a2 :-/31 a 3 -f32a' + ... = -/3oa2 (1 +b1 a+b2 a2 + ... ), 
that is also free of rr powers. Numerically, 

) 
33- 2 f { ) 153- 19/ ( ' -0.089 f3o(f = , 

0 _ ; b, J = 0 _1~~ 0 r\ ; b1 4:!: 1) = 0.490+0.076 · 

Coefficients ck>s = dk - ok include "r.2 structures" ok proportional to 
lower Ck: -

(7Tf3o(!JJZ c, ' ( "-)2 ( 5 b ) 2{32( ) -.666 ( 03 = 
3 

, u4 = "11"1-'U C2 + B 1 C! ; 7T 0 4 ± l = 4.340+.723. 2) 

These structures ok arise[4, 5, 6, 7] in the course of analytic continua
tion from the Euclidean to :V!inkowskian region. Coefficients dk should be 
treated as a genuine kth-order ones. Just they have to be calculated with 
the help of relevant Feynman diagrams. 

To iilustrate, consider the three-flavor case for r-decay, f = 4, 5 cases 
for e+e-....; hadron annihilation and Z0 decay (with f = 5)- see Table 1 
in which we also give values for the r.2-terms. 
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Table 1 
\Process I q c, l c2 = a?. I c~ I d3 = c3 - (j~ . n (j4 I 
1 'decay 3 I 1/r. 1 .526 0.852 I 1.389 0.537 5.01 
I e+e 4 .318 1 .155 -0.351 0.111 0.462 2.451 
I e+e 15 , .318 1 .143 -0.413 -0.023 0.390 1.752 
1 Zo decay 5 .318 1 .095 -0.483 -0.094 0.390 1.576 

Here, all coefficients ck, dk and (j•, due to normalization {1), are of an 
order of unity. One can see that, in the high energy region, contribution 
of 53 prevails in C3 . 

2 Preliminary quantitative estimate 

In practice, the 1r2-terms often dominate in higher expansion coefficients. 
This effect is especially strong in the f = 5 region. Meanwhile, just in 
this region people often use the so-called NLLA approximation, that is the 
two-term representation 

O(s) = C,(a,fr.) + C2 (&,j1r) 2 (3) 

for an observable O(s) when next, the three-loop, coefficient C3 is not 
known. This is the case, e.g., with event-shape[8] analysis. 

On the basis of the numerical estimates of Table 1, in such a case, we 
recommend to use the three-term expression 

~ - ' Po -3 --2 - -2 -s 
{ 

7T2R2 } 0 3 (s) = d, a,- -
3
-a, + d,a, = c1 a,+ c,a,- o8 a. (4) 

i.e., to take into account the known predominant 1r2 part of the next co
efficient c3 • As it follows from the comparison of the last expression with 
the previous, two-term one, the&, numerical value extracted from eq.(4), 
for the same measured value 0 00, will differ by a positive quantity (e.g., 
in the f = 5 region with &, ::::: 0.12 ~ 0.15) 

( _ ) 1ro3 &! l'..s 1.225 ~ /';.a, 3 = = ::::: 0.002 ~ 0.003 1 + 27rd,a, 20.;.lOOGeV 1 + 0.90 a, 

that turns to be numerically important. 
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Moreover, in the f = 4 region, where the three-loop approximation is 
commonly used in the data analysis, the :;r2 term 64 of the next order turns 
out also to be essential. Hence, we propose to use the four-term expression 

0~( ) d - ' d. -2 ' -3 < -4 4 S = 1 Cl::s T U2 0 5 l C3 0!8 - U4 0!5 ; c3 =d3 -63 (5) 

(instead of the three-term one (1)) that is equivalent to 

~{ ) d {- :;r'fJfi -3 b 5 '"'2 -4} d {-2 2a2 -4} d -3 ( ) 0
4 

s = 1 a 5 --

3
-a5 - lfi1l,uoa5 + 2 a 5 -7r f.JOas + sa5 6 

with o3 and 64 defined[4, 7] in eq.(2). 
The three- and two-term structures in curly brackets are related to 

specific expansion functions a and Ql defined below (10) and entering into 
the non-power expansion (11). 

To estimate roughly the numerical effect of using this last modified 
expression (5), we take the case of e+e- inclusive annihilation. For ,fS o:e 
3 7 5 GeV with a, o:e 0.28 7 0.22 one has 

(L'Ia,)4 = :;ro4 a! \!=4 - 1.07 a! 1 + 27rli-,a, 3.;.5G<'i- 1 + 0.974a, o:< 0.005 .;- 0.002 

~ an important effect on the level of ca 1 .;- 2% . 
:VIoreover, the (L'Ia,)4 correction turns out to be noticeable even in 

the lower part of the f = 5 region! Indeed, at ,fS o:e 10 .;- 40 GeV with 
a, o:e 0.20 .;- 0.15 we have 

(L'Ia,)4l{~oGev"" o.n a;"" (1.1.;- 0.3) · w-3 (~ 0.5%). 

3 Non-power expansion in the Minkowskian region 
The so-called r.2 terms in the s-channel perturbative expansions for the 
invariant coupling and observables have a simple origin. 

As it is well known, the usual invariant coupling originally defined [9] 
in terms of real constants z;, counter-terms of finite Dyson renormalization 
r raJ1sformation, can be expressed via a product of dressed symmetric vertex 
and propagator amplitudes taken at space-like values of their arguroents. 

a(Q2 ,a) = ar2(Q2,a) IT d;(Q2 ,a). 
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Hence, by construction, it is a real function defined in the Euclidean region. 
Transition to the time-like region, with logs branching In Q2 --tIn s-ir. 

transforms all relevant amplitudes into complex functions r(s, a), d;(s, a). 
Here, the problem of appropriate defining of effective coupling in the time
like domain arises. 

For this goal, we shall follow the idea devised in the early 80s by 
Radyushkin [4] and Krasnikov-Pivovarov [5]. There, an integral trans
formation R reverse to the dipole representation for the Adler function 
has been used. 

\Ve propose to treat this representation as an integral operation 

1"" ds R(s) --t D(z) = Q2 

0 
(s + z" R(s) = D {R(s)} (7) 

transforming a function R(s) of a real positive (time-like) argument into 
a function D(z) given in the cut complex plane with analytic properties 
equivalent to those following from the Kallen-Lehmann integral representa
tion. In particular, the function D(Q2) is real on the positive (space-like) 
real axis at z = Q2 + iO; OZ ;::: 0. 

The reverse operation is expressible in the form of a contour integral 

i 1s+;c dz 
R(s) = :2 -Dp,(-z) =R [D(Q2)]. 

7r s-ie Z 

With the help of the latter, one can define[ll, 12] an effective invariant 
time-like coupling a(s) = R [a,( Q2

)] • Omitting some technical details, we 
give a few resulting[4, 5, 12] expressions. 

E.g., starting with one-loop a~'l = [80 In(Q2/A2Jr1 
one has R [a~')] 

_ r) 1 [1 1 L] 1 1r s oi (s) =- ---arctan- =-arctan-; L=ln 2 . (8) fJo 2 1r 1r L>O fJo1r L A 

At the same time, to (a~') ( Q2
)) 

2 
and ( a\'l ( Q2

)) 
3 

there correspond 

~I)(s) = R [ (a\'))2] = ~" •~:. "' L 
and ~')(s) = fJ8[£2+;;.2rz· 

In the two-loop case, for a ''popular" expression 

1 lnl 
{J0ai!,( Q') = y - b, (f) 12 ; 
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one obtains[4] the two-loop "pop" effective s-channel coupling 

-r2J ( ) = ( 1 , b,L ) -(l)( ) _ b1 ln [.J£2 + r.2J + 1 
apops '£2• 2 aS fl £2• 2 . T1r 0 -;-11'" 

(9) 

Both the expressions (8) and (9) are monotonically decreasing with a finite 
IR ii(O) = 11 f30(f = 3) "" 1.4 value. Meanwhile, higher functions go to 
the zero 21•(0) = 0 at theIR limit. 

In the case L ::3> r., it is possible to expand ii and 21• in powers of 
r.2 I L 2• Then functions ii and 212 can be presented as expansions in powers 
of common 1>,"" 1IL. They correspond to curly brackets in (6). 

In [4, 5], as a starting point for observables in the Euclidean, i.e., space
like domain Q2 > 0, the perturbation series 

Dp,(Q2
);, 1 + I>• a~(Q2) 

k;::l 

has been assumed. It contains powers of usual, RG summed, invariant 
coupling a,(Q2

) that obeys unphysical singularities in the infrared (IR) 
region around Q2 

"" A~ . 
By using the R transformation, we obtain in the Minkowskian region 

the "transformed"- expansion over a non-power set of functions 

R,.(s) = R [Dpt(Q2
)] = 1 + L dk21k(s); 21>(s) = R [a!(Q2

)] (10) 
k2:1 

free ofthe mentioned singularities. Properties of these functions have been 
analyzed in detail in our previous paper[13] -see also Ref. [14]. For a 
more detailed numerical information on the functions ii , 212 and 213 see 
Ref.[15]. 

Here, we give condensed information that will be enough for a few 
illustrations. 

Table 2 
Three-loop APT results for Aji = 290 GeV; i>,(M;) = 0.125 

I vs I GeV II 5 I 10 I 15 i 20 I 30 I 50 I 50 I 90 I 150 I 
i a,(s) .235 .195 .177 .165 .153 .137 .133 , .125 1 .115 

I ii(s) .221 .186 .170 .160 .148 .136 .132 .1231.114 
' 10212 .456 .330 .275 .246 .214 .180 .169 . 149 .129 

I 10021, .871 .555 .436 .357 .299 .232 .213 .177 1 .143 
-

6 
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Both in the Figure 1 and in Table 2, we give 3-loop solutions for a, 
as well as for the modified, so-called global (for detail, see paper [13]) 
functions ii = 21, , 212 and 213 calculated within the MS scheme for the cases 
ArsJ = 215GeV, a,(M~) = 0.118 and ArsJ = 290GeV, a,(M~) = 0.125. 

\ a.<a'l 
' 

a(s) 

1/2 "·'I s =Q (GeV) 
I I I I I I I j ; I 1 1 1 ; ; ; j 

10 100 

Figure 1: Effective global Minkowskian, ii , and Euclidean, a., expansion 
functions, as compared with the standard one 1>, (at ArsJ = 350 MeV and 
a,(M]) = 0.118). 

We have chosen these two cases as limiting ones as far as in many 
practical cases real figures lie between these limits. 

In the first figure we give three curves a, , ii and a., related to the 
same physical case for A3 = 350 MeV and a,(M]) = 0.118. The curves ii 
and aan on the figure go a bit slanting than usual, the a, , dotted curve. 
This is qnite natural, as they both are regular in the vicinity of the A 
singularity . 

Meanwhile, only two first, ii and a., have direct physical meaning 
(compare with conclusion of [13]). Just their values have to be determined 
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from any given experiment. Nevertheless, in the four- and five-flavour 
regions one can still refer to a, and a,(M~) as to traditional theoretical 
objects. 

Now, instead of (1), with due account to (10), we have 

ii(s) 
r(s) = -+d22i2(s)+d32i3(s) 

:;r 
(11) 

with beautifully decreasing coefficients dk. Just this nonpower expansion, 
strictly speaking, should be used instead of its approximations, eqs.(4) and 
(6), for data analysis in the time-like region. 

At the same time, in the Euclidean, we have also non-power expansion 

d(Q2 ) = aan(Q
2

) + d-.zA2(Q2 ) + d3 A3(Q2 ) 
:;r 

(12) 

that can be related to (11) by transformation (7) in the framework of 
Invariant Analytic Approach (refs.[16, 17]). 

These non-power expansions, free of unphysical singularities, jointly 
form a correlated system. The latter has been studied in detail in Refs. [13] 
and [18]. We call it Analytic Perturbation Theory (APT). 

4 Numerical illustrations 

To illustrate, let us start with a few cases in the f = 5 region. 

To begin with, consider the Y decay. According to the Particle Data 
Group (PDG) overview (see their Fig.9.1 on page 88 ofRef.[1]), this is (with 
a,(Mr) ""'0.170 and a,(~)= 0.114) one of the most "annoying" points 
of their summary of a,(Mi) values. It is also singled out theoretically. 
The expression for the ratio of decay widths starts with the cubic term 

R(Y) = ~ a;(My )(1 + e1 a,) with e1 ""'1. (13) 

Due to this, the 1r2 correction 1 is rather big here 

213 ""' a; (1- 2(rr,B0)'<>;) . (14) 
~~----~~----

!First proposal of taking into account th.is effect in the T decay was discussed[5] 
more than a quarter of century ago. Nevertheless, in current practice it is neglected. 
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Accordingly, 
2 

Ll.a,(Mr) = 3 (rr,B0)' a~(Mr)""' 0.0123, 

that corresponds to 

Ll.a,(Mz) = 0.006 with a,(Mz) = 0.120. (15) 

Now, let us turn to a few cases analyzed by the three-term expansion 
formula (1). For the first example, take e+e- hadron annihilation at y8 = 
42 GeV and 11 GeV. 

A common form (see, e.g., Eq.(15) in Ref.[2]) of theoretical presenting 
of the QCD correction in our normalization looks like 

r,+,-(s) = 0.318a,(s) + 0.143a;- 0.413a;. (16) 

Starting with r,+,-(42) ""0.0476, one has a,(42) = 0.144. Along with our 
new philosophy, one should use instead 

r,+,- (s) = 0.318 ii(s) + 0.143 2i2(s)- 0.023 2i3(s) (17) 

that }ields a(42) = 0.142 with a,(42) = 0.145 and a,(M~) = 0.127 to be 
compared with a,(~) = 0.126 under a usual analysis. 

Quite analogously, for r ,+,- (11) "" 0.0661; a,(ll) = 0.200, we obtain 
ii(10) = 0.190 that corresponds to a,(M~) = 0.129 instead of 0.130. 

For the next example, we take the Z0 inclusive decay. Experimental 
ratio Rz = r( Z0 -+ hadrons) /r( Z0 -+ leptons) = 20.783 ± .029 is usually 
presented as follows: Rz = ~ (1 + rz(M~)) with~= 19.93. A common 
form (see, e.g., Eq.(15) in Ref.[2]) of presenting of the QCD correction in 
our normalization looks like 

rz(M~) = 0.3326a, + 0.0952 a;- 0.483 a!. 

To [rz]ob, = 0.04184 there corresponds a,(M~) = 0.1241 with A~~ = 
292 MeV . In the APT case,from · 

rz(M~) = 0.3326 ii(M~) + 0.0952 2i2 (M~) - 0.094 2i3 (M~) (18) 

we obtain ii(M~) = 0.122 and a,(M~) = 0.124 that relates to A(s) = 
290 MeV. Note that here the three-term approximation of (6) gives the 
same relation between the ili,(M~) and a(M~) values. 
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Nevertheless, in accordance with our preliminary estimate for the (.6a,) 4 
role, even the so-called NNLO theory needs some 1r2 correction in the 
W = y's .:5 50 GeV region. 

Now, turn to the experiments in the HE :\1inkowskian (mainly with a 
shape analysis) that usually are confronted with two-term expression (3). 
As it has been shown above. the main theoretical error in the f = 5 region 
can be expressed in the form 

(L'.Oi,(s)l{~~\ooGeV ~ L225a;(s) ~ 0.00270.003. (19) 

An adequate expression for the shift of an equivalent a,(M~) value is 

[L'>Di,(M~)h = L225a,(s)a,(A'1~)2 . (20) 

Table 3 
The APT revised" part (! = 5) of Bethke's[2] Table 6 

1 I ,;s I loops II a, rsJ 1 Cl!,(m;J 11 0!, (sJ 1 Cl!,(m;J 
I Process I GeV I No II ref.[2] I ref.[2] II APT I APT 

Y-decay" 9.5 2 I .170 I .114 .1s2 1 .12o ( : 6) 
e+e-[o-had] 10.5 3 .2oo I .130 .198 I .129(-1) 

e+e-u &sh] I 22.0 2 .161 .124 .166 I .127( +3) 
e+e-[j &sh] 35.0 2 .145 .123 .149 i .126( +3) 
e+ e- [o-had] 42.4 3 I .144 .126 .145 I .127( +1J 

e+e-u &sh] 44.0 2 .139 .123 .142 .126( +3) 
e+e-[j &sh] 58 2 .132 .123 .135 .125(+2) 
Z0 -+ had. 91.2 3 .124 I .124 .124 .124 (0) 
e+e-[j &sh] 91.2 2 .121 .121 .12~ I .123( :2l 
e+e-[j &sh] 133 2 .113 .120 .11a .122(,2) 
e+e-[j &sh] 161 2 .109 .118 .111 .120( +2) 
e+e-[j &sh] 172 2 .104 .114 .105 .116(+2) 
e+e-u &sh] 183 2 .109 .121 .111 .123(+2) 
e+e-[j &sh] 189 2 .110 .123 .112 .125(+2) 

Averaged < Oi,(M;) >t=!i values 0.121; 0.124; 
11

uj & sh" =jets and shapes; Figures in brackets in the last column give the 
difference Llei8 (M~) between common and APT values. 

'Taken from Ref.[1]. 

We give results of our approximate APT calculations, mainly by Eqs.(19) 
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and (20), in the form of Table 3 and Figure 2. At the last column of 
the Table 3 in brackets we indicate difference between the APT and usual 
analysis. By bold figures the results of the three-loop analysis are singled 
out. 

Let us note that our average over events from Table 6 of Bethke's review 
[2] nicely correlates with recent data of the same author (see Summary of 
Ref.[19]). The best x 2 fit yields Di,(A1.~)[2J = 0.1214 and a,(Aq)APT = 
0.1235. This gives minimum x[21 = 0_.197 and X~PT = 0.144 with impres
sive ratio (~ 0.73) illustrating the effectiveness of the APT procedure. 

c..(s) 

' A~j;fMeV as(Mi) 

'· ....... ":+.: 

~········.,·.. +~ 
270 --- 0.1235 

0.18 
213 0.1184 

0.16 y 

0.14 

0.12 

10 50 100 200 

.Js. GeV 
Figure 2: The new APT analysis for a, in the five-flavour time-like region. 
Crosses(+) differ from circles (a,•) by ,r> correction (19). Solid APT curve 
relates to A~~= 270MeV and Oi,(M~) = 0.124. To compare, we give also the 
standard (dot-and-dash curve) a, (at A<5l = 213MeV and a,(M~) = 0.118) 
taken from Fig.IO of paper [2]. 

On the Fig.2 by open circles and bullets ( o, •) we give two- and three
loops data mainly from Fig.10 of paper [2]. The only exclusion is the Y 
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decay taken from the Table 6 of the same paper. By crosses we marked the 
new "APT values" calculated approximately mainly with help of Eq.(19). 

For clearness of the 1r2 effect, we skipped the error bars. They are the 
same as in the Bethke's figure and we used them for calculating J? . 

5 Conclusion 

We have established a few qualitative effects: 
1. Effective positive shift tc,.a., = +0.002 in the upper half (2: 50 GeV) 

of the f = 5 region for all time-like events that have been analyzed up to 
now in the NLO mode. 

2. Effective shift tc,.a., "' +0.003 in the lower half (10 +50 GeV) of the 
f = 5 region for all time-like events that have been analyzed in the NLO 
modes. 

3. The new value 
a,(Mi) = 0.124 

by averaging over the f = 5 region. 

(21) 

These results are based on a plausible hypothesis on the ":rr2
- terms" 

prevalence in expansion coefficients for observable in the :V1inkowskian 
domain. The hyPothesis has some preliminary support but needs to be 
checked in a more detail. 

Nevertheless, our result (21) being taken as granted, rises two physical 
questions: 

- The issue of self-consistency of QCD invariant coupling behavior be
tween the "medium (J = 3, 4)" and "high (J = 5, 5)" regions. 

-The new "enlarged value" (21) can influence various physical specu
lations in the several hundred GeV region. 
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IIIHpKOB )l.B. 
34Jc!JeKT it2-BKJia.IlOB B S-KaHaJlbHbte Ha6mo,D;aeMbie KX,1J; 

E2-2000-211 

Mcc.ne.eyeTc~ :::~¢4Je~crx: 2-'i1IeHOB (H3BecTHbiH: c Haqa.n:a 80-x rr.) B p331Io::KeHIDix TeOpHH 
B03M)'1.UeHHii llJISI 34JcpeKTHBHOii CBSI3H KX.il. H Ha6mo)laeMbiX B s-Kanane. Mbi HanOMHHaeM, 

'ITO 3TH 'UleHbi MOryT 6b!Th co6paHbi B cneuH4m:qeCKHe ¢YHKIUIH- S-KaHam.H)'IO ¢YHKUIOO 

CM3H (i (s) H ee 3clJc!JeKTHBHble CTeiieHH ~k (S), CB060,!lHbie OT IIpH3paqflbiX OC06eHHOCTeft. 

3aTeM paccMo-rpeaa crp)'KT)'pa Teoplnt B03MymeHHH .1lilll Ha6mo.aaeMoii H ee nepecpopMYJIH
poBKa B BP'.Jie aecreneHHOro nepTyp6amsHoro pa3.l1oxeHllii no Ha6opy { m k (s) } . 

,Uarree IBYlJaeTC$1 BJIIDIHHe 1t
2-3¢<PeKTa Ha qHcneHHbie 3HatreHHH 'iis, H3BJieKaeMDre 

H3 3KCnepHMeHTOB. BIDKHblft pe3YJibTaT COCTOIIT B TOM, tffO .ilByxiieTJieBOe npH6JIJ.iJKeHHe1 

nrnpoKO HCTIOJib3yeMoe B IUITHKBapKOBO:ft f =5 06JiaCTH (10 r3B :S .fS :S 170 r::~B) .1IIDI 3HaJIH-

3a <PopMhl pacnpeneneHHfi Ha6mo.uaeMbiX, conep::KHT cHcTeMaTHt.tecKyro OTim:uaTe.rrbHYJO 

«r.:2-omH6K}'>}, 33HHJKaJOIU)10 Ha 1-2 npoueHTa mBJieKaeMbie 3Hat.teHWI a:i2>. B IITOre npn-

6JIHJKeHHOro yt.teTa 1t
2 B IDBeCTHbiX Jl<lHHbiX Mhl llOli)!l:iilliH 3HalleHHe napaMerpa ii5 (Mj), 

ycpe.rmeHHOe no o6nacrH f = 5. 
(Cis (Mil) f" 5 =0,124. 

3a\1eTHO OTJIH'llillOIUeeC5J OT «MHpOBOro Cpezi.Hero» ( = 0,118 ). 

Pa6oTa BhiiiOJIHeHa B lla6opaTOpHH TeopernqecKoir <!>H3HKH HM. H.H.Eoronro6oBa 
Ollilli. 
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The r.: 2 Terms in the s-Channel QCD Observables 

We analyze the effect of 1t
2 terms in the QCD perturbative expansions for the s-channel 

effective coupling and observables, the effect known from the 80s. We remind that these 
terms can be collected into specific functions- strongs-channel coupling ii (s) and its ef
fective powers (!! k (s) free of ghost singularities. Further on, we study the structure of pertur

bation theory for observables and its reformulation in terms of nonpower perturbation ex
pansion over the set {~k (s) }. 

Then we discuss the influence of this effect on the numerical values of0:5 as extracted 
from experiments. The main result is that the common two-loop (NLO, NLLA) approxima
tion widely used in the five-quark region (10 GeV s: .fS s: 170 GeV) for a shape analysis c,on
tains a systematic negative error of a 1-2 per cent order of magnitude for the extracted a;->. 

Our physical conclusion is that the 'ii5 (Mj) value averaged over the f =5 data 

' <as (Mi>>1• 5 :0.124 

appreciably differs frorn the currently accepted <(world average» ( = 0.118 ). 

The investigation has been performed at the Bogoliubov Laboratory of Theoretical 
Physics. JINR. 
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