


1 Preamble

Usually, physical quantities in the time-like channel, like the cross-section
ratio of the inclusive e¥e~ — hadron annihilation or the 7-decay process,
are presented in the form of two- or three-term perturbation expansion

R(y)
Ry

(our coefficients c; = Cj 7~* are normalized differently from the commonly
adopted, like in Refs.[1, 2, 3]} over powers of effective QCD coupling &,
which is supposed ad hoc to be of the same form as in the Euclidean
domain, e.g.,
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Here, L = In(s/A?) and for the beta-function we use normalization
B(Cl)-"'.— —506\!2_‘",81Q3—52Q4+.._ = —,’5’0&2 (1Tbla‘+b2&2+) s
that is also free of @ powers. Numerically,
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Coefficients ¢;>3 = di — ¢ include “#? structures” §; proportional to
lower cp.:
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These structures ¢, arise{d, 5, 6, 7] in the course of analytic continua-
tion from the Euclidean to Minkowskian region. Coefficients d; should be
treated as a genuine kth-order ones. Just they have to be calculated with
the help of relevant Feynman diagrams.
To iillustrate, consider the three-flavor case for T-decay, f = 4,5 cases
for eTe™ ~+ hadron annihilation and Z; decay (with f = 3) — see Table 1
in which we also give values for the 72-terms.
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Table 1

Process I f C Cy = d2 C3 l d3 =C3— 53 63 | {54

Tdecay |31 I/ | .526 | 0.832 1.389 0.537 | 5.01
ete~ 4| 318| .155 |-0.351 0.111 0.462 | 2.451
eTe~ 51l 318 | .143 | -0.413 -0.023 0.390 | 1.752

Zpdecay [ 5 || .318 1 .095 |-0.483 -0.094 0.390 | 1.576

Here, all coeficients ¢;, d; and 4, due to normalization (1}, are of an
order of unity. One can see that, in the high energy region, contribution
of 43 prevails in ¢5.

2 Preliminary quantitative estimate

In practice, the m°—terms often dominate in higher expansion coefficients.
This effect is especially strong in the f = 5 region. Meanwhile, just in
this region people often use the so-called NLLA approximation, that is the
two-term representation

O(s) = Cy(@./m) + Co(as/x)? (3)

for an observable O(s) when next, the three-loop, coefficient C; is not
known. This is the case, e.g., with event-shape{8] analysis.

On the basis of the numerical estimates of Table 1, in such a case, we
recommend to use the three-term expression

2 2
02(s) =d, {as - ﬁ_ffiaf} +dodl =1 @, +a? ~dsad (4)
Le., to take into account the known predominant 72 part of the next co-
efficient c3. As it follows from the comparison of the last expression with
the previous, two—term one, the &, numerical value extracted from eq.(4),
for the same measured value O, will differ by a positive quantity {e.g.,
in the f =5 region with &, ~ 0.12 = 0.15)
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AEI! = oe—— =
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=~ (.002 = 0.003

that turns to be numerically important.



Moreover, in the f = 4 region, where the three-loop approximation is
commonly used in the data analysis, the 72 term &, of the next order turns
out also to be essential. Hence, we propose to use the four-term expression

O?{S)=d153+d2&f+63&§—54ﬁ.’:; C3=d3—53 (5)
(instead of the three-term one (1)) that is equivalent to

w22 5
O (s} =dy {a, - %aﬁ - b;gﬁﬁg &j} +do{a2 —x*pEal} +d3 & (6)
with 43 and 4, defined[4, 7] in eq.{2).
The three— and two-term structures in curly brackets are related to
specific expansion functions & and % defined below (10) and entering into
the non-power expansion (11).

To estimate roughly the numerical effect of using this last modified
expression (3), we take the case of e*e~ inclusive annihilation. For /s ~
3= 5GeV with &, ~ 0.28 + 0.22 one has
z& et 1.07 &

T g, |y — TE 0074, = 0-005+0.002

(ﬁ@s).q =
— an important effect on the level of ca 1 =+ 2%.
Moreover, the (A&,)s correction turns out to be noticeable even in
the lower part of the f = 5 region! Indeed, at /5 ~ 10 + 40 GeV with
&, = 0.20 =+ 0.13 we have

(Aﬁs)d{e:.imw ~ (.71 c‘xﬁ ~{1.1+0.3)- 10-3 (S 0.5%).

3 Non-power expansion in the Minkowskian region

The so—called #? terms in the s—channel perturbative expansions for the
invariant coupling and observables have a simple origin.

As it is well known, the usual invariant coupling originally defined [9]
in terms of real constants z;, counter-terms of finite Dyson renormalization
transformation, can be expressed via a product of dressed symmetric vertex

and propagator amplitudes taken at space-like values of their arguments.

&(Q%, o) = oI*(Q%, o) Hc@-(@z, a).
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Hence, by construetion, it is a real function defined in the Euclidean region.

Transition to the time-like region, with logs branching In Q% — Ins—ér
transforms all relevant amplitudes into complex functions I'(s, a),di{s,a).
Here, the problem of appropriate defining of effective coupling in the time-
like domain arises.

For this goal, we shall follow the idea devised in the early 80s by
Radyushkin [4] and Krasnikov-Pivovarov [5]. There, an integral trans-
formation R reverse to the dipole representation for the Adler function
has been used. :

We propose to treat this representation as an integral operation

R0 =@ [ Lo Re =DRE) 7

transforming a function R(s) of a real positive (time-like) argument into
a function D(z) given in the cut complex plane with analytic properties
equivalent {o those following from the Kallen-Lehmann Integral representa-
tion. In particular, the fimetion D(Q?) is real on the positive (space-like)
real axis at 2= Q% +10;Q% > 0.

The reverse operation is expressible in the form of a contour integral

R(s) = i st dz _ o

51 = E}" e ?Dpt(—-Z] :R I:D(Q )] .
. Wi-th the help of the latter, one can define[11, 12] an effective invariant
time-like coupling &(s) = R [&,(Q?)] . Omitting some technical details, we

give a few resulting[4, 5, 12] expressions.

E.g., starting with one-loop ai” = [ In(@?/A%)]™" one has R [ﬁim}

T 8
= ———— t — —
W]L}D Bom arctan L’ L=l AZ7 (8)

2 3
5:9)(@2)) and (@5”(@2)) there correspond

"

At the same {ime, to

= ~ 1 L
A = R[(6)] =l and 2 —
[( ) ] B2 [L? + 72 %) BRIL2 +n2]7
In the two-loop case, for a “popular” expression
(2 1 Ini 2
ﬁﬂ“.s,;)mp(Qz)= T—bl(f)ﬁ"-} l=1n%
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one obtains{4] the two-loop “pop” effective s-channel coupling

In [v/L2 4 ‘Ezl +1
L ) ao(s) - LI VITE NC)

~(2 _ .
a’("%’(s}_(lﬁrLz—;—Tr Bo L2 4+ 72

Both the expressions (8) and (9) are monotonically decreasing with a finite
IR @{0) = 1/Bo(f = 3) =~ 1.4 value. Meanwhile, higher functions go to
the zero A (0) = 0 at the IR limit.

In the case I >> =, it is possible to expand & and 2 in powers of
w?/L2. Then functions & and Y, can be presented as expansions in powers
of common &, ~ 1/L. They correspond to curly brackets in (6).

In [4, 5], as a starting point for observables in the Euclidean, i.e., space-
like domain @2 > 0, the perturbation series

Da{@) =1+ i &5(Q%)
E>1
has been assumed. It contains powers of usual, RG summed, invariant
coupling &,(Q%) that obeys unphysical singularities in the infrared (IR)
region around Q7 ~ AZ.
By using the R transformation, we obtain in the Minkowskian region
the “transformed” expansion over a non-power set of functions

Ri(s) =R [Du(Q@)] =1+ di¥M(s); Wls) =R [a5@Y)] (10)

E>1

free of the mentioned singularities. Properties of these functions have been
analyzed in detail in our previous paper{l3] — see also Ref. [14]. For a
more detailed numerical information on the functions & , ¥y and 9, see
Ref.[13].
Here, we give condensed information that will be enough for a few
iHlustrations.
Table 2

Three-loop APT results for ASL =290 GeV; &,(M2) = 0.125

V5/GeV ] 5 | 10 [ 15 | 20 | 30 | 50 | 60 | 90 | 150 |
a,(s) | .235|.195 | .177 ] .165 | .153 | .137 | .133 | .125 | .115
als) || 221 .186 | .170 | .160 | 148 | .136 | 132 | 133 | .114
102, || .456 | .330 | .275 | .246 | .214 | .180 | .169 | .149 | .129
1002 | .871|.555 | 436 | 357 | 209 | 232 | 213 | 177 | .143

6

Both in the Figure 1 and in Table 2, we give 3-loop solutions for &,
as well as for the modified, so—called global (for detail, see paper [13])
functions &@ = 2; , %, and U; calculated within the M3 scheme for the cases
Ay = 215GeV, &,(M2) =0.118 and As; = 200GeV, &,(MZ) = 0.125,

0,4 S

2.3 o

G,2

0,7 4

s"?=Q (GeV)

. S
1 10 100

Figure 1: Effective global Minkowskian, & , and Euclidean, ¢, expansion
functions, as compared with the standard one &, (at A(sy = 350 MéV and
as(M2) = 0.118).

We have chosen these two cases as limiting ones as far as in many
practical cases real figures lie between these limits.

In the _ﬁrst figure we give three curves @, , & and e, related to the
same physical case for A3 = 350 MéV and &, (MZ) = 0.118. The curves &
a.nq Ctan OB the figure go a bit slanting than usual, the &, , dotted curve.
This is quite natural, as they boih are regular in the vicinity of the A
singularity.

Meanwhile, only two first, @ and a,, have direct physical meaning
(compare with conclusion of [13]). Just their values have to be determined
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from any given experiment. Nevertheless, in the four- and five—flavour
regions ove can still refer to &, and &,(M2) as to traditional theoretical
objects.

Now, instead of (1), with due account to {10), we have

T'(S) = @ -+ dg 9[2(8) - dg ﬁg(&‘) (11)

with beautifully decreasing coefficients dy . Just this nonpower expansion,
strictly speaking, should be used instead of its approximations, egs.(4) and
(6), for data analysis in the time-like region.

At the same time, in the Euclidean, we have also non-power expansion

(@) =22D g @) raa@ (2

that can be related to (11) by transformation (7) in the framework of
Invariant Analytic Approach {refs.[16, 17}).

These non-power expansions, free of unphysical singularities, jointly
form a correlated system. The latter has been studied in detail in Refs.[13]
and {18]. We call it Analytic Perturbation Theory (APT).

4  Numerical illustrations

To illustrate, let us start with a few cases in the f = 3 region.

To begin with, consider the T decay. According to the Particle Data
Group (PDG) overview (see their Fig.9.1 on page 88 of Ref [1]}, this is (with
&s(My) ~ 0.170 and &,{M2) = 0.114) one of the most “annoying” points
of their summary of &@,(M2) values. It is also singled out theoretically.
The expression for the ratio of decay widths starts with the cubic term

R(Y)=Rya&3(My)(1+e &) with e =1. (13)
Due to this, the 72 correction’ is rather big here

Qfg o~ ﬁg (1 - Z(Tﬁu)zdg) . (14)
'First proposal of taking into account this effect in the T decay was discussed]5]
more than a quarter of century ago. Nevertheless, in current practice it is neglected.

ey g

T e

Accordingly, 0
A&s(MT) = '3-’ (71';80)2 C_Ei(M’r) ~ 0.0123 3

that corresponds to
Ag,(Mz) = 0.006 with &,(Mz)=0.120. (13)

Now, let us turn to a few cases analyzed by the three-term expansion
formula (1). For the first example, take e"e” hadron anaihilation at /s =
42 GeV and 11 GeV . '

A common form (see, e.g., Eq.(13) in Ref.[2]) of theoretical presenting
of the QCD correction in our normalization looks like

Tere- () = 0.318a,(s) + 0.143 &% — 0.413 a5 . (16)

Starting with re+e- (42) ~ 0.0476, one has &,(42) = 0.144. Along with our
new philosophy, one should use instead

Fete-{(5) = 0.318 &(s) + 0.14323(s) —0.023 Ax(s) (17)

that yields &(42) = 0.142 with &,(42) = 0.145 and a,(M%) = 0.127 to be
compared with &,(M2) = 0.126 under a usual analysis.

Quite analogously, for Tere-(11) ~ 0.0661; &.(11) = 0.200, we obtain
&(10) = 0.190 that corresponds to &;(M7) = 0.129 instead of 0.130.

For the next example, we take the Zj inclusive decay. Experimental
ratio Rz = ['(Z; — hadrons)/T'(Z; — leptons) = 20.783 £.029 is usually
presented as follows: Rz = Rq (1 +rz{M3%)) with Ry = 19.93. A common
form (see, e.g., Eq.(15) in Ref.[2]) of presenting of the QCD correction in
our norinalization looks like

rz(M2) = 0.3326a, + 0.0952 &2 — 0.483 &5 .

To [rzl,, = 0.04184 there corresponds &,(MZ) = 0.1241 with AL =
292MeV . In the APT case,from

r2(M2) = 0.3326 &(MZ) + 0.0952 Ax(M3) — 0.094 As(M7) (18)

we obtain &(M2) = 0.122 and &,(MZ) = 0.124 that relates to A® =
290 MéV . Note that here the three-term approximation of (6) gives the
same relation between the a,{M2) apd &(M%) values.
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Nevertheless, in accordance with our preliminary estimate for the (AGs)s
role, even the so-called NNLO theory needs some 72 correction in the
W = /s < 50 GV region.

Now, turn to the experiments in the HE Minkowskian (mainly with a
shape analysis) thaf usually are confronted with two-term expression (3).
As it has been shown above. the main theoretical error in the 7 =23 region
can be expressed in the form

(A& ()52 pocar = 1.2256%(s) ~ 0.002 < 0.003 . (19)
An adequate expression for the shift of an equivalent &,(M2) value is
A&, (M2)]; = 1.2256,(s)a,(M2)2 . (20)

Table 3
The APT revised® part (f = 5) of Bethke’s[2] Table 6

| [ /5 [Toops [ &, (3) | @u(md) | & (5) | Galred)

| Process [GeV | No | ref[2]] reff2] | APT | APT
T-decay ® | 9.5 2 70 T 114 182 | .120 (+6)
ete [opaa] | 105 ] 3 200 | .130 198 | .129(-1)
e*e [j&sh] 1 220 | 2 A61 | 124 166 | 127(=3)
eTe~{j&sh] | 350 | 2 45 | 123 149 | 126(+3)
€ € [Oheq] | 424 3 J44 | (126 145 1 .127(+1)
ete[j&sh] | 4401 2 138 | 123 142 | 126(+3)
ete~[j&sh] | 58 2 32 | 123 135 | .125(+2)
Zy— had. [91.2 | 3 124 | 124 124 | 124 (0)
ete [j&sh} | 912! 2 a21 | 121 123§ 123(+2)
ete [j&sh) | 133 | 2 d13 1120 A15 | .122(+2)
ete~[j&sh] | 161 | 2 109 | 118 A11 | .120(+2)
efeT[j&sh] | 172 | 2 104 | 114 103 | 116(+2)
ete [j&shl| 183 2 209 | .21 111 ) .123(+2)
ete [j&sh] | 189 | 2 110 ¢ .123 d12 ) .125(+2)

Averaged < &,{MZ) > ;5 values 0.121; 0.124;

) *%j & sh” = jets and shapes; Figures in brackets in the last column give the
difference A&,{3%) between common and APT valyes.
bTaken from Ref.[1].
We give results of our approximate APT caleulations, mainly by Eqgs.(19)

10

and (20), in the form of Table 3 and Figure 2. At the last column of
the Table 3 in brackets we indicate difference between the APT and usual
analysis. By bold figures the results of the three-loop analysis are singled

out.
Let us note that our average over events from Table 6 of Bethke's review

[2] nicely correlates with recent data of the same author {see Summary of

Ref.[19]). The best x* fit yields &,(M3)z = 0.1214 and &,(MZ)apr =
0.1235. This gives minimum xf = 0,197 and x%pr = 0.144 with impres-
sive ratio (=~ 0.73) illustrating the effectiveness of the APT procedure.

ols) |

0.18

0.16

0.14

0.12

i 1 | 1 1 ! 1
10 50 100 200
V5, GeV :
Figure 2: The new APT analysis for &, in the fiveflavour time-like region.
Crosses (+) differ from circles (o,9) by 72 correction (19). Solid APT curve
relates to a{ig = 270MeV and &,(M2Z) = 0.124. To compare, we give also the
standard {dot-and-dash curve) @&, {at A = 213MéV and &g(M32) = 0.118)
taken from Fig.10 of paper [2].

On the Fig.2 by open circles and bullets (¢, ) we give two- and three-
loops data mainly from Fig.10 of paper [2]. The only exclusion is the T
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decay taken from the Table 6 of the same paper. By crosses we marked the

new “APT values” calculated approximately mainly with help of Eq.{ 19).
For clearness of the 2 effect, we skipped the error bars. They are the

same as in the Bethke’s figure and we used them for calculating 2.

5 Conclusion

We have established a few qualitative effects:

1. Effective positive shift A@, = --0.002 in the upper half (> 30GeV)
of the f =5 region for all time-like events that have been analyzed up to
now in the NLO mode. _

2. Effective shift A@; ~ +0.003 in the lower half (10 = 50 GeV) of the
f =5 region for all time-like events that have been analyzed in the NLO
modes.

3. The new value
d(M2) =0.124 (21)

by averaging over the f = 5 region.

These results are based on a plansible hypothesis on the “72— terms”
prevalence in expansion coefficients for observable in the Minkowskian
domain. The hypothesis has some preliminary support but needs to be
checked in 2 more detail.

Nevertheless, our result (21) being taken as granted, rises two physical
questions;

— The issue of self-consistency of QCD invarient coupling behavior be-
tween the “medium (f = 3,4)” and “high (f = 5, 6)” regions.

— The new “enlarged value” (21} can influence various physical specn-
lations in the several hundred GeV region.
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