
E2-2000-179 

N .Makhaldiani * 

NEW HAMIL TONIZA TION 

OF THE SCHRODINGER EQUATION 

BY CORRESPONDING NONLINEAR EQUATION 

FOR THE POTENTIAL 

*E-mail: mnv@cv.jinr.ru 



1. Introduction

The Hamiltonian mechanics (HM) is in the ground of mathematical de-
scription of the physical theories [1]. But HM is in a sense blind, e.g., it does
not make difference between two opposites: the ergodic Hamiltonian systems
(with just one integral of motion) and integrable Hamiltonian systems (with
maximal number of the integrals of motion).

By our proposal [2] Nambu's mechanics (NM) [3, 4] is proper generalization
of the HM, which makes difference between dynamical systems with different
numbers of integrals of motion explicit.

The Schrodinger equation, [5] is the base of one of the most effective for-
mulations of the quantum theory, [6]. An interesting reformulations of the
Schrodinger theory as infinit dimentional generalization of Nambu's theory
where given in [7, 8].

In Sec.2, of this paper, we consider the general method of the Ha:niltonian
extension [9] of the nonlinear partial differential equations which describes dy-
namical systems with infinit number of degrees of freedom. For one of the
nonlinear equations we find that the Hamiltonian companion in the extended
system is the Schrodinger equation. We find some solutions of the consid-
ered systems, including the solutions corresponding to the conformal quantum
mechanics, [10].

In Sec.3, we consider the d-dimensional generalization of the extended
quantum theory.

In Sec.4, we find radially symmetric static solutions.
In Sec.5, we consider de Broglie-Bohm formulation of the quantum theory

and show universality of the inverse-square potentials.
In Sec.6, we find an extra quadratic integral of motion for the d-dimensional

inverse-square potential and give the corresponding Nambu-Poisson formula-
tion.

In Sec.7, we integrate in quadratures the radial part of the d-dimensional
inverse-square potential dynamics.

In Sec.8, we consider the supersymmetric extension of the conformal quan-
tum mechanics and find corresponding nonlinear systems.

In Sec.9, we find Nambu-theoretic formulation of the extended quantum
theory.

In Sec.10, we present our conclusions and show some perspectives.



2. The method of Hamiltonization of the infinite dimensional
systems (partial differential equations) and new Hamiltonization of
the Schrodinger equation

The well known (integrable) system from the hydrodynamics, the KdV
equation, (see, e.g., [1])

Vt = VVX - Vxxx, (1)

can be put in the Hamiltonian form.
Indeed, let us take as a Lagrangian

L = (V( — VVX + Vxxx)ip. (2)

Corresponding (extended) system of the equations of motion is

vt = vvx - vxxx,
j/ij = Vipx + ipxxx, (3)

the momentum is

the Hamiltonian is

H = (VVX - Vxxx)i>, (5)

the (fundamental) bracket is

2.1 Now it is easy to see that for some dynamical system described by the
following equation

iV, = Vxx - l-V\ (7)

the Hamilton companion system is given by the Schrodinger equation

irfit = -V-xx + Vrj>, (8)

with units chosen so that h = 1, 2m = 1 ' .

'We can return to the usual form of the Schrodinger equation by the following change of
the variables t -> t/h and x -> x\/2m/h.



Corresponding Lagrangian is

Hamiltonian is

L = (iVt - Vxx + ^ ) 0 , (9)

H = (Vxx - ~)i>, (10)

the extended system of the equations of motion is

V2

iVt = Vxx - —,

i1>t = -1>nl + Vrl>, (11)

where the variable V maybe interpreted as potential function and the variable
ijf-as quantum amplitude.

2.2 Generally the solution of the equation (7), V is complex valued. Real
valued maybe the static solutions, Vt = 0,

Vxx - -V2 = 0. (12)

It is easy to find, in the vanishing at the infinity conditions, the following
solution

,,, ; 12

where x0 is a real constant. We have also an approximate ("dilute gas")
solutions

J^ 12
v(x) = £ \a (14)

where, xo « Si << ... « x^, are constants.

The equation (8) with the potential (13) is known as the conformal quan-
tum mechanics, [10].

To find the general static solution of the equation (7,12), we transform the
equation (12) to the integral form,

vi°] dv



where

C\ = — (V'(x0))
2. (16)

From expression (15) we find the solution

(17)

where, p(x, g2,gz) is the elliptic function of Weierstrass, (see [11] and Appen-
dix 1). Note that the solution (13) corresponds to the case g^ = C\ = 0.

2;3 Let us show that the general static solution of the equation (7) coincides
with the subclass of the static solutions of the KdV, (1). In fact, for static
solutions of KdV, we have

Vxts-VVx = 0 (18)

and after one integration we obtain

Vxx - y = Co. (19)

Last equation coincides with the equation (12), for Co = 0.
The static solutions of the equation (8),

V>M - V0 = 0, (20)

with potentials in the form (17) is

# r ) = K(s) = P* (^ (* -3o ) ,0 ,Ss ) - (21)

In fact. From the equation (12) we have

Vxxx - VVX = 0. (22)

So the function (21) fulfils the equation (20).

2.4 For stationary solutions

1>(x,t) = e-^tftx), (23)

of the equation (8), we have

Ax + (w - V)$ = 0. (24)



This equation reduce to the Lame's equation, [13]

for Ci = 12, Ci = -12w and y = 2y/3{x - x0).

2.5 Note that there are the stationary solutions

V(x,t) = e-iSUV(x), (26)

of the following equation

iV, = Vxx - ^eifi'V2, (27)

where V(x) fulfils

Vxx- QV = 0. (28)

and is defined by the following integral

J . /lT/3 4- OT/2 4- C.

This integral reduce to the Weierstrass elliptic function after the shift of the
integration variable, V —> V — fl.

We have the following soliton-like localized stationary solutions of the equa-
tion (27) -

V(x,t) = ~ . (30)
ch*(Vn/2( x ) )

In the limit ft —>• 0, the solution (30) disappears.
Corresponding Schrodinger equation

77
x -x0))

4', (31)

is exactly solvable (see e.g [14]).
2.6 Let us consider the following generalization of the equation (7)

iVt=V^--V\ n ^ l . (32)
n



To the static solution (13) corresponds the following solution of the equation
(32)

( 3 3 )

To the Schrodinger equation (8) corresponds the following Hamiltonian partner
of the equation (32)

i^t = -i>xx+Vn'li>. (34)

This equation for the static solution (33) reduce to the following conformal
quantum mechanics

(35)

2.7 Note that there are several approaches to the quantum mechanics with
such a singular potential as (13) (see e.g [15] and references therein). Let us
show a connection between harmonic oscilator and inverse-square potential
problems. If we take two independent solutions, u and v, of the harmonic
oscilator equation of motion

X + OJ2X = 0. (36)

Then it is easy to show that the variable p = y/u2 + v2 fulfils the following
equation

p + u,2p-4 = 0' (37)

where g = uv — vu is a constant of motion. So we have a connection between
problems corresponding to the Hamiltonians

H=^i2+~x2 (38)

and

2.8. Static solutions of the heat equation with polynomial non-
linearites

Let us consider the following nonlinear heat equation

Vt = V« - \K(V), (40)



where Pn = anV
n + an_i V""1 + ... + a0.

The static solutions of this equation are given by hyperelliptic functions
(see Appendix 2.)

V(x) = pn(x, cn_2, •••, Co). (41)

3. Any dimensional generalization and many particle interpreta-
tion

Let us consider n-dimansional case. The system (11) takes the following
form

V2

iVt = AV - —,

i^t = -A</> + Vtl>. (42)

Corresponding Lagrangian, Hamiltonian and Poisson brackets are obvious
modifications of the expressions (9),(10),(6).

Let us take the simplest generalization, two dimentional case, n — 2 and
make its two particle interpretation.

It is easy to see that

12 12 24
V(a:1,o;2) = 7 - + 7 - = - (43)

{xi- x2)
2 {x2 - x{)2 (si - x2f

is the static solution of the following equation

iVt = (A1 + A2)V(xux2,t)-^-. (44)

Corresponding Schrodinger equation

04
^ t = _(A1 + A2)tf+?^_^> (45)

describes the two particle quantum system. In n-dimensional case of two par-
ticle system X\ and x2 become an n-dimensional vectors. For N-particle case
with different masses m;, the nonlinear equation becomes

V2

iVt = (A-i/mi + A2/m2 + ... + AN/mN)V(xux2, ...,xN,i) - y > (46)

with corresponding static solution



where

rriij = '- 48)

and pij are projectors,

Pij = Pjii PijPkl = PijSikSjl. (49)

4. Radially symmetric static solutions and a new mechanism of
computation of coupling constants

Now we find static, vanishing at the infinity, radially symmetric solutions
of the system (42). The equation for V is

Vrr + — V r - \v2 = 0. (50)
r 2

It is easy to find the following solution

From the point of view of the Schrodinger equation, (8) the solution (51)
corresponds to attraction (repulsion) for space dimensions n > 4 (n < 4).

Let us make comparision with the scalar potential of the point source given
by the following equation

= g6n(x). (52)

The solution of this equation is (see, e.g. [16])

y -

According to the contemporary theoretical conceptions, on small scales
(or for early Univerce) space(-time) geometry is a coherent superposition of
different classical geometries, with different metric structures, topologies, di-
mensions (see, e.g. [17]). Let us take the system (11) as fundamental model
describing the Univerce at this scales. Than according to the solution (51), for
the components of geometry with n > 4 the matter has tendency to concen-
rate and take less dimension. For components with n < 4, the matter repulse
and try to rise the space dimension. For n = 4, the matter is free. So in the
model described by the system (11) with solution (51), the matter choice the
dimension n = 4. On a bigger scales, we can qualitatively describe the same
picture by the equation (52) and the solution (53) in dimension n = 4 with
different values of the point charge g,

g = 167r2(n - 4), n = 4 + ^ = 4 - 2e, (54)



where e = \/4na/32ir2 = 10 3 for quantum electrodynamics (a = 1/137)
and e = 0.04 for nucleon- pion strong interection model (as = 14.7), [18].

This equation gives a simpl(ified) example of the calculation of the charges
of elementary particles and/or corresponding fractal dimension of the space 2.

' To be more realistic, we can consider relativistic modification of this model,
but the static considerations remain unchanged.

4.1 Let us consider d-dimensional generalization of the equation (32)

iVt = AV - -V" , n ^ 1. (55)
n

Radially symmetric, static solution of this equation is

V(r) = £ , (56)

where

a= - , a = an(a + d — I) = — . (5r)
n — 1 (n — I)2

Note that, for n = 2, a < 0, for d > 4 and a > 0, for d < 4.
For n > 2, a is real for

d<2+-f-j. (58)

So, we have real solutions only for d < 2. Corresponding Schrodinger equation

J^J = —Â > + Vn >̂, (59)

has the following potential

Vr, = Vn~l = , (60)
(n — I)2 r2 v""̂

which is attractive for n > 3 and d > 3. So we conclude, that the minimal
nonlinearity, the n = 2 case, is the most "attractive" one.

. 5. de Broglie-Bohm formulation of the quantum theory and inverce-
square potential as universal quantum potential

In text-books on quantum mechanics (see e.g. [19] ), quantum and classical
theories are connected by representation of the wave function in the form

% (61)

2See [17] for general method of calculations of fractal dimension of space in different
models of particle physics and field and string theores.



Inserting this expression into the Schro'dinger equation, we obtine

OS (S) y ^ h

dt 2m 2m

It was found by E. Madelung, [20] that Schrodinger equation can be recast as
a hydrodynamic equations. The key step in the de Broglie-Bohm formulation
of the quantum theory, [21, 22, 23] is to regard

v = ™ (63)
m

as a particle velocity. The first equation of the system (62) is then the
Hamolton-Jacobi equation and the second equation is the continuity equa-
tion relating the particle probability density p = K2 to the current density
j = pv. Note that if we neglect the right hand side therm of the equation (62),
we obtain exectly the classical Hamilton- Jacobi theory. With nonzero right
hand side (Quantum potential) we have full quantum theory.

In the previous sections of this work, we have seen, that the inverse-square
potentials appears naturaly in our extended quantum theory, (11,42). Now we
will give some qualitative arguments in favour of inverse-square potentials in
the de Broigle-Bohm formulation of quantum theory, [22, 23]. The vorticity of
the flow

V x v = V x (VS)/m, (64)

is zero as long as 5" is nonsingular. In this case, the probability field is irrota-
tional. At points where 9? = 0, i.e., wave function nodes, 5 may be singular.
At such points vorticity may be nonzero. So at the wave function nodes, may
be (quantum) vortices, ([24]).

Let us suppose that at the node of the wave function, K ~ ra, a(n) > 0,
than the quantum potential, (62) has the following form, (70)

ft2 AS <,,(«)
V

From the system (62) (for static configurations) we have

~ K2' ~ r4a r 2 '

where

9c < 0 , 5 , = (a(a + rf-2) + - ^ — ) - — , (67)

rfr2 r dr r2

10



So, for a = 1/2, quantum potential renormalize the classical one (g = gc + gq)
and can improve its, e.g. "fall of the particle to the center" [14], properties.
For a < 1/2 (a > 1/2), quantum (classical?) potential dominates for smoll
scales.

If we have a nonanalytical behaviour 3? ~ exp(—(ro/r)a), a > 0, then 3

^ . (69)

So, nonanalytical case corresponds to the "fall of the particle to the center"
potentials.

6. Extra quadratic integral of motion for the d-dimensional inverse-
square potential and Nambu-Poisson formulation

In spherical coordina tes , r—rn, | n | = 1, t he inverse-square po ten t i a l is

V(r) = ̂ Ji. (70)

The Hamiltonian is

H-, = — (r2 + r2h2) 4- g^ (71 "l

Corresponding Lagrangian is

where X is the Lagrange multiplier.
The equations of motion are

= 0,

m{r2hi)- + ^ " - j + 2Xm = 0. (73)

If we multiply the last equation by r2h; and take a sum over i, we will have

{ m^in'^ _i_ (*> ^ ̂  — n (TA \

So
m . _i _ rrt

(75)

3This note appears after conversation with B. Magradze.

11



is the new integral of motion.
This integral for the case of dimensions of space d = 2 and d — 3 were

considered in [24]. We obtained this integral by universal way for general d.
Now having two integrals of motion we can put the equations of motion

(73) in the following (second level) Nambu-Poisson form, [2]

( 7 6 )

where the structure functions u>ijk can be determined by comparision of the
equations (76) and (73).

7. Explicit integration of the radial part of the d-dimensional
and complet integration of d = 2 dimensional inverse-square poten-
tial dynamics

The integral H2, (75) depends explicitly just on the variable r. So we
can find the dynamics of the variable by one quadrature. Indeed, from the
expression (75) we find:

1. Hi = 0, a)H2 = 0, r = ro = const, (77)
I 1

b) H2 < 0, rl = ±\\——, r2 = r2
0± \ ~-t; (78)

2. Hi ^ 0, a) Hi = 0, r = ±\—, r = ro±J—t;
V m I m

Now we put the solution for r(t) into the 2-dimentional expression of Hi,

( 7 9)

fc + rV) + # (80)
2 r2

and after some calculations we obtain

(81)~ \jmJ r*'

This completes the integration of the two dimensional inverse-square potential
in quadratures (see also [24]).

12



8. Supersymmetric extension

A minimal realization of the algebra of supersymmetry

is given by a point particle in one dimension, [25]

Q = a(-iP+Wx),
Q+ = a+(iP + Wx), (83)

where P — —id/dx, the superpotential W(x) is any function of x and the
spinor operators a and a+ obey the anticommuting relations

a 2 '=( a+) 2 = 0. (84)

The operator

a = [a ,a\, (so)

is the generator of the U(l) transformations

^ + -> 4,+ = eiaBiP+ = eiail>+.- (86)

There is the following representation of the operators a, a+ and B by the
Pauli spin matrices

+ _
a ~

2 '
+ icr2

T
B - <r3. (87)

From formulas (82) and (83) than we have

* ? (88)

= (P2 + Wl - Wxx)4~,

Now we can identify the potential of //_ with the solutien (13)

V_ = Wl - Wxx = — (90)
x.

13



Then we find

W- = hnx2. (91)

If we take instead of the potential V_ of the Hamiltonian //_ the potential V+

of the Hamiltonian H+, than we will find

W+ = Ilnx2. (92)

The superpartner of the potential (90, 91) is

V+ = W2 + Wxx = A , (93)

which is the s ta t ic solution of the "superpar tner" of the equat ion (7)

iUt = Uxx - U2. (94)

An interesting quation is how the supersymmetry is realized on the system

iVt = V x x V \

iUt = Uxx - U2. (95)

Note that the supersymmetric generalization of the conformal quantum
mechanics, [10] were considered in [26, 27].

9. The Nambu-theoretic (re)formulation of the extended Schrodinger
quantum theory

The variational formulation of the extended Schrodinger quantum theory,
(42) we can construct by the following Lagrangian

^V2)^. (96)

The momentum variables are

Pi, = 0. (97)

As a Hamiltonians of the Nambu-theoretic formulation we take the following
integrals of motion

~V2W,

U



H3 = P*. (98)

We invent unifying vector notation, 4> = (<£ii 4>2i 4>3, 4>A) — {^P, Pi>> V, Pv)- Then
it may be verified that the equations of the extended quantum theory can be
put in the following Nambu-theoretic form

r d{<f>{x),HuH2,Hz)

where the bracket is defined as

IW)s^)Wy)dy- (100)

Note that, from the point of view of the Nambu-theoretic representation (99)
we have the following (total) class of equivalent Hamiltonians

H=H1+ X2H2 + \3H3, (101)

where, X2 and A3 are arbitrary functions of t. In components, the system of
equations (99) is

<t>lt = i{&.4>i - £ , & ) => ii?t - - A ^ + V ^ , (102)

<f>2t = 0 => <f>2 — H3 = const = 0 ,

i^) =» iVt = AV - iv2 ,
(103)

H2 = const = 0 => <j>4 = ifa, (104)

Due to the line (104), the equation (103) reduce to the equation (102).
It is easy to make the highest level Nambu-Poisson formulation, [28, 2, 29].

In our case the third level (with three Hamiltonians) is highest. Then we
make corresponding reductions on the low level (Nambu-)Poisson form(s). In
our case we have the following reductions

u H2} = {<f>(x), H2, H3) = {<j>(x), Hz, ff,}
lt} = {4>(x),H2} = {4(x),H3}, (105)

where, e.g.

fa = e«i2 - ieijM. . (106)

15



As matrix, the structure tensor f has the following form

/ = (fa) =

/ 0 0 i 0 \
0 0 0 0

-i 0 0 1
0 0 - 1 0 /

After strike out the second row and column, corresponding to the eigenvector

we will have 3x3 antisymmetric matrix, with one zero eigenvalue corresponding
to the eigenvector

In the subspace ortogonal to the vectors (107) and (108), our Poisson dy-
namics reduce to the symplectic one.

Note that the standard Schrodinger quantum theory were presented in the
form (99) in [7], The Weyl-Wigner-Moyal formulation of the quantum theory
were presented in the Nambu-theoretic form in [8].

10. Conclusions and perspectives
For inverse-square potential problems in three (and more) dimensional case,

we need third (and more) integral(s) of motion. This integral(s) can not
depends only on r and r. For some given (testing) form of the integral(s)
Hz = H(r,r,n,h), we have the following condition

H = Hrr + Hrr + Hnh + Hnh = 0, (109)

which is the partial differential equation for g(n), (70). Nontrivial solutions of
this equation give us thee (and higher) dimensional integrable systems.

Another interesting question is the connection of the algebraic integrability
(in radicals) of the general polynomial equations and analytic properties of the
(hyper)elliptic functions, (see appendix 2).

Concerning to the relation of our Hamiltonian extended quantum theory
and supersymmetry, considered in Sec.8 in the simplest case of superconformal
quantum mechanics, it is interesting to investigate the connection between
general solutions ( and equations) corresponding to the following diagram

V_ => W- => W+ => V+. (110)

The work on the applications of the formalism of this paper for several
dynamical systems is in progress [30].

16



Appendix 1 The (famous) Weierstrass elliptic function

V(x) = p(x,g2,g3) (111)

can be defined from the integral

Expending under the integral in powers of g2 and #3, we find x as a series of
V(x). Inverting that series, we find, (see,e.g. [12])

Appendix 2 Let us introduce the following generalization of the Weier-
strass function

Vn(x) = ^(.T,Cn_2,Cn_3,...,CO), (114)

which is defined by the following integral

f
J

where

/Pn{V)

Pn{V) = -r^z^V" + Cn-.2V
n~2 + ... + Co. (116)

Note that, by simple shift of the variable, U = V + a, we can always eliminate
the next to the leading therm of the general polynomial

Pn{U) = anU
n + a^ i t ' " - 1 + ... + ao,

Pn(V + a) = a11V
n + (nana + an-.i)V"-1 + ... + Co, (117)

if we take

So the expression (115) we can be consider as the standard form of the general
polynomial case.

As in the previous appendix, we obtain the following series (re)presentation

V.(«) = p,(«, C_,, ...,C0) = - 5 ^ - i ^ g c n _ 2 , 2 / < ^ + ... (119)

This expression defines simple analytic function just in the case of the elliptic
functions, n = 3 and n = 4. The case of n = 1 and n = 2 correspond to
elementary functions.
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