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I. INTRODUCTION

Scalar mesons play an important role in the strong interactions of elementary
particles [1,2]. They are also significant for a correct description of nuclear interac-
tions [3] Today, 19 scalar resonances are observed in the energy interval from 0 4
to 17 GeV |4]. However, their nature is not yet quite clear.. Are they two-quark
or four-quark states? Which of them belong to the ground state nonet of the U('l)
flavour group, and which, to the excited one? Is there a glueball among them,
and where does it lie? These are intriguing questions, where to find answers, many
attempts are currently bemg made by different authors. From a quick survey of
what has been done by now, one could conclude that we do not yet approach the
solution A lot of models, (see, e g, [5-22]) has been suggested, but none of the
approaches has given us the clue that could allow us to clarify the true nature of
scalar mesons once for all Moreover, one might be disappointed by the fact that
different models give different results that do not much overlap, bemg m some cases
controversial.

In our work, we describe scalar isoscalar mesons and their mixing with scalar
glueballs As we learn from QCB, if there were no quarks in the world, gluons
themselves could form bound objects due to a large coupling strength of gluon self-
interactions. This stimulated the search for bound gluon systems both in experiment
and in theory As the gluon carries no flavour, lepton or baryon quantum number,
glueballs must be searched among isoscalar mesons.. Indeed, the simplest gluonic
formation possesses the quantum numbers of a, scalar isoscalar meson If one looks
into tables of experimental data, one finds a large number of scalar isoscalar states
that can be mixed states of quarkonia, multi-quark systems, hybrids, and glueballs
To distinguish a glueball is really a difficult task, because we have no reliable test
that would give us the truth.

As the perturbattve approach does not work here, different phenomenological
models and lattice simulations are involved in the study From recent results [23-25]
one can conclude that it is most probably that glueballs are real objects of our world
There exist numerical estimates for probable masses of glueballs, however still in the
world without quarks. Lattice calculations report that the lightest scalar glueball
should be found betwren 1.5 and 17 GeV.

Amsler [18] considered the state /n(1500) as a candidate for the scalar glueball
QCD sum rules [19] and the K-matnx method [20] showed that both /D(1500)
and /o(171O) are mixed states with large admixture of the glueball component.



Moreover, QCD sum rules [19] require that light glueballs (below 1 GeV) should
exist, which is in contradiction with what lattice calculations suggest.

A glueball cannot be searched without investigating the nature of the rest of
scalar mesons that are not heavier than, 2 GeV and which we consider mostly as
formed by quark-antiquark pairs. All the bound isoscalar qq states are allowed to
mix with glueballs, and their spectrum has many interpretations made by different,
authors. For instance, Palano [26] suggested a scenario, in which the states ao(980),
tfo*(143Q), /o(98O), and /0(1400) form a nonet. The state /o(1500) is considered as
the scalar glueball. Tornqvist et al. [21] looked upon the states /o(980) and /0(1370)
as manifestations of the ground and excited ss states; and the state /o(400 — 1200),
as the ground uu state. Van Beveren et al. [27] considered the states /o(4OO— 1200)
and /o(137O) as uu ground states; and the states /o(980) and /O(1500), as ss ground
states. Two ground states for each qq system occur due to pole doubling, which
takes place for scalar mesons in their model. Shakin et al. [15] obtained from a
nonlocal confinement model that the /0(980) resonance is the ground uu state,
and /o(137O) is the ground ss state. The state /O(1500) is considered as a radial
excitation of/o(98O). They believed the mass of the scalar glueball to be 17-70 MeV.

In our recent papers [17], following the methods given in Refs. [2,28-30], we
showed that all experimentally observed scalar meson states with masses in the
interval from 0.4 to 1.71 GeV can be interpreted as members of two scalar meson
nonets — the ground state of the meson-nonet and its first radial excitation. We
considered all scalar mesons as qq states and took into account the singlet-octet
mixing caused by the 't Hooft interaction. In [17], we obtained a scalar isoscalar
state with mass 1600 MeV and had to choose, to which of the experimentally
observed states /o(1500) and /o(171O) we should ascribe it. From our analysis of
the decay rates calculated in our model, we found that /0(1710) better fits to the
nonet of quarkonia than /o(15OO). Therefore, we supposed that the state /o(1500)
contained a significant component of the scalar glueball (see [19,20]). However, the
final decision should be made after including the scalar glueball into the model, and
taking account of its mixing with quarkonia, which will shift scalar meson masses.

At present, there exist two candidates for the glueball: /0(1500) and /0(1710)
[20-22]. To describe the properties and mixing of the glueball with the other scalar
states, one should introduce an additional scalar isoscalar dilaton field x m^° o n r

model, in addition to the quarkonia which have already been described [17]. For this
purpose, one can make use of the idea of approximate scale invariancc of effective
Lagrangians based on the dilaton model. Such models were studied by many authors
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(see, (;. g., [10,22,31-33]). Unfortunately, there is no unique way to introduce the
dilaton field into a chiral Lagrangian. This justifies the large number of models
dealing with ghieballs.

The guideline, one should follow when introducing the dilaton field into an
effective meson Lagrangian, is to reproduce the Ward identity connected with the
scale anomaly. The latter leads to the following equation for the vacuum expectation
value of the divergence of the dilatation current

(1)

/ l l
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1

1 2 ^

, in°q{qq),

where Nc is the number of colours; N/, the number of flavours; (^G^) and (qq),
the gluon and quark condensates; m°, the current quark mass.

In this paper, we are going to use the most natural method of introducing the
dilaton field into the effective Lagrangian by requiring that, in the chiral limit, our
Lagrangian should be scale-invariant except for the dilaton potential. To realize this
program, one should multiply all dimensional parameters of the original Lagrangian
(without dilaton) by a corresponding power of the dilaton field divided by its vac-
uum expectation value Xc t 0 preserve the dimensions of model parameters. Thus,
instead of the four-quark coupling constant G, the 't Hooft coupling constant A",
ultraviolet cutoff A (necessary for the regularization of divergent integrals coming
from quark loops), and the constituent quark masses mq [q = u, s), one should use

G(xc./X)\ K{xJx)\ Mx/Xc) and mq(X/Xc)-
Current quark masses m° are not multiplied by the dilaton field and violate scale

invariance explicitly, as it takes place in QCD. Their contribution to the divergence
of the dilatation current is determined by quark condensates and disappears in the
chiral limit (see (1)).

Omitting, for a moment, the 't Hooft interaction in our approach (which, to
an extent, is in the spirit of papers [10,22,29] ), we require that the Lagrangian is
scale-invariant in the chiral limit both before and after the spontaneous breaking
of chiral symmetry (SBCS), except for the dilaton potential. This property can
be obtained by considering (after bosonization when the effective Lagrangian is
expressed in terms of bosonic scalar and pseudoscalar fields a and <f>) the shift of
the scalar meson field a

a = a' - m—, {m° = 0), (3)
Xc



where (<r')o = 0, (a)o = —m, guaranteing that the relation (1) is .satisfied [38].
The nonzero vacuum expectation value of a appears as a result of SBCS. and
thus, the constituent quark mass is produced. In the case of nonvanishing current
quark masses, (3) changes by including an additional (non-scaled) mass term m°
into the r.h.s. This change produces an interaction term ~ ^ (-M a' in the
effective Lagrangian (31) which breaks both chiral and scale symmetry just in the
way required by the quark mass term m°qq of the QCD Lagrangian.

The structure of the paper is as follows. In Section 2, we derive the usual
U(3) x £/(3)-flavour symmetric effective Lagrangian with the 't Hooft interaction
and without dilaton fields. In Section 3, the dilaton field is introduced into the
effective Lagrangian obtained in Sect. 2. Gap equations are investigated in Sect. 4.
In Section 5, we derive mass terms and fix the model parameters. The main decays
of scalar isoscalar mesons are calculated in Sect. 6. Finally, in the Conclusion, we
discuss the obtained results.

II. CHIRAL EFFECTIVE LAGRANGIAN WITH 'T HOOFT
INTERACTION

A U(3) x U(3) chiral Lagrangian with the 't Hooft interaction was investigated
in paper [34]. It consists of three terms as shown in formula (4). The first term
represents the free quark Lagrangian, the second is composed of four-quark vertices
as in the NJL model, and the last one describes the six-quark 't Hooft interaction [35]
that is necessary to solve the UA{\) problem.

L = q(id - m°)q + |
a=0

-K {det[q(l + 75)q] + det[?(l - 75)?]} . (4)

Here G and K are coupling constants, Xa (a = 1, ...,8) are the Gell-Mann matrices
Xo = y2/3 1, with 1 being the unit matrix; m° is a current quark mass matrix with
diagonal elements m°, m°d, m°s {ml w m°d).

The standard bosonization procedure for local quark models consists in replacing
the four-quark vertices by Yukawa couplings of quarks with bosonic fields which
enables one to perform the integration over quark fields. The final effective bosonic
Lagrangian appears then as a result of the calculation of the quark determinant. To
realize this program, it is necessary, using the method described in [34-37], to go



from Lagrangian (4) to an intermediate Lagrangian which contains only four-quark

vertices

1 9

L = q(id - ro°)<7 + - ^2 [G<ab\Qra.<l){qTbq) + G^'(qi'y5Taq)(qi'y5Tbq)], (5)
a,6=l

where

ra = \a (a = l,..., 7), r8 =

r9 = (-Ao + V^AgJ/A

= G{£ = Gif = G± s

= G[f = G& = d# = G ±
= G T UCmtfim.), G$ = G,

(a^b; a , 6 = l , . . . . 7 ) , (6)

m°u = m ° - 32Kmum,/1
A(mu)71

A(ms)1 (7)

m°=m°-32^m2j 1
A (m u ) 2 . (8)

Here mu and ms are constituent quark masses and the integrals

| i ' ^ = l , 2 ; a = «,.)> (9)

are calculated in the Euclidean metric and regularized by a simple 0(4)-symmetric
ultraviolet cutoff A. For 7A(ma) one gets

where ma represents a corresponding constituent quark mass1: mu or ms. Note that
we have introduced the notation of constituent quark mass already here, although
they will be consistently considered only later, when discussing mass gap equations
(compare (41) and (42)) and the related shift of scalar meson fields (see (12) and
(13)). However, as we want to use an effective four-fermion interaction instead

lrThe notation "constituent" quark mass refers here to the total quark mass appearing
in the full quark propagator.



of the original six-quark one, we have to calculate quark loop corrections for the
constant G (see (6)) using full quark propagators with constituent quark masses.

In addition to the one-loop corrections to the constant G at four-quark vertices,
we have to modify the current quark masses ma

a (see (7) and (8)). This is to avoid
the problem of double counting of the 't Hoot contribution in gap equations which
was encountered by the author in [37]. After the redefinition of the constant G and
of the current quark masses, we can guarantee that in the large-iV,. limit the mass
spectrum of mesons and the gap equations, derived from the new Lagrangian with
modified four-quark vertices, are the same as those which are obtained from the
original Lagrangian with six-quark vertices.

Now we can bosonize Lagrangian (5). By introducing auxiliary scalar a and
pseudoscalar 4> fields, we obtain [2,28,34]

1 9

>Cftr, 0i — — /

—i Trln lid — fh + y_, Ta(Pa + *7s0a) \ • (H)
I a=l J

As we expect, the chiral symmetry is spontaneously broken due to the strong attrac-
tion of quarks in the scalar channel and the scalar isoscalar fields acquire nonzero
vacuum expectation values (<Ja)0 ^ 0 (a = 8,9). These values are related to basic
model parameters G, m,° and A via gap equations as it will be shown in the next
Section. Therefore, we first have to shift the a fields by proper values so that the
new fields have zero vacuum expectation values

°a = O'a - Ha + fil, « ) o = 0, (12)

where \xa = 0, (a = 1, . . . , 7), /t/8 — m-u, m = -ms/\/2 and p,aa = 0, (a =
1, . . . , 7), $ = m-l, £9 = -m°jV2. After this shift we obtain:

C(a', <j>) = La(a', </>) - i Trln lid - m + £ ra{a'a + t750o)} . (13)

where

-, 9 _ .

L I i i\ * K""* / / - 0*1 (/~*{ — ) \ I t i 0\

a,b=\

1 9

2 o,6=l



From Lagrangian (13) we take only those terms (in momentum, space) which are

linear, squared, cubic and quartic in scalar and pseudoscalar fields.2

C(a', <f>) = L(;{a', <j>) + lx[l£(m)(or2 + <t>2) - 4m/ ; \ rnV + 2/f (m)(a'2 + d>2)

-4m2I.?(m,y2 + ±ml£(m)o'{ar2 + <t>2)2

-l}(m.)(a'2 + tf)2 + l£{m)[(r' - m, tf]i, (15)
!1 <)

n' = Yl a«T<" <t> = Yl ̂ "r'"

where "t.r" means calculating the trace over r-inatrix expressions and [...]_ stands

for a commutator [2]. The oxjjrossion for If(ma) in Euclidean metric is given in

(10). The integrals 1-2 (nia) are also calculated in Euclidean space-time

N ( ( V2 \ \2

A
 ln ['— + 1) \2 \ 2

V + mf
Then, we renormalize the fields in (15) so that the kinetic terms of the effective

Lagrangian are of conventional form, and diagonali'ze the isoscalar sector.

C{a\4>r) = La(a\<t>r) + tr[^-(ffr2 + <pr2) - 4mgl[\rn)or

+2(i'2I?{m){(Tr 2 + Z<t>r 2) + ^{m, <l>rf_ - m2ar 2

+mgaT(aT 2 + Z4>T 2) - |[»n, 4>r]-[<Jr\ (/>''}-

(18)

n=\ n=l

For La we have:

Lc(ar,4>r) = -\ JZ i9*< ~ /'« + ti) {G{-])~! (-^5 " /** + fit)
a,6=1

- f i: 9^, {Gwya! ̂ i- (20)
ajfc=l

Here we introduced Yukawa coupling constants gn:

2Dt\sj)itn that thn scalar fields are of the main interest in this paper, we still need

pseudoscalar fields to fix the model parameters.



< = 9a<rr
a, 4* = y/Zg«4>r

a, (21)

gl = 9t = g\ = </? = [4/2
A(wu, m s ) ] - \

/2
A(mK, m.) = — I / (j'fc(/;:2 + m 2 ) ( / c 2 + 7 n 2 ) =

(23)

(24)

where we have taken into account ix-A\ -transitions leading to an additional Z factor,
with MAI being the mass of axial-vector meson (see [2]). The renormalized scalar
and pseudoscalar fields in (21) are marked with the superscript r.

The mass formulae for isovectors and isodublets follow immediately from (18).
One just has to look up for the coefficients at <rr2 and <jf2. There are still nondi-
agonal terms in (20) in the isoscalar sector. This problem is solved by choosing the
proper mixing angles both for the scalars and pseudoscalars (see e. g. [34]). As we
are going to introduce the glueball field, the mixing with scalar isoscalar quarkonia
will change the situation. One has to consider the mixing among three states, which
cannot be described by a single angle. For simplicity, in our estimations we resort
to a numerical diagonalization procedure, not to the algebraic one. Concerning the
pseudoscalar sector, one can avail oneself with the results given in [34]. All what
concerns dealing with the glueball is discussed in the next Section.

III. NAMBU-JONA-LASINIO MODEL WITH DILATON.

As we have already mentioned before, we introduce the glueball into our effective
Lagrangian, obtained in the previous Section, as a dilaton. For this purpose we use
the following principle. Insofar as the QCD Lagrangian, in the chiral limit, is scale
invariant, we suppose that our effective meson Lagrangian, motivated by QCD, has
also to be scale invariant both before and after SBCS in the case when the current
quark masses are equal to zero. Note that the scale anomaly of QCD is reproduced
by the dilaton potential. As a result, we come to the following prescription: the
dimensional model parameters G, A, and K are replaced by the following rule



G -» G{xc/x)2, K -> K(xdxT, A -> A(x/Xc)2, where x is the dilaton field with
the vacuum expectation value Xc- Moreover, the constituent quark masses are
replaced by the rule ma —t ma(x/Xc)- Concerning the current quark masses, the
are left unsealed. This leads to the following formula

oa = o'a- (Ma - it + £)*- + £= < ~ (A*. - A)~- ~ £^, (25)
Xc Xc Xc

where fi°a = 0, (a = 1, . . . , 7), ^g = m°, ^g = -m°/ \ /2 , and the definition of /i0 is
given after (12). The difference pPa - /J?a is proportional to the 't Hooft interaction
constant K (see (7) and (8)) and has conventional scale behaviour, therefore it
should be scaled in the same way as /j,a. Note that in the r.h.s of (25) x' denotes
the quantum fluctuations of the dilaton field around its vacuum expectation value

Xc-
Finally, we come to the following Lagrangian:

C(ar, 4>T,X) = £{x) + Lkin{a\<j?) + LG{aT,4>\ x) + t r [ - ^ ^ j

V V (
XcJ \Xc

r{aT 2 + <t>r 2 ) - ^ ( a r 2 + 4>T2)2]. (26)

Here C(x) is the pure dilaton Lagrangian

1

with the potential

- 1 (28)

that has a minimum at x = Xo, and the parameter B represents the vacuum energy,
when there are no quarks. The curvature of the potential at its minimum determines
the bare glueball mass

mg = - — . (29)
Xo

The part Lkin(crr, (jf) of Lagrangian (26) contains pure kinetic terms
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to which we pay rio further attention. The next term reads

Kb

Z ( y \ JU ,, / „ , . \ \ - i

2L
2

z (x\2 9 -i
2 \ X c / Oi(,= i a6

The dilaton field is here expanded around its vacuum expectation value: x = x'+Xc,

(x)o = Xc (x')o = 0.
Recall that the terms proportional to m° break explicitly chiral and scale invari-

ance in the same way as the current mass term of QCD Lagrangian. Notice also
that for our linear cr-model (26), together with the gap equation (see (41)), lead to
a scale-invariant pion term ~ M^TT2(X/XC)2/2 instead of the scale-violating term
~ M2TT2(X/XC)/2 arising in nonlinear cr-models [33,38].

As one can see, expanding (31) in power series of x, we can extract a term that is
of order x4- It can be absorbed by the term in the pure dilaton potential which has
the same degree of x- Obviously, this leads only to a redefinition of the constants B

and Xo, which anyway are not known from the very beginning. Moreover, saying in
advance, terms like x4 do not contribute to the divergence of the dilatation current
(1) because of their scale invariance.

Let us now consider the vacuum expectation value of the divergence of the dilata-
tion current calculated from the potential of the effective meson-dilaton Lagrangian

Here V = V(x) + V(ar, <j>r,x), where V(ar, <f>r, x) is the potential part of Lagrangian
C(ar, <jf, x)• Note that we have simplified (32), taking into account that the quark
condensates are related to integrals h{mu) and h{rns) as follows

10



4in.qI\ (mq) = -{qq)a, (q = u, d, s), (33)

and that these integrals arc connected with constants G\~b through gap equations,

as it will be shown in the next Section. Comparing the QCD expression (1) with

(32), one can see that the quark condensates enter into both formulae in the same

way. Equating the right hand sides of (1) and (32),

Ca~ E mq(qq)=4B[^) ~ E rn°q(qq), (34)
<l = u.cl,.i \XOJ q=u,(l,s

we obtain the correspondence

C 9=4i3 ^ . (35)

This equation relates the gluon condensate, whose value we take from other models

(see P.. g. [39]), to the model parameter B. The next step is to investigate the gap

equations.

IV. GAP EQUATIONS

As usual, gap equations are follow from the requirement that the terms linear

in crr and \' should be absent in our Lagrangian

6C

'',"'',X')=0

sc
'>'\y')=0

= 0. (36)

This leads to the following equations

,T,0

^ ,,) = 0, (37)

(rn, - rho,)(G{-1)^ - y/2(mu - K)(G{~])^ - &msl?(nh) = 0, (38)

. (39)

(40)

,-W Xo \Xo/ Xc

Here

is proportional to the current quark masses //.}} ~ m\ and thereby small.

Using (7) and (8), one can rewrite the gap equations (37) and (38) in a well-

known form [37]
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ml .= mu - 8GmuI?(mu) - 32KmumJ?{mu)lf(ms), (41)

m°s=ms- &Gmjf(ms) - 32A'(mu/,
A(mti))

2. (42)

The equations discussed above allow us to relate the current quark masses to
the rest of model parameters and also to relate the constants B and Xo f° t'"' ftiuon
condensate and Xc- The constituent quark masses, ultraviolet cutoff, and four-quark
coupling constants will be fixed, as usual in N.JL, by means of the Goldberger-
Treimann relation, the p —>• im decay constant, pion weak decay constant and the
mass spectrum of pseudoscalars (For details see [34] and Refs. therein). In the next
Section we define Xc, using the bare glueball mass (without mixing effects) as a
parameter.

V. MASS FORMULAE AND NUMERICAL ESTIMATIONS.

The potential part of Lagrangian (26) which is quadratic in fields aT and x' and
which we denote as L(2) has the form

-1 r r 0(r A\(X'\'
19<78 9 2\CS~1){TC)

- E ^{G(-\{9bolx>. (43)
a,fc=8,9 Xc

The dilaton and its interaction with quarkonia does not change the model parame-
ters mu, ms, A, G, and K fixed in our earlier paper [34]

mu = 280 MeV, ms = 420 MeV, A = 1.25 GeV,

G = 4.38 GeV"2, K = 11.2 GeV-5. (44)

As it has been already mentioned, after the dilaton field is introduced into our
model, there appear three new parameters: xo> Xc, and B. To determine these
parameters, we use the two equations (35) and (39) and the bare (without mixing
effects) glueball mass

< - ^ - (45)

Ac
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Wo adjust it so that, in the output, the mass of the heaviest meson would be 1500
MeV or 1710 MeV, and thereby fix Xc- For the gluon condensate, we use the value
(390 MeV)4 [39]. The result of our fit is presented in Table I where we show the
spectrum of three physical scalar isoscalar states aj, an and am- The last one
is associated with the glueball. The parameters Xo and B are fixed by the gluon
condensate and constituent quark masses-

/ A\
Xo = Xc exp —r- , (46)

B-&«,(-£). (47)

The mixing of scalar isoscalar fields is described by the matrix b that connects the

nondiagonalized fields aT = {o\,o\,xr) with the physical ones uPh = (oi,crii,criii)

ar = baph. (48)

The matrix elements of b are given in Table II.

VI. DECAY WIDTHS

Once all parameters are fixed, we can estimate the decay widths for the main
strong decay modes of scalar mesons: at —>• TTTT, at -4 KK, oi -4 7777, 07 -4 777/, and
a 1 -4 4TT where I = I, II, III.

The amplitudes that describe the decays are relatively simple in our model. The
decays of quarkonia were considered in [34]. Here we only give numerical estimates
for their decay widths, where the mixing with glueball is taken into account (see
Table II). Below, we discuss only those amplitudes that describe glueball decays.
The process am -4 TTTT is given by the amplitude

which has been divided into two parts. The first part represents the contribution
from the pure glueball. It is proportional to the square of the pion mass

Ml
•"•ir

where bx<rin represents a corresponding element of the 3 x 3 mixing matrix for scalar
isoscalar states (see Table II). This contribution is small (since it is proportional

13



to the current quark mass m°), and the process is determined by the second part

that describes the decay of the quark component of the glueball

KUi^^^2Sv-muZba^ui. • (51)

Despite the smallness of mixing, |&o-uCT/;/| <S 1, this term prevails over the pure

glueball contribution because M% is noticeably less than 2gumuZxJ>t7Vr7,n- As a

result, the decay width of am is

r f f / / /_»w = 4 MeV (52)

for am = /o(1500), and

rCT//;->™ = 3 MeV (53)

for <7/// = /o(171O). As one can see this process occurs with a relatively low rate.

In the case of KK channels, the contribution of the pure glueball is also pro-

portional to the mass square of the secondary particle, kaon in this case. But it

is rather large, compared to the pion case as m° ~S> mj. In the same way, the

amplitude can be split into two contributions

Aa,,,^KK = K.U-+KR + Al,,,->KK (54)

where the pure glueball decay into KK is represented by amplitude

A* - 2M'h (55)
Ac

Its value is large and comparable with the quark component contribution

Alm->Kii " 29^nuZbauCrin - 2\FigsrnsZba!>ani. (56)

In this case, the contribution from the quark component is provided by both u(d)

and s quarks. In the case that am is /o(15OO), we have

r<,n,-*KR = 42 MeV, (57)

and in the other case (am = /o(171O))

r<,,/;-KK = 90MeV. (58)

Strange quarks contribute more and interfere with the pure glueball part, essentially

reducing the decay width (by a factor 3).
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The amplitude of the decay of a glueball into 7777 and lyrf can also be considered

in the same manner. The only complication is the singlet-octet mixing in the

pseudoscalar sector. The corresponding amplitudes are

4 — A'J 4 - 4 ?

•^°lll -"('I = ~"T bXo,n, (60)

-•!«„,_»,„ = 2f/tlmuZbir.am sin2 0 - 2y/2g,m,Zba,0incos2 0, (6.1)

where 0 = 6 — 00, with 0 being the singlet-octet mixing angle in the pseudoscalar

channel, 0 ss -19° [34], and 0O the ideal mixing angle tan 60 = l / \ /2 . The decay

widths thereby are:

r , , , , - , , , = 25 MeV (62)

for O]U = /o(1500), and

T<,in^m = 42 MeV (63)

for a,,, = /0(1710).

For the decay of the glueball into 777/, we have the following amplitude

Aaln-^itn' = Aaui^rw]i + A(tni^m,, (64)

K.n-nf = 0, (65)

A\ul^m, = -2Z sm29{gnmx,baur7!l, + s/2gsmsbatt,ni). (66)

The amplitude Aa
ajn ^^ is equal to zero because there is no decay of a bare glueball

into 7777'. This process occurs only due to the mixing between the glueball and scalar

isoscalar quarkonia. The decay widths are as follows

Tnnl^m, = 5 MeV, (67)

for a,,, = /o(15OO),

r<r,,,-,W' = 5 MeV. (68)

for am = /o(1710). Th(! estimate for the decay /0(1500) into 7777' is just qualitative

because the decay is allowed only due to the finite width of the resonance as its
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mass lies a little bit below the rjrj threshold. The calculation is made for the mass
of /o(15OO) plus its half-width. For /o(171O), we have a more reliable estimation
since the mass is large enough for the decay to be possible. One can see that the
order of magnitude for this decay is about 5 MeV. The estimate for /0(15()0) is not
in contradiction with it.

The decays into four pions are estimated as decays proceeding throug two chan-
nels: one with two intermediate, scalar resonances (x —> oa —> 4TT) and one. with
only one intermediate scalar resonance (x ~~> a^n ~* 4TT). Here we neglect the
mixing of glueball with quarkonia since the mixing effect is small (it is proportional
to mj).3 The amplitude describing the decay into 27r+27r~ is as follows

(70)

^ ( A ( ) A(s34) + A(s14) + A(s23)), (71)

where F* = 93 MeV is the pion week decay constant, Ma is the mass of the state
07. The function A(.s) appears due to the resonant structure of the processes

A(s) = (s-M^ + iMaray
l, (72)

where FV is the decay width of the 07 resonance (see below). This function depends
on an invariant mass squared ŝ - defined as follows

Here i and j enumerate the momenta ki of pions TX+{ki), 7r~(fc2), ^
+(kz), and

The amplitude describing the decay into 2ir°n+n~ has the form

(73)

(ki).

(74)

(75)

( A ( ) I A ( ) ) (78)

''Only the lowest scalar isoscalar resonance is taken into account here. The contribution

from /Q(!J80) should be noticeably smaller because of a large mass and a narrow width of

/o(980).
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Here k\ and h? are momenta of the two TT°, and Su is their invariant mass squared.
The indices 3 and 4 stand for 7r+ and n~, respectively.

In the case of the decay into 4n°, we have

l6mtZM" A(s13)A(s24) + A(Sl4)A(S23)), (78)

^ ( A ( ) A(s13) + A(si4) + A(s23) + A(s24) + A(s34)). (79)
"jrXc

From our estimation it follows that in the case, where <T/// is identified with
/o(15OO), we have the total width

r , , , , ^ = 30 MeV, (80)

and in the other case (am = /0(1710))

r , , , , -* , = 60 MeV. (81)

Let us present the decay widths of ar and an. The state 07 that we identify
with /o(4OO — 1200) decays mostly into a pair of pions, and this process determines
the width of 07:

r V , ^ * 760 MeV. (82)'

The state am does not affect it noticeably, since the mixing of the glueball with uu is
very small. Therefore, the decay rate for both am = /0(1500) and am = /0(1710)
is approximately the same in magnitude.

The decay of the state aji that we identify with /o(98O) into pions is determined
by the quark component and is slightly reduced by the glueball component because
of mixing with the ss quarkonium. We obtain

r , , , ^ = 17 MeV, (83)

ifor/// = /o(1500) and

rv_>™ = 15 MeV, (84)

if am = /o(1710). From experiment, we know that its decay width lies within the
interval from 40 MeV to 100 MeV. Concerning the process an -4 TTTT, we obtain a
decay width that is lower than the experimental one. Notice that this prediction is
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completely based on singlet-octet mixing following from the 't Hooft interaction [34]
where dilaton effects do play a minor role. The decay into KK can also be taken
into account. From experiment we learn that the decay into KK can contribute
about 30% to the total width [4]. Our estimates for decays of the glueball are
collected in Table III.

VII. CONCLUSION

As it was mentioned in the Introduction, the inclusion of a scalar glueball into
the effective meson Lagrangian is quite an ambiguous procedure. The goal of our
paper is to find the most physically justified way to do this. In the approach
presented above, we assume that (with the exception of the dilaton potential) scale
invariance holds for the effective Lagrangian before and after SBCS in the chiral
limit. The terms depending on current quark masses break both the chiral and scale
invariance, in accordance with QCD. This leads to the requirement that we should
introduce the dilaton field into the constituent quark masses while the current quark
masses remain unsealed.

In this version of a scaled NJL model, the terms that describe mixing of the
glueball with quarkonia are also proportional to current quark masses. The same is
true for the amplitudes describing decays of the glueball into pairs of pseudoscalars.
Insofar as the masses of current quarks are small in comparison with the other model
parameters (constituent quark mass, \c A, and so on), this results in a small mixing
of the glueball with quarkonia, relatively small rates for decays of the glueball into
7T7r, and only slightly changes the decay width of /o(98O) —» TTTT calculated before
introducing the glueball [34], The decay of the glueball into two pions is mostly
determined by its qq admixture despite the small mixing. The mixing coefficient
here, although being small (~ —0.06 if am — /o(15OO)), is multiplied by a relatively
large constant describing the decay of the a-meson into a pair of pions.

In the case of the KK channel, both the gluonic and quark components play an
important role since the interference between the gluonic and quark amplitudes is
large. The relatively small contribution from the uu component slightly increases
the decay rate of the glueball. But the contribution from the ss component reduces
the contribution from the pure glueball by factor 3.

The decay into rjij is mostly determined by the glueball component. The mixing
of the glueball with ss reduces the decay rate, but not significantly. The decay into
T]rf is less than into i]rj and is allowed only due to the mixing of quarkonia with
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the glunball. This process serves as a measure of this mixing. However, in the case
of /o(15OO), it is difficult to give reliable estimates for its rate because the process
occurs near the threshold.

Decays into 4 pions are represented by two processes. In the first one. two
intermediate scalar resonances are born by the glueball with their subsequent decay
into two pairs of pions. In the second process, only one intermediate scalar resonance
together with a pair of pions are produced immediately after the decay of the
giueball. Then, the scalar resonance decays into pions. From our calculations
it follows that the second process is dominant and two scalar resonances are less
probable to appear.

The total width of the third scalar isoscalar state is estimated to be about 100
MeV for Maul = 1500 MeV and 200 MeV for Maill - 1710 MeV. If we assume
that the /0(1500) state is the scalar glueball, the total decay width derived from
our model is close to the experimental value (112 MeV). Unfortunately, the detailed
data on the branching ratios of /Q(1500) are not reliable and controversial [4].

In conclusion, we would like to note that, in our model, the width of the decay
of a glueball into two pions is small, because the amplitude describing this decay,
is proportional to the current mass of (/-quark (~ M% ~ m") and does not depend
on momenta. The latter in the chiral limit formally disagrees with the low-energy
theorems obtained in paper [40]. In general, we could consider a version of our
model containing momentum-dependent vertices, whose momentum dependence is
in agreement with these low-energy theorems. However, such a momentum depen-
dence of the amplitude leads to a too large decay width of a heavy glueball (> 1
GeV) (see [33]), which contradicts the experimental data. This witnesses to the
fact that, these low-energy theorems seem not justified to be applied in the case of
a heavy glueball.

The results obtained here correspond to the leading order in l/Nc expansion
(Hartree-Fock approximation). Next-to-leading order corrections can to an extent-
change the final results. Note also that, in the energy region under consideration
(~ 1500 MeV), we work on the brim of the validity of exploiting the chiral sym-
metry that was used to construct our effective Lagrangian. Thus, we can consider
our results as rather qualitative. Nevertheless, a satisfactory agreement with ex-
perimental data is obtained for the total width of /0(1500).

We are going to use this approach in our future work for describing both glueballs
and ground state and radially excited scalar meson nonets which lie it the energy
interval from 0.4 to 1.71 GeV. Small mixing angles make us hope that introducing
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the glueball into our model will not change the whole picture dramatically.
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TABLES

TABLE I. The masses of physical the scalar meson states 07, 077, am and the values

of the parameters Xc, Xo, bag constant B, and (bare) glueball mass mg (in MeV) for two

cases: 1) Mani = 1500 MeV and 2) Main = 1710 MeV.

I

07

555

555

on

1075

1080

cm

1500

1710

Xc

191

167

Xo

192

168

S,[GeV4]

0.005

0.005

m9

1480

1695
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TABLE II. Elements of the matrix /;, describing mixing in the scalar isoscalar sector.

The left table refers to the case am = /o(15OO), the right one to the case am = /o(171O)

<

<

x'

Ol

0.9804

-0.1963

0.0180

Oil

0.1865

0.9535

0.2368

(Tin

-0.0636

-0.2288

0.9714

<

x'

0.9804

-0.1965

0.0151

ou

0.1912

0.9672

0.1671

07//

-0.0474

-0.1609

0.9858

TABLE III. The partial and total decay widths (in MeV) of the glueball for two cases:

am = /o(1500) and am s /0(1710), and experimental values of decay widths of/o(15OO)

and /,,(1710) [4].

/o(I500)

/o(171O)

4

3

42

90

r
1 mi

25

42

5

5

r47r

30

60

100

200

•pexp
1 tot

112

130
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