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1. Introduction 

1.1 There are essentially two rea sons which make the highest
-weight representations of semisimple Lie a lgebras interesting. 
The first of them concerns their applications in quantum mecha
nics and elementary particle physics reviewed, e.g., in the in
troduction of Ref.1 • On the other hand, mathematically they are 
a generalization of the finite-dimensional irreducible represen
tations cons erving some of their properties. 

1.2 The finite-dimensional irreducible representations with a 
highest weight A of a complex semisimple Lie algebra L are 

characterized by the condition that '\ = 2(1\ '"'i )/ (tvi ,t.Ji) , i = 1, 
2, ... ,n, are equal to non-negative integers (Refs.2,3) ; here 
~i and n are positive simple roots and rank of L , respecti
vely. Properties of thes e representations are well-knownl2- 4/. 
The representations with t.Ji arbitrary integers may be infinite
-dimensional but remain integrable ;this case was studied by 
Harish-Chandra/5/ . 

part 
Many 
on II 

The mentioned representations form, of course, only a small 
among all the highest-~eight representations of given L • 
results concerning the general case (with no restrictions 

) can be deduced from the theory of Verma modules/4/ ; an 
extensive treatment of this problem was presented by Gruber and 
Klimy~ 1 /. In their paper the so-called elementary representati
ons were introduced and studied (cf.Sec.2.6 below ; essentially 
the same construction was used also by other authors for investi
gation of the highest-weight representations). The elementary 
representations are ex definitio representations with a highest 
weight ; generally they need not be irreducible, however, they 
are irreducible for a "great" subset in the set of all weights. 

Since there is a one-to-one correspondence between the 
weights II and the irreducible highest-weight representations 
(cf. Theorem 2.4(b)), it might seem that no other highest-weight 



representations are needed, at least for those A for which the 

elementary representations are irreducible. However, representa
tion spaces of the elementary representations are certain factor 
spaces (cf.Sec.2.6 below). It makes their use extremely difficult 
even in the case of the lowest-dimensional algebras and represents 
itself a great practical disadvantage. This is why we suppose a 
search for other irreducible highest-weight representations to be 

meaningful!. 

1.3 In this paper we shall give another set of irreducible 
highest-weight representations of sl(n+1,t) • A major part of 
them will be obtained in an explicit form in which matrix elements 
of generators can be easily calculated. In the subsequent paper/6/ 
we shall illustrate on an example sl(3,C) "'A2 that such explicit 
representations are given for all the weights A to which the 
irreducible elementary representations correspond. Moreover, we 
shall demonstrate that our method makes it possible to construct 
irreducible highest-weight representations also for some of the 
weights A such that the corresponding elementary representations 

are reducible. 

1.4 The construction presented in the following sections is b~ 
on canonical realizations of sl(n+1,C) • Wide sets of these rea
lizations are known for all the complex classical Lie algebras 
as well as for majority of their real forms/7- 151; a review of tiE 

subject was given in Ref.7 • We treat here the algebras sl(n+1,C) 
- An as the simplest case ; in view of many common features of 
the mentioned realizations we believe that the method used below 
could be applicable also to other semisimple Lie algebras. 

2. Preliminaries 

2.1 The algebra gl(n+1,C) is the 
Lie algebra with the standard basis 
the elements of which obey 

[eij'ekl] = dkjeil- ~ilekj 
This algebra is a direct sum of its 

n+1 
rated by the element e • E. eii 

i=1 
sl(n+1 ,C) -An whose generators are 

1 = 1,2, ••. ,n. 

2 

(n+1) 2-dimensional complex 
{ e

1 
j : i, j = 1 , 2, •.. , n+ 1 j 

( 1 ) 

one-dimensional centrum (gene

and the simple subalgebra 

eij , it j and ~ = eii- * e 

2.2 The standard Cartan subalgebra H in L = sl(n+1,C) is ge
nerated by the "diagonal" elements a

1 
; its dimension, i.e., 

rank of L equals n • We choose the following Cartan-Weyl basis 

hi 

ei 

fi 

eij 

eij 

8 i+1 - 8 i ei+1,i+1 -eii 

ei+1 ,i i = 1 ,2, •.. ,n 

e_i = ei,i+1 

i > j + 1 

i < j-1 

i= 1 ,2, ... ,n 

i = 1 ,2, .•• ,n ( 2a) 

( 2b) 

( 2c) 

(2d) 

( 2e) 

The relations (1) imply that (2b-e) are the root vectors corres
n 

ponding to the roots «. J. : o:. .. ( 2:, J.khk) = .Ai - .-'. . Among these 
1 1J k=1 J 

roots ~i = ~i+ 1 ,i and ~-i = o:.i,i+ 1 are simple, further o:.ij , 
i >j , are positive. Following Ref.3 we call the elements (2a-c) 
canonical generators of L . They fulfil the relations 

[hi ,hj] 0 

[ei ,f j] = Jijhi 

(hi ,ej] = cijej 

(3a) 

(3b) 

[hi,fjJ = -cilj Del 

where c·ij are the Cartan numbers, cij = 2,-1 , 0 for i"' j , 

li-jl = 1 and li-jl :> 1 , respectively. Notice that the Cartan
-Weyl basis (2) differs from the standard one /3, 16/; they are 

connected by the automorphism generated by e±i ~ e~i , hi~ -hi 
We choose the basis (2) because it is suitable for our construc
tion. 

2.3 The universal enveloping algebra of L will be denoted 
conventionally as UL • Let f be a representation of L on a 
vector space V , by the same symbol we denote also the natural 
extension of p to UL • A represents tion p : L ~ .C< V) is cal
led representation with a highest weight A= <A 1, ... ,~n) if the
re exists a vector x0 £ V (called highest-we1ght vector) such 
that the following three conditions are fulfilled : 
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(i) the linear form A on H , fl(hi) = Ai , is a weight of fl : 
it holds ~(h)x0 = A(h)x0 for all hE H , or equivalently 

f<hi)x0 = •\xo, i= 1,2, ••• ,n, 
(ii) p<ei)x0 = 0, i=1,2, .•. ,n, 

(iii) the vector x0 is cyclic for p , i.e., p<UL)x
0 

= 
= { f (a) x 0 : a € UL J = V 

Since a system of canonical generators exists in any semisimple 
Lie algebra, this definition applies not only to L = sl(n+1,t) 
but to the other semisimple algebras as well. The lowest-weight 
representations are defined in the same way, the only change con
sists of replacement of f(ei) by p<fi) in (ii). Some important 
properties of the highest-weight representations are summed in tte 
following assertions/ 1-3, 17/: 

2.4 Theorem : Let L be a complex semisimple Lie algebra 
and f : L ~ £(V) its representation with a highest~ A. 
Then (a) tne space V decomposes into a direct sum of fini

te-dimensional weight subspaces VM = { x € V : f(h)x = M(h)x 
for all h€ H J , the subspace V11 being one-dimensional. 

n 
Every weight M of p is of the form II = A - i~ 1 kic.>i , 
where ~i are the positive simple roots 

and ki are non-negative integers. of L 

(b) To each linear form A on the Cartan subalgebra H 
of L there exists, up to equivalence, one and only one ir
reducible representation p of L with A as the highest 
weight. 

2.5 Theorem : Let the assumptions of the p~ious theorem be va
lid. The representation p is finite-dimensional iff Ai 
= /l(hi) , i= 1,2, •.. ,n, are non-negative integers. 

2.6 Now we shall define the elementary representations of L • 
The algebra L decomposes into a direct sum L s L+ + H + L_ 
where L_ is the subalgebra generated by the elements fi (cf. 
(2c) ; notice that each of the elements (2e) can be obtained from 
f 1 ,f2 , •.• ,fn by Lie products). The universal enveloping algebra 
UL_ of L_ serves as a representation space. It can be identi
fied with the free algebra of monomials 

fi fi ••• fi 
1 2 m 

ik= 1,2, ••• ,n m = 1 ,2, ••• 

4 

factorized by the ideal generated by the following elements 

[ ... [[f. ,f . ],fi ], ... f . ] 
1

1 
1

2 ~ 1 m 
m = 2,3, ... 

for thos: (i 1 ,i 2 , ... ,im) for which the sum of positive simple 

roots L wi is a root. 
k=1 k 

The elementary representation d~ corresponding to a linear 
form A on H is defined by the following relations k) 

d"(h)1 = A(h)1 d"(fi)1 = fi dA(ei)1 = 0 (4a) 

d"(h)f . ... f . = (1\-t.Ji - •.• -IJi )(h)fi •.. fi 1
1 

1
m 1 • 1 m 

(4b) 

d"(f. )f .... f . 
1 1 1 1 m 

f . fi •.• f. , (4c) 
1 

1 1 m 

d.(e.)f. ... fi 
" 

1 1 1 m 
f . (d11 (e. )f .•.. fi ) + 

1
1 

1 1
2 m ( 4d) 

+ 811 (A -w. - •.• - wi )(hi)fi ..• fi 
1 

1
2 m 2 m 

here wi are again the positive simple roots of L . The repre
sentation d" is clearly a representation with the highest 
weight A ; generally it is reducible but not completely reducib
le. Necessary an1 sufficient conditions for irreducibility of dA 
can be found which employ action of the Weyl group W of L on 
the highest weight A (cf. theorems 5,6 of Ref.1). 

2.7 The last introductory item concerns the canonical realiza
tions which are the basic tool of our construction. The (complex) 
Weyl algebra w2N is the associative algebra with unity 1 ge

nerated by the elements qi,pj , i,j = 1,2, •.. ,N which obey the 
standard CCR 

(Pi ,pj] = [qi ,qj] = 0 [pi,qj] = dij1 

Canonical realization of a Lie algebra L is a homomorphism 

L- W2N ; it extends naturally to tt.e homomorphism UL- w
2

N 

In the following we shall deal with simple algebras ; in this 
case any non-trivial realization is injective. Purther notions 
concerning canonical realizations are given in Refs.7-15 • 

We shall use the canonical realizations of gl(n+1,t) con-

k) The sign of the second term in (4d) differs from that of Ref.t 
due to other choice of the canonical generators. 
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structed in Ref.9 . They are obtained recursively with the help 
of n canonical pairs, one complex parameter and a realization 

of gl(n,t) • The latter can be chosen in different ways : cano
nical realization of the same type, matrix representation or tri
vial realization ; in the first case the same possibilities ap~ 
after the next step in the choice of realization of gl(n-1,C), 
etc. In what follows we employ mostly the first possibility when 
the reduction is performed to the end with canonical realizations 
of the same type*>. The realization of e .. of gl(k+1,t) will 

(k+l) l.J be denoted as r (e . . ) • It is convenient to numerate theca-

nonical pairs in these ~~alizations by two indices : q~+ 1 , p~+ 1 , 
i, j = 1 ,2, •.• ,k , k = 2, 3, ... , then the following assertion iB valid 

2.8 Proposition : To any complex numbers 
exists~ nelization of gl(n+l,t) in 
given recursively by the formulae 

oc.0 , a,, ... ,a,n there 
w2N , N=(n+ 1) (n+2)/2, 

(n+ 1) ( e . ) 
t" iJ 

n+ 1 n+ 1 ( n) ) 1 c- 1 
qi Pj + 'l" (eij + 2 °ij 

(n+l)(e ) = -pn+l 
t" n+ 1 , i i 

( n+ 1) ( e ) 
't i ,n+ 1 

( n+ 1 ) ( e 1 ) 
't n+1 ,n+ 

n n+ 1 ( J.. n+ 1 n+ 1 n+ 1 i ) 
qi j=l qj Pj + -2-- a.n + 

+ L qr:+l 't"(n)(e } 
j= 1 J ij 

n - l. q n+ 1 pr:+ 1 - ( 11 - iN ) 1 
j= 1 j J 2 n 

i, j = 1 , 2, ••• , n , where -z-< 1 ) ( e 11 ) = 1«.0 • 

3. Maximal representations of sl(n+1.Cl 

(5a) 

(5b) 

( 5c} 

(5d) 

3.1 Let Bn+ 1 denote the set of all symbols (triangular ma~) 

mn1 ~2 •••••••·• mnn 

mk1 mk2 ••• mkk 

m21 •22 
m11 

mkj E NO ( 6) 

where N0 is the set of all non-negative integers. These symbols 

*) The possibility of using matrix representations of some subal
gebra will be employed in the subsequent paper (Ref.6). 
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• 

will denote the basis vectors and the complex linear envelope 

Vn+l = C{Bn+l} will serve as the representation space. The vector 

xg+l = lb.::· 0
1 is cal~ed vacuum. We define the creation and 

annihilation operators a~+l, a~+l, j= 1,2, ... ,k, k= 1,2, ••. ,n 
on Vn+l in the standard way 

-k+l 
aj 

k+l 
aj 

mhl • · · · · · · · · • · · · mnn 

~~~.::.~~j ·• mkk 

ml 1 

mnl · · · • · · · · · · • · • mnn 

~~!.::.~~j ·• mkk 
mll 

mnl · · • · · · · · · · · · mnn 

Jmkj+l ~~! . : : . ~~ / 1 • . mkk 

mll 

mnl • · · · · · · · · · • · mnn 

jmkj ~~!.::.~~j-1 .• mkk 

mll 

They obviously obey the canonical commutation relations 

-k -1 k 1 
[ai,aj] = [ai,aj] = 0 

k -1 r r 
[ai ,aj] = "ijokl I 

the same is true for the operators 

(7a) 

(7b) 

(8) 

k -k k k -k k 
O.j(fl) = aj cos~+ aj sinp , Pj(f) = -.aj sinf+ aj cos~ (9) 

Substituting now Qkj(/') , Pk<p> into the formulae (5) for q~, 
k J J 

pj , we obtain a representation of gl(n+l,C) on Vn+l which 
depends on the parameters a.0 ,~1 ••..• ~n and p . In the following 
we shall deal mostly with the case /' = 0 • The representation of 
gl(k+1 ,C) obtained in this way will be denoted as ~(k+ 1 ), k = 1, 

k+l (k+1) 2, ..• ,n. We shall use also Eij as a shorthand for p (eij)' 
eijE gl(k+1 ,C) ; in this notation the representations under consi
deration are given by the relations 

En+ 1 · _ -n+ 1 n+ 1 En + l J I 
ij - ai aj + ij 2 ij 

En+1 
n+ 1 ,i 

En+l 
i,n+l 

En+l 
n+1 ,n+l 

-an+1 
i 

n 
a:~+1( L... a:r:+lan+l+ 1!:!..1-i« ) + 

l. j= 1 J j 2 n 

n -n+l n+1 n = - L a . a . - ( - - i« ) I 
j= 1 J J 2 n 

n 
l ;r:+ lEn 
j= 1 J i j 

( 1 Oa) 

(lOb) 

( 1 Oc) 

( lOd) 

Let us express further the corresponding representations of the 
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suba~gebra sl(n+1 ,«:) in terms of the basis (2). We obtain 

( 11 a) = ( 1 Oa) , ( 11 b) = ( 1 Ob) , 

En+1 
i,n+1 

Hn+1 

n i-1 . . n n 
a:n+1 ( L ai?-+1a~+1_ L a:~a~ + I.. a:rar _ L. A ) + 

i j=1 J J k=1 k k r=i+1 i i s=i s 
n -n+l n 

+ L a . Ei. 
Hj=1 J J 

n+1 n+l _ n+l -r r -r r -j+l j+l 

( 11 c) 

j Ej+l,j+l-Ejj - J..+ (aj+laj+l-ajaj)-2aj aj -
. r- J 2 ( 11 d) 
J~ 1 ,-j+1 j+l -j j) L.a a -aa+ 
s=l s s s s ~I 

where 

"j 1«j- itllj-1- 1 j = 1 ,2, ••• ,n ( 12) 

Appearance of these new parameters will be very important in the 
following. To any A = (lt 1,1t2 , •.. ,Anl the formulae (11) define 
a representation of sl(n+1,C) ; we call it maximal representa
!iQn and denote f~n+l) or simply fA if there is no danger of 
misunderstanding. 

. ~(n+1) (n+1) 3. 2 Propos~ tion : The restriction fA of PA to the 
subspace V~+l ~ p~n+l)(UL)x~+l of Vn+l is a representa
tion of L = sl(n+1,C) with the highest weight A and the 
vacuum xg+l as its highest-weight vector. 

~: The relations (11d) and (7) imply ~(hj)x~+l = Ajx~+l , 

. n+l -k k i+1 
J= 1,2, ..• ,n. Further fA<ei) = f11(ei,i+l) = k]i+

2
ai+lai-ai due 

to (11a,b) so that p11<ei)x~+l = 0 , i= 1,2, ... ,n. The restric-
~(n+1) · A 

tion f, is properly defined because f~a) maps Vn+l into 
itself for any ae L . The condition (iii) of Sec.2.3 is fulfi~ 
automatically for pA · • 

Thus we have constructed to any A = <A
1

, ••• ,A ) the h~ 
~(n+l) n 

-weight representation fA of sl(n+1,C) • These representa-
tions are even irreducible as we shall show a little l~ter. 
However, they are not yet suitable for practical use, because we 

do not now the representation space V~ 1 explicitly. In the 
next section we shall find conditions under which v"+ 1 = V +l , 
i.e.' ~~n+l) = r~n+ 1 ) ; they turn out to be irred~cibili~y 
conditions for f,n+ 1) 

I 

• 

4. Irreducibility conditions for y,<~ 

4.1 We shall use the following simple fact: 

Proposition : Every non-trivial invariant subspace v' c V 
1 

~-· 
(n+1) . n+1 n+ 

of f 11 conta~ns the vacuum vector x
0 

Proof : Since V is assumed to be non-trivial it contains at · 
least one non-zero vector xe Vn+l • We can write 

x = L "'m 
m 

mn1 · · · mnn 

m,, 

m = (mn1 '· · · ,mnn'mn-1, 1 '· · · ,mn-1 ,n-1 ,mn~2, 1 ,'. · • ,m11) 

.· 

Let iii = (iiinl, ... ,iii 11 ) be a "highest degree" of this sum under
stood in the following sense 

'!lnL =max fmn1 : «m * .0 J 

mn2 max f m : «- · · f 0 1 
n2 mn1mn2"""m11 (i:) ................................... 

iii11 = max { m11 : 4:- - . f , 0 1. 
mn1" • .m22m11 

The relation (11a) implies 

n+1 n+ 1 -k k i 
Eij .. = ' L.. ata . -a. 

k=i+ 1 J J 
i > j ( 11e) 

Since V is assumed to 
n+1 

be an invariant subspace of .f11 , the vec-
tor Eij y belongs to V for any y t:: V' • Consequently, the 
vector 

X : 1 m m m m m 
(En+) 11(En+1) 22(En+1) 21(En+1) 33 (En+1) n-1,1 

21 32 31 43 · • · n1 

n+1 mnn ' n+1 mn1 
(En+ 1 , n) · · • • (En+ 1 , 1 ) · x 

belongs to v· . The chosen order ensures that the sums from 
(11e) do not contribute. Further (k) together with (7b) imply 
- n+1 
X = CO(mXO 

powers of -1 
n+1 v' x0 E 

where c is some non-zero number (a product of 
and square roots of positive .numbers) ; therefore 

• 
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4. 2 CorollarY : The representation rin+ r) from Proposition 3.2 
is irreducible for any A . 

~ : Any non-trivial invariant subspace V • c V n+ l of p,. is 
in the same time i~variant under fl , thus it contains the vacu-

n+ 1 . 1 _ '-n+ 1 , 2 _ 
um vector xq • It further imp~~es V = f>A(L, ... ~ c V , V = 
: f'A:{L)V1 C V , etc. We obtain therefore p,.CUL)xg I ;: Vn+l C v' 
so that v· = v~ ... , . a 
4.} Let us turn now to the problem mentioned at the end of the 
previous section. We shall prove the following important asser
tion : 

Theorem Let the conditions 

<Aj+A1_ 1 +~·· +Ak +j-k); N0 

be fulfilled for any pair o~ integers j,k 
~ ••••• n. Then the maximal representation 
sl(n+1 ,C} defined· by the formulae ( 11) is 
it has the highest weight A= tA 1, •.. ,A ) 

n+1 n 
-weight vector x0 

( 13} 

• l~k~j=l, 
l"~n+l) of 

irreducible ; 
and the highest-

~ : In view 
cient to verify 
holds. We shall 

of Proposition }.2 and Corollary 4.2 it is suffi

that under. the stated assumptions- V~+t = Vn+l 
do it in few steps 

4.4 We denote first as x~+ 1 the basis vectors (6) with all the 
indices equal to zero with exception of m· 1 : mk . = s cfk Jj ~ , 

n+ 1 n J n ' 
especially x0 is the vacuum vector as before. The following 
statement holds 

l&l!l!!1! : ·rr the conditions (13) are valid for 1 '- k ~ j = n , then 
xn+ 1 for all the subspace· 

s• R0 ~ 

v~ 1 contains the vectors 
8 

~ : Let us introduce the following finite sequences of opera
tors (for convenience written as columns) ~ 

Rt I Rk.+ 1 

n+1 
R1EI ,k+1 

n+1 
R2E2,k+1 

n+1 
RkEk,k+1 

k: 1,2, ..• ,n <*> 

10. 

\ 

.\ 

• 

Let us further take an arbitrary s E N0 and denote 

Yn 
= R xn+1 

n+1 s " 

R En+! n+1 
• ~,n+1XB 

R En+1 n+1 
2 2,n+1xs 

R En+! n+1 
n n,n+txs 

This column has 2n-1 rows. We divide it into two parts with 
2n-2 rows : 

~ 
R En+l- n+1 

l- l 1 ,n+ 1xs 
Yn = : 

R n+1 
n-1En-1,n+1xs 

a-nd introduce 

1 2 
Yn-t = (s- An)Yn- Yn 

and 2 
Yn r 

n+ 1 n+ tl 
RnEn,n+ 1xs ~ 

Further we divide the column y 1 into two parts : y
1 

1 (con-
n-3 n- 2 n-

sisting of the first 2 rows} and y 1 , then we ddine 
1 2 · n-

y 
2
- = (s-It .-A 1 - t)y 1 - y 1 • Continuing this procedure, 

n- n n- n- n-
we put 

Yn-k = (s-An- "-n-1- • • ·- An-k+1- k + 1 )y!-k+l 
2 

Yn-k+1 

for all 1 ~ k' n-1- • Finally we obtain a one-row column, i.e., 
a vector y 1 • We shall prove that the relation 

~ n n+1 
Y..t = 'I/ .. ~ • jC't ( s - ~- fon-t - • •• - f\j - n + j) xs+ 1 (:tt) 

holds. For this purpose we shall use the relations (l1c) together 

with (7a,b). The latter imply 

-k+1 k+1 n+1 r r n+1 
aj aj xs "' sok:noj 1x8 

n+ 1 n+ 1 r::- C' J n+ 1 
• aj . xs =." s "kn jtxs-1 

so that we obtain for Yn the following expression : 

II 

( ... ) 



-n+l n+l R1a 1 (s-"n-· .• -A1 )xs 

-n+ 1 n+ 1 -n+ 1 n n+ 1 
R2a2 (s-An-· .. - ~)xs +R2a1 E21xs 

n 
+R La:n+1En n+l 

1j=2 j ljxs 
n 

+ R L a:n+ 1 En n+ 1 
2j=3 j 2jxs 

-n+l n+l .n-2-n+l n n+l -n+l n n+l 
Rn-lan-1 (s-An-An-1 )xs +Rn-1 I. aj En-1', J.xs +Rn-lan En-1 nxs 

,j= 1 ' 
R a:n+l(s-A )xn+l +R L a:r:+1En.xn+1 

n n n s nj= 1 J nJ s 

Here the ter)Ds containing E~jx~+l , i > j , are equal to zero 
because of (*tt) and the relation 

n n -k k i 
E .. = Z a.a. -a. 

1 J k=i+ 1 1 J J 
i :>' j 

which is obtained in the same way as (11e). Now we substitute 
for Rn from(*), then using further the relations (11a),(8) 
and (*t*) we get 

-n+l n+l n- 1-n+l n n+l -n+l n n+l 
R1a 1 (s-An- •.. -!\1 )xs +R 1 ~2aj E1jxs +R 1an E1nxs 

-n+l . n+l n- 1-n+l n n+l -n+l n n+l R2a 2 (s-A - ... -A2 )x +R 2 L aj E2 .x +R2a E2 x 
n s j=3 J s n n s 

-n+l n+l · 
Rn-1an-1(s-An-An-1)xs +R a:n+1En xn+l 

n-1 n n-1 ,n s 

R a:n+l (s-A ) n+l 
1 1 n xs +(s-A )R a:n+1En n+l 

n 1 n lnxs 

-n+l n+l 
Rn-1an-1(s-An)xs 

-n+l n n+ 1 
+(s-An)Rn-lan En-l,nxs 

Subtracting the lower half of this column from the upper one mul
tiplied by (s-An) we obtain the following expression for Yn_1 : 

n-1 · 
-n+ 1 1 ) ( 1 1 ) n+ 1 ( 1 ) , -n+ 1 n n+ 1 R1a 1 (s-n s-•• - ... -n1-1 x +R 1 s- 11 L.a . E1 .x 

n n s n j= 2 J J s 

-n+1 n+1 n- 1-n+1 n n+1 
R2a 2 (s-An)(s-An-· •. -A2-1 )xs +R2(s-An) f:. aj E2 jxs 

• J=3 

-n+ 1 1 ) ( • • ) n+ 1 Rn-1an-1(s-"n s-nn-'~-1-1 xs 

In the next step we substitute for Rn_ 1 from (*), then we use 
again the relations (11a),(8) and (*tt) and subtract the lower 
half from the upper one multiplied by (s-An-An_ 1 l 

12 
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Yn-2 (s-t\n)(s-An-An-l-1) x 

-n+ 1 n+ 1 n-2-n+ 1 n n+ 1 
R1a 1 (s-An-· .-A1-2)xs +R 1 I. aj E1 .x 

j=2 J s 
-n+1 n+l n-2-n+l n n+l R2a 2 (s-An- .. - A2-2 )xs +R2 L. a. E2 .x 

j=3 J J s 
X 

-n+l n+l 
Rn-2an-2(s-An-An-1-An-2-2 )xs 

Repeating this procedure we obtain finally 

n -n+1 n+l n (s-A - fl ,- ••• -fl. -n+j)a, X 
j=l n n- J s yl 

i.e., the formula (t*). The presented construction shows that 
there exists an element p€UL such that 

fA(p)xn+l 
s 

n n+1 .{B+1 n < s - A - ••. - AJ. - n + j) xs+ 1 j=1 n 

This vector is 
belongs to the 

n+l 

non-zero due to the assumption, thus if xn+ 1 
A n+l s subspace 

n+l . Since x0 

V n+ 1 = ~A ( UL )x0 then the same is true 
is contained in V~+l , the proof is for xs+l 

completed by induction. • II 4. 5 Now we can continue the proof of Theorem 4. 3. Since Vn+ 1 C 

c Vn+ 1 , we have to prove the opposite inclusion ; it is clearly 
sufficient to verify that all the basis vectors (6) of Vn+ 1 are 
contained in V~+ 1 • We decompose Vn+l in the following way 
let Dn+ 1 be the set of all symbols 1 = (l 1, ••• ,ln) , liE N0 
and Ln+ 1 be the complex vector space spanned by Dn+ 1 • Then 
we can write 

vn+1 = 1 n+1 3 vn 

where 

xn+1 
0 

n 
lo*xo (14) 

mn-1 •• m 
(11, ... ,ln) s , .... :~.. n-1,n-1 

1
1 • • • • • • • • • • 1n-1 1n 

£ lmn-1,1 •• mn-1,n-1 

m11 m11 

and 10 E (0, •.. ,0) • We shall prove first 

n A 
Ln+1 a xo c vn+l ( 15) 

Let us take 1 = (1 1, ... ,lk,O, ... ,O), 1' k~n-1. Using (11e) 
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we get 

n+1 r n ( l k )
1
/

2 
n (Ek+ 1, k ) (l® x0 ) = r r !((l1 , •.. , lk_1, lk-r ,r, O, •• , O) @x0 ) 

. n+1 ) n 
Accord~ng to Lemma 4 . 4 the vectors xs = ( s , 0 , .. , 0 ® x0 belong 
to Vn~ 1 , so acting on them by powers of E~::,k we stay within 
y h 

1 
. Starting with s large eno ugh we can obta i n in t hi s way n+ 

every basis vector of Ln+ 1 ® x~ , thus the relation ( 15 ) holds . 

4 . 6 Furt her we shall show that V 11+ 1 contains L 1 ® xn for n n+ r 
an y r £ N

0 
. We know that this i s true fo r r = 0 , let us assume 

the same for r = 1, . . . ,s • The proof is analogous to that of 
Lemma 4 . 4 : .we start wi t h an a r bitrar y x = 1 .® xn and denote s s . 
Yn-1 = 
define 

R x . Then we div id e this column i nto t wo pa r ts y~ 1 and 
!;S ( •)- 1 "' 2 c t · · t h d n- .th Yn_2 = s -nn Yn_ 1 -yn_1 . on ~nu~ng e pr oce ur e wl. 

~1 -2 
Yn- k ( s -lln-1 - · · · -An- k+ 1-k+ 2 )y n-k+ 1 - y n- k+ 1 

we a r rive f i nally to t he vec t or y 1 . According to the construc

tion it belongs t o V~+ 1 ; we sha l l prove 
. n-1 

Y1 ='{S+i n (s -A 1- •. . -A .- n+j -1 )(l ® xn 1)+ x' (:t) 
j= 1 n- J s+ s 

where x~ is some vedor from Ln+ 1 ® x~ . We wr ite y n- 1 using ( 11 a ), 
then we express E~j- with t he help of relations (1 1c) and (7 ) 
obtaining thus for Yn_ 1 : 

-n -R1a 1 (s-ll n_ 1- ... - A1 )xs 
n-1 

+R L aZ:.En~ 1 x +an+ 1an+ 1x 
1 j= 2 J 1 J s 1 n s 

-n - - n n-1- n- 1- n n- 1,... - n+ 1 r.+1-
R2a2cs-An_1- . .. - A2 )x +R2a 1E21 xs+R 2 L. a .E2 . xs+a 2 an xs 

: s j•3 J J 

-n - n- 2- n n-1 -
Rn_ 1an_ 1cs-An_ 1)xs+Rn_1j{

1
ajEn_ 1 ,jxs 

- n+1 n+ 1-
+an-1an xs 

Now we can proceed further in the same way as in the pr oof of 
· -n+ 1 n+ l- n Lemma 4.4. The added vectors aj an xs belong to Ln+ 1® xs , 

thus the same holds for any linear combination of them . Final l y 
we obt a in 

n- 1 
-n- -· n (s -A 1- . . . - A.- n+ j - 1 )a 1x + X 

j• 1 n- J s s 
~ 

y1 

xs 
n-1 n (s-A 

1
- •• . -A - k+ 2 )a:n+1an+1-

k=2 n- n-k+1 1 1 xs 

14 . 

• 

n-1 n- j -n+ 1 n+ 1,.., 
_l: n (s-A 1- •• ·-"n-k+1-k+2)a . a X 
J=2 k= 2 n- J n s 

it proves the relation (:t). The induction assumption implies 
-· A - -· A xsE Vn+ 1 , then a l so the v ector y 1 -xs belongs t.o Vn+ 1 . The 
conditions (13) are assumed to be valid for j• 1, • •• ,n, especi
ally for j = n-1 , thus y1 - x' is a non-zero multiple of x 1 S S+ 
whi ch belongs therefore to v~+1 

Further we decompose Vn+ 1 i nto the tensor product Vn+ 1 = 
Ln+ 1 ®Ln®Vn_ 1 in the analogy with (14). Let us take some k= 
1, •.• ,n-2 and natural r and assume the vectors x(m,l(k,s)): 

: mel(k,s)sx~- 1 to belong to V~+ 1 for any m~< Ln+ 1 , l(k,s)): 
= (1 1, ••. ,lk,s,O, ••• ,O), li arbitrary elements of N

0 
and s:o: 

0,1, •.• ,r-1. The relations (7) and (11e) imply 

n+ 1 r r ( lllJt )1/2(mk+ 1+r-j)1/2(lk) 1/ 2 
(Ek+ 1 ,k> x(m,l(k,O)) = {;or! r-j r-j j (m 1 , •• 

•• ,mk-r,mk+ 1+r, •• ,mr) S (11 , •. ,lk-j, j ,0, •• ,0) ® x~- 1 

thus by induction v"+ 1 contains the vectors x(m,l(k,r)) for 
n II 

all re N0 , i.e., if Vn+ 1 contains the vectors x(m,l(k,O)) 
with arbitrary 1 ( k, 0) and me Ln+ 1 , then the same is true for 
x(m,l(k+1,0)) • According to 4.6 the vectors x(m,l(1,0)) belong 
to v 11+1 so applying once more the induction argument we obtain 

n ~1 II 
x(m,l(n-1,0)) = x(m,l) = m®l®x0 € Vn+ 1 for any meLn+ 1 and 
le L n 
4.8 Now one has to repeat the considerations of Secs.4.6, 4.7 
in order to "fill up" the third row. Continuing this procedure 
we arrive to the relation 

n A 

vn+1 = k~1 Lk+1 c vn+1 

which represents the desired result. • 
5. Discussion 

5.1 Let us assume all the components of the highest weight to be 
real, then coefficients of all polynomials used in the performed 
proofs are also real. It means that in this case the results ob
tained in the previous sections for sl(n+1,C) apply to the real 
form sl(n+1,R) as well. 
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5.2 The finite-dimensional irreducible representations of 
sl(n+1 ,C) may be described completely in the framework of 
Gel'fand-Zetlin patterns (see Ref.18, sec.10.1). There exists a 
generalization of this method (Ref.18, sec.11.8, see also Ref.1, 
sec.2) which makes it possible to construct also some infinite
-dimensional highest-weight representations. In the case of 
sl(3,C) , for example, one has to replace the Gel'fand-Zetlin 

patterns 

(

m, 3 m23 m33) 
m12 m22 

m11 

by 
( 

m13 m23 m33) 
m, 2 m22 

m11 

with m 12 ~m 13+1 , m 13 ~m22 ~m23 , m 12 ~ m 11 ~ m22 . Action of the 
standard Gel'fand-Zetlin formulae on these patterns defines an 
infinite-dimensional highest-weight representation of sl(3,C) 
(determined by m13 ,m23 ,m33 l. However, one can obtain in this way 

only representations with (possibly negative) integer components 
of the highest weight ; they correspond only to a small subset 
of the representations which we have studied here. 

5.3 We have to compare our results first of all to the elementa
ry representations introduced in Sec.2.6, because the latter are 

defined also for each weight A on H 

(a) every d11 is the highest-weight representation ; for our ma
ximal representations this is true if the conditions (13) are sa
tisfied, otherwise we obtain the highest-weight representation 
~ by restriction of p11 to the subspace V~+ 1 • On the other 
hand, the highest weight representations which we obtain are al
ways irreducible. This difference is due to different incomplete 

reducibility of dA and f~ : symbolically 

( 
d4 

d" = :t :;) fA = ( fA :t.) 
0 fA 

where dA and fA are the irreducible components of 
respectively, and the star stands for non-zero blocks. 

dll and p.._ • 

(b) Action of the operators p~hi) , p4<eij) on an arbitrary vec
tor of Vn+ 1 is obtained from the formulae (7) and (11). Especi
ally, they allow us to calculate easily matrix elements of the 
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generators. This is not true for the elementary representations 
for wh~ch the choice of a basis in the representation space is 
itself complicated. According to our opinion, this fact represarts 
the main advantage of the maximal representations. We pay, of 
course, a price for it : the formulae (4) defining elementary 
representations are common for all the complex semisimple Lie al

gebras, while ours refer to the algebras An only. There exists, 
however, a hope of performing an analogous construction for the 
remaining classical semisimple Lie algebras. 

(c)In the subsequent paperl6/ we shall illustrate the irreducibi
lity conditions on the example of sl(3,C) • We shall prove that 
the conditions (13) are in this case necessary and sufficient 
for irreducibility of the maximal as well as the elementary re~ 
sentations. Further we shall show that starting from the canoniml 
realizations (5) one can construct irreducible highest-weight 
representations also for some of the weights such that the corres
ponding elementary representations are reducible. 
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