

ОбъеДИНЕННы ИНСТИТУТ Ядерных исследований
 дубна

Č. Burdík*, P. Exner, M. Havlícek*

HIGHEST-WEIGHT REPRESENTATIONS
 OF THE elan + 1,C) ALGEBRAS:
 MAXIMAL REPRESENTATIONS

Submitted to "Journal of Physics, A"

[^0]
1. Introduction

1.1 There are essentially two reasons which make the highest--weight representations of semisimple Lie algebras interesting. The first of them concerns their applications in quantum mechanics and elementary particle physics reviewed, e.g., in the introduction of Ref.1. On the other hand, mathematically they are a generalization of the finite-dimensional irreducible representations conserving some of their properties.
1.2 The finite-dimensional irreducible representations with a highest weight 1 of a complex semisimple Lie algebra L are characterized by the condition that $\Lambda_{1}=2\left(\Lambda, \omega_{1}\right) /\left(\omega_{1}, \omega_{1}\right), 1=1$, $2, \ldots, n$, are equal to non-negative integers (Refs. 2,3); here ω_{1} and n are positive simple roots and rank of L, reapectively. Properties of these representations are well-known/2-4/. The representations with ω_{1} arbitrary integers may be infinite--dimensional but remain integrable ; this case was studied by Harieh-Chandra/5/.

The mentioned representations form, of course, only a small part among all the highest-weight representations of given L. Many results concerning the general case (with no restrictions on Λ) can be deduced from the theory of Verma modules $/ 4 /$; an extensive treatment of this problem was presented by Gruber and Klimy $/ 1 /$. In their paper the so-balled elementary representations were introduced and studied (cf.Sec. 2.6 below ; essentisily the same construction was used also by other authors for investigation of the highest-weight representations). The elementary representations are ex definitio representations with a highest weight ; generally they need not be irreducible, however, they are irreducible for a "great" subset in the set of all weights. Since there is a one-to-one correspondence between the weights Λ and the irreducible highest-weight representations (cf. Theorem 2.4(b)), it might seem that no other highest-weight

representations are needed, at least for those Λ for which the elementary representations are irreducible. However, representation spaces of the elementery representations are certain factor spaces (cf.Sec. 2.6 below). It makes their use extremely difficult even in the case of the lowest-dimensional algebras and represents itself a great practical disadvantage. This is why we suppose a search for other irreducible highest-weight representations to be meaningfull.
1.3 In this paper we shall give another set of irreducible highest-weight representations of $s l(n+1, C)$. A major part of them will be obtained in an explicit form in which matrix elemente of generators can be easily calculated. In the subsequent paper $/ 6 /$ we shall illustrate on example $s l(3, C) \sim A_{2}$ that such explicit representations are given for all the weights Λ to which the irreducible elementery representations correspond. Moreover, we shall demonstrate that our method makes it possible to construct irreducible highest-weight representations also for some of the weights Λ such that the corresponding elementary representations are reducible.
1.4 The construction presented in the following sections is based on canonical realizations of $\operatorname{si}(n+1, C)$. Wide sets of these realizations are known for all the complex classical Lie slgebras as well as for majority of their real forms $/ 7-15 /$; a review of the subject was given in Ref. 7 . We treat here the algebras $s l(n+1, C)$ $\sim A_{n}$ as the simplest case ; in view of many common features of the mentioned realizations we believe that the method used below could be applicable also to other aemisimple Lie algebras.

2. Preliminaries

2.1 The algebra $g 1(n+1, c)$ is the $(n+1)^{2}$-dimensional complex Lie algebra with the standard basis $\left\{e_{i j}: 1, j=1,2, \ldots, n+1\right\}$ the elements of which obey

$$
\begin{equation*}
\left[e_{i j}, e_{k l}\right]=\delta_{k j} e_{i 1}-\delta_{i 1} e_{k j} \tag{1}
\end{equation*}
$$

This algebra is a direct sum of its one-dimensional centrum (generated by the element $e=\sum_{i=1}^{n+1} e_{1 i}$) and the simple subalgebra $s_{1}(n+1, C) \sim A_{n}$ whose generators are $e_{i j}, i \neq j$ and $a_{1}=e_{i 1}-\frac{1}{n} e$, $1=1,2, \ldots, n$.
2.2 The standard Cartan subalgebra H in $L=s l(n+1, C)$ is generated by the "diagonal" elements a_{i}; its dimension, i.e., rank of L equals n . We choose the following Cartan-lleyl basis

$$
\begin{align*}
& h_{i}=a_{i+1}-a_{i}=e_{i+1, i+1}-e_{i i}, 1=1,2, \ldots, n, \tag{2a}\\
& e_{i}=e_{i+1, i}, i=1,2, \ldots, n, \tag{2b}\\
& f_{i}=e_{-i}=e_{i, i+1}, 1=1,2, \ldots, n, \tag{2c}\\
& e_{i j}, i>j+1, \tag{2d}\\
& e_{i j}, i<j-1, \tag{2e}
\end{align*}
$$

The relations (1) imply that (2b-e) are the root vectors corresponding to the roots $\alpha_{1 j}: \alpha_{1 j}\left(\sum_{k=1}^{n} \lambda_{k} h_{k}\right)=\Lambda_{1}-\jmath$. Among these roots $\omega_{1} \equiv \alpha_{i+1, i}$ and $\omega_{-1}=\alpha_{i, 1+1}$ are simple, further $\alpha_{i j}$, i>j, are positive. Following Ref. 3 we call the elements ($2 a-c$) canonical generators of L. They fulfil the relations

$$
\begin{align*}
& {\left[h_{i}, h_{j}\right]=0,} \tag{3~B}\\
& {\left[e_{i}, f_{j}\right]=\delta_{i j} h_{i},} \tag{3b}\\
& {\left[h_{1}, e_{j}\right]=c_{i j} e_{j}, \quad\left[h_{i}, f_{j}\right]=-c_{i j} f_{j},} \tag{3c}
\end{align*}
$$

where $c_{i j}$ are the Cartan numbers, $c_{i j}=2,-1,0$ for $1=f$, $|i-j|=1$ and $|i-j|>1$, reapectively. Hotice that the cartan--Weyl basis (2) differs from the standard one $/ 3,16 /$; they are connected by the automorphism generated by $e_{ \pm 1} \rightarrow e_{\mp 1}, h_{1} \rightarrow-h_{1}$. We choose the basis (2) because it is suitable for our construction.
2.3 The universal enveloping algebra of L will be denoted conventionally as UL Let ρ be a reprasentation of L on a vector space V, by the same symbol we denote also the natural extension of p to UL. A representation $p: I \rightarrow \mathcal{L}(V)$ is called representation with a higheat weight $A=\left(A_{1}, \ldots, A_{n}\right)$ if there exists a vector $X_{0} \in V$ (called highest-welght vector) such that the following three conditions are fulfilled :
(1) the linear form A on $H, ~ \Lambda\left(h_{i}\right)=\Lambda_{1}$, is a weight of p : it holds $p(h) x_{0}=\Lambda(h) x_{0}$ for all $h \in H$, or equivalently $p\left(h_{1}\right) x_{0}=A_{1} x_{0}, i=1,2, \ldots, n$,
(ii) $p\left(e_{1}\right) x_{0}=0, i=1,2, \ldots, n$,
(iii) the vector x_{0} is cyclic for p, i.e., $p(U L) x_{0} \equiv$
$=\left\{p(a) x_{0}: a \in U L\right\}=V$.
Since a system of canonical generators exists in any semisimple Lie algebra, this definition applies not only to $L=s l(n+1, \mathbb{c})$ but to the other semisimple algebras as well. The lowest-weight representations are defined in the same way, the only change consists of replacement of $p\left(e_{i}\right)$ by $p\left(f_{i}\right)$ in (ii). Some important properties of the highest-weight representations are summed in the following assertions $/ 1-3,17 /$:
2.4 Theorem : Let L be a complex semisimple Lie algebra and $\rho: L \rightarrow \mathcal{C}(V)$ its representation with a highest welght \wedge. Then (a) the space V decomposes into a direct sum of fini-te-dimensional weight subspaces $V_{M}=\{x \in V: p(h) x=M(h) x$ for all $h \in H\}$, the subspace V_{A} being one-dimensional. Every weight M of ρ is of the form $M=\Lambda-\sum_{i=1}^{n} \mathbb{k}_{1} \omega_{i}$, where ω_{1} are the positive simple roots of L and k_{i} are non-negative integers.
(b) To each linear form \wedge on the Cartan subalgebra H of L there exista, up to equivalence, one and only one irreducible representation ρ of L with Λ as the highest weight.
2.5 Theorem : Let the assumptions of the previous theorem be valid. The representation P is finite-dimensional iff $\Lambda_{i}=$ $=\Lambda\left(h_{1}\right), i=1,2, \ldots, n$, are non-negative integers.
2.6 Now we shall define the elementary representations of L . The algebra L decomposes into a direct sum $L_{0}=I_{+}+H+I_{-}$ where $L_{\text {_ }}$ is the subalgebra generated by the elements f_{i} (cf. (2c) ; notice that each of the elements (2e) can be obtained from $f_{1}, f_{2}, \ldots, f_{n}$ by Lie products). The universal enveloping algebra UL_ of $I_{\text {_ }}$ serves as a representation space. It can be identified with the free algebra of monomials
$1, f_{1_{1}} f_{1_{2}} \ldots f_{1_{m}}, 1_{k}=1,2, \ldots, n, m=1,2, \ldots$
factorized by the ideal generated by the following elements :

$$
\left[\ldots\left[\left[f_{i_{1}}, f_{i_{2}}\right], p_{i_{3}}\right], \ldots r_{i_{\text {m }}}\right] \quad, \quad m=2,3, \ldots,
$$

for those $\left(1_{1}, 1_{2}, \ldots, 1_{m}\right)$ for which the sum of positive simple roots $\sum_{k=1}^{m} \omega_{1_{k}}$ is a root.

The elementary representation d_{A} corresponding to a linear form Λ on H is defined by the following relations i)

$$
\begin{align*}
& d_{A}(h) 1=A(h) 1, d_{A}\left(f_{i}\right) 1=f_{i}, d_{A}\left(e_{i}\right) 1=0, \tag{4a}\\
& d_{A}(h) f_{i_{1}} \ldots f_{1_{m}}=\left(\Lambda-\omega_{i_{1}}, \ldots-\omega_{i_{n}}\right)(h) f_{1_{1}} \ldots \dot{1}_{i_{m}} \text {, } \tag{4b}\\
& d_{A}\left(f_{1}\right) f_{1_{1}} \ldots f_{i_{m}}=f_{i_{1}} f_{1_{1}} \ldots f_{i_{m}}, \tag{4c}\\
& d_{A}\left(e_{i}\right) f_{i_{1}} \ldots f_{i_{m}}=f_{i_{1}}\left(d_{A}\left(e_{i}\right) f_{i_{2}} \ldots 1_{i_{m}}\right)+ \tag{4d}\\
& +\delta_{1 i_{1}}\left(\Lambda-\omega_{i_{2}}-\ldots-\omega_{i_{1}}\right)\left(h_{i}\right) p_{i_{2}} \ldots 1_{i_{1}} \text {; }
\end{align*}
$$

here ω_{i} are again the positive simple roots of L. The representation d_{A} is clearly a representation with the highest weight 1 ; generally it is reducible but not completely reducible. Necessary and sufficient conditions for irreducibility of d_{A} can be found which employ action of the Weyl group w of L on the highest weight Λ (cf. theorems 5,6 of Ref.l).
2.7 The last introductory item concerns the canonical realizations which are the basic tool of our construction. The (complex) Weyl algebra $W_{2 N}$ is the associative algebra with unity 1 generated by the elements $q_{i}, p_{j}, i, j=1,2, \ldots, N$ which obey the standard CCR :

$$
\left[p_{i}, p_{j}\right]=\left[q_{i}, q_{j}\right]=0 \quad\left[p_{i}, q_{j}\right]=\delta_{i j} 1
$$

Canonical realization of a Lie algebra L is a homomorphiam $L \rightarrow \mathbb{N}_{2 N}$; it extends neturally to tre homomorphiam UL $\rightarrow \nabla_{2 N}$. In the following we shall deal with simple algebras ; in this case any non-trivial realization is injective. Further notions concerning canonical realizations are given in Refs.7-15.

We shall use the canonical realizations of $g(n+1, c)$ con-
*) The sign of the second term in (4d) differs Prom that of Ref.l due to other choice of the canonical generators.
structed in Ref. 9 . They are obtained recursively with the help of n canonical pairs, one complex parameter and a realization of $\mathrm{gl}(\mathrm{n}, \mathrm{c})$. The latter can be chosen in different ways : canonical realization of the same type, matrix representation or trivial realization ; in the first case the same possibilities appear after the next step in the choice of realization of $\mathrm{gl}(\mathrm{n}-\mathrm{f}, \mathrm{c})$, etc. In what follows we employ mostly the first possibility when the reduction is performed to the end with canonical realizations of the same type ${ }^{(k)}$) The realization of $e_{i j}$ of $g 1(k+1, C)$ will be denoted as $\tau^{(k+1)}\left(e_{i j}\right)$. It is convenient to numerate the canonical pairs in these realizations by two indices: q_{i}^{k+1}, p_{j}^{k+1}, $1, j=1,2, \ldots, k, k=2,3, \ldots$, then the following assertion is valtd:
2.8 Proposition : To any complex numbers $\alpha_{0}, \alpha_{1}, \ldots, \alpha_{n}$ there exists the reelization of $\mathrm{gl}(\mathrm{n}+1, \mathrm{c})$ in $\mathrm{W}_{2 \mathrm{~N}}, \mathrm{~N}=(\mathrm{n}+1)(\mathrm{n}+2) / 2$, given recursively by the formulae

$$
\begin{align*}
& \varepsilon^{(n+1)}\left(e_{i j}\right)=q_{i}^{n+1} p_{j}^{n+1}+q^{(n)}\left(e_{i j}\right)+\frac{1}{2} \delta_{i j} 1, \tag{5a}\\
& \tau^{(n+1)}\left(e_{n+1,1}\right)=-p_{i}^{n+1}, \tag{5b}\\
& \tau^{(n+1)}\left(e_{i, n+1}\right)= q_{i}^{n+1}\left(\sum_{j=1}^{n} q_{j}^{n+1} p_{j}^{n+1}+\frac{n+1}{2}-i \alpha_{n}\right)+ \tag{5c}\\
&+\sum_{j=1}^{n} q_{j}^{n+1} \tau^{(n)}\left(e_{i j}\right), \\
& \tau^{(n+1)}\left(e_{n+1, n+1}\right)=-\sum_{j=1}^{n} q_{j}^{n+1} p_{j}^{n+1}-\left(\frac{n}{2}-i \alpha_{n}\right) 1, \tag{5d}\\
& i, j=1,2, \ldots, n, \text { where } \tau^{(1)}\left(e_{i 1}\right)=1 \alpha_{0} .
\end{align*}
$$

3. Raximal representations of sl(n+1.C)
3.1 Let B_{n+1} denote the set of ell symbols (triangular matrioes)
where y_{0} is the set of all non-negative integers. These symbols
t) The possibility of asing matrix representations of some subalgebra will be employed in the subsequent paper (Ref.6).
will denote the basis vectors and the complex linear envelope $V_{n+1}=\mathbb{C}\left\{B_{n+1}\right\}$ will serve as the representation space. The vector $x_{0}^{n+1}=\left|\begin{array}{l}0 \\ 0 . \therefore:-0\end{array}\right|$ is called vacuum. We define the creation and annihilation operators $\bar{a}_{j}^{k+1}, a_{j}^{k+1}, j=1,2, \ldots, k, k=1,2, \ldots, n$ on ∇_{n+1} in the standard way :

They obviously obey the canonical commatation relations

$$
\begin{equation*}
\left[\bar{a}_{i}^{\mathrm{k}}, \bar{a}_{j}^{1}\right]=\left[\mathrm{a}_{1}^{\mathrm{k}}, \mathrm{a}_{j}^{1}\right]=0, \quad\left[\mathrm{a}_{1}^{\mathrm{k}}, \bar{a}_{j}^{\mathrm{l}}\right]=\delta_{1 j} \delta_{k \leq 1} I ; \tag{8}
\end{equation*}
$$

the same is true for the operators

$$
\begin{equation*}
Q_{j}^{k}(\beta)=\bar{a}_{j}^{k} \cos \beta+a_{j}^{k} \sin \beta \quad, P_{j}^{k}(\beta)=-\bar{a}_{j}^{k} \sin \beta+a_{j}^{k} \cos \beta \tag{9}
\end{equation*}
$$

Substituting now $Q_{j}^{k}(\beta), P_{j}^{k}(\beta)$ into the formulae (5) for q_{j}^{k}, p_{j}^{k}, we obtain a representation of $g l(n+1, c)$ on V_{n+1} which depends on the parameters $\alpha_{0}, \alpha_{1}, \ldots, \alpha_{n}$ and β. In the following we shall deal mostly with the case $\beta=0$. The representation of gl($k+1, c)$ obtained in this way will be denoted as $\rho^{(k+1)}, k=1$, $2, \ldots, n$. We shall use also $E_{i j}^{k+1}$ as a sharthand for $p^{(k+1)}\left(e_{i j}\right)$, $e_{i j} \in \operatorname{El}(k+1, \mathbb{C})$; in this notation the representations under consideration are given by the relations

$$
\begin{align*}
& E_{i j}^{n+1}=\bar{a}_{i}^{n+1} a_{j}^{n+1}+\varepsilon_{i j}^{n}+\frac{1}{2} \delta_{i j} I, \tag{10a}\\
& E_{n+1, i}^{n+1}=-a_{i}^{n+1}, \tag{10b}\\
& E_{i, n+1}^{n+1}=\bar{a}_{i}^{n+1}\left(\sum_{j=1}^{n} \bar{a}_{j}^{n+1} a_{j}^{n+1}+\frac{n+1}{2}-i \alpha_{n}\right)+\sum_{j=1}^{n} \bar{a}_{j}^{n+1} E_{i j}^{n}, \tag{10c}\\
& E_{n+1, n+1}^{n+1}=-\sum_{j=1}^{n} \bar{a}_{j}^{n+1} a_{j}^{n+1}-\left(\frac{n}{2}-i \alpha_{n}\right) I \quad . \tag{100}
\end{align*}
$$

Let us express further the corresponding representations of the
subalgebra $s l(n+1, c)$ in terms of the basis (2). We obtain

$$
\begin{align*}
& (11 a)=(10 a),(11 b)=(10 b), \\
& E_{i, n+1}^{n+1}=\bar{a}_{1}^{n+1}\left(\sum_{j=1}^{n} \bar{a}_{j}^{n+1} a_{j}^{n+1}-\sum_{k=1}^{i=1}-a_{k}^{1} a_{k}^{1}+\sum_{r=1+1}^{n} \bar{a}_{1}^{r} a_{1}^{r}-\sum_{s=1}^{n} A_{s}\right)+ \tag{11c}\\
& +\sum_{i=j=1}^{n} \bar{a}_{j}^{n+1} E_{i j}^{n} \text {, } \\
& B_{j}^{n+1}=E_{j+1, j+1}^{n+1}-E_{j j}^{n+1}=\sum_{r=j+2}^{n+1}\left(\bar{a}_{j+1}^{r} a_{j+1}^{r}-\bar{a}_{j}^{r} a_{j}^{r}\right)-2 \bar{a}_{j}^{j+1} a_{j}^{j+1}- \\
& -\sum_{s=1}^{j-1}\left(a_{B}^{j+1} a_{s}^{j+1}-\bar{a}_{B}^{j} a_{s}^{j}\right)+\Lambda_{j} I \quad, \tag{11d}
\end{align*}
$$

where

$$
\begin{equation*}
A_{j}=1 \alpha_{j}-1 \alpha_{j-1}-1 \quad, \quad j=1,2, \ldots, n \tag{12}
\end{equation*}
$$

Appearance of these new parameters will be very important in the following. To any $A=\left(\Lambda_{1}, \Lambda_{2}, \ldots, A_{n}\right)$ the formulae (11) define a representation of $s l(n+1, C)$; we call it maximal representation and denote $\rho_{A}^{(n+1)}$ or simply p_{A} if there is no danger of miaunderstanding.
3.2 Proposition: The restriction $\tilde{p}_{i}^{(n+1)}$ of $\rho^{(n+1)}$ to the subspace $V_{n+1}^{n} \geq P_{i}^{(n+1)}(U L) x_{0}^{n+1}$ of V_{n+1} is a representation of $L=s l(n+1, C)$ with the highest weight A and the vacuum x_{0}^{n+1} as its highest-weight vector.
Proof : The relations (11d) and (7) imply $\rho_{A}\left(h_{j}\right) x_{0}^{n+1}=1_{j} x_{0}^{n+1}$, $j=1,2, \ldots, n$. Purther $p_{A}\left(e_{i}\right)=p_{A}\left(e_{1,1+1}\right)=\sum_{k=1+2}^{n+1} a_{i+1}^{k} a_{i}^{k}-a_{1}^{1+1}$ due to ($11 a, b$) so that $p_{A}\left(e_{i}\right) x_{0}^{n+1}=0,1=1,2 \ldots, n$. The restriction $\tilde{p}_{A}^{(n+1)}$ is properly definad because $p_{A}^{(a)}$ maps V_{n+1}^{A} into itself for any $a \in L$. The condition (iii) of Sec. 2.318 fulfilled automatically for \tilde{P}_{A}.

Thus we have constructed to any $\hat{\sim}=\left(\Lambda_{1}, \ldots, \Lambda_{n}\right)$ the higheat--weight representation $\tilde{p}_{A}^{(n+1)}$ of $s l(n+1, C)$. These representations are even irreducible as we shall show a little leter.
However, they are not yet suitable for practical use, because we do not now the representation space ∇_{n+1}^{\wedge} explicitly. In the next section we ahall find conditions under which $V_{n+1}^{A}=V_{n+1}$, i.e., $p_{a}^{(n+1)}=p_{(n+1)}^{(n+1)}$; they turn out to be irreducibility conditions for $p_{\hat{a}}^{(\hat{n}+1)}$

4. Irreducibility conditions for $p_{n}^{(n+1)}$

4.1 We shall use the following simple fact:
$\frac{\text { Froposition : Every noñ-trivial invariant subspace } V^{\circ} \subset V_{n+1}}{\text { of } \rho_{A}^{(n+1)} \text { contains the vacuum vector } x_{0}^{n+1}}$
Proof : Since V^{\prime} is assumed to be non-trivial it contains at least one non-zero vector $x \in V_{n+1}$. We can write

$$
\begin{aligned}
& x=\sum_{m} \alpha_{m}\left|\begin{array}{lll}
m_{n 1} & \cdots & m_{n n} \\
\ldots & \ldots & \cdots \\
m_{11}
\end{array}\right| \\
& m=\left(m_{n 1}, \ldots, m_{n n}, m_{n-1,1}, \ldots, m_{n-1, n-1}, m_{n-2,1}, \ldots, m_{11}\right)
\end{aligned}
$$

Let $\bar{m}=\left(\bar{m}_{n}, \ldots, \bar{m}_{11}\right)$ be a "highest degree" of this sum understood in the following sense

$$
\begin{align*}
& \bar{m}_{n 1}=\max \left\{m_{n 1}: \alpha_{m} \neq 0\right\} \ldots, \\
& \bar{m}_{n 2}=\max \left\{m_{n 2}: \alpha \bar{m}_{n 1} \ldots m_{n 2} \ldots m_{11} \neq 0\right\} \\
& \ldots \ldots_{1}, \\
& \bar{m}_{11}=\max \left\{m_{1,1}: \alpha_{m_{n 1}} \ldots m_{22} \not m_{11} \neq 0\right\} .
\end{align*}
$$

The relation (1/a) implies

$$
\begin{equation*}
E_{1 j}^{n+1}=\sum_{k=i+1}^{n+i}-a_{1} a_{j}^{k}-a_{j}^{1}, 1>j \ldots \tag{11e}
\end{equation*}
$$

Since $V^{\text {© }}$ is assumed to be an invariant subspace of ρ_{n}, the vector $E_{1 j}^{n+1} y$ belongs to V^{\prime} for any $y \in V^{\circ}$. Consequently, the vector ${ }^{1 j}$

$$
\begin{aligned}
& \bar{x}=\left(E_{21}^{n+1}\right)^{\bar{m}_{11}}\left(E_{32}^{n+1}\right)^{\bar{m}_{22}}\left(E_{31}^{n+1}\right)^{\bar{m}_{21}}\left(E_{43}^{n+1}\right)^{\bar{m}_{33}} \ldots\left(E_{n 1}^{n+1}\right)^{\bar{m}_{n-1}}{ }^{\prime} \\
&\left(E_{n+1, n}^{n+1}\right)^{n n} \ldots\left(E_{n+1,1}^{n+1}\right)^{\bar{m}_{n 1}} \ldots
\end{aligned}
$$

belongs to V^{\prime}. The chosen order ensures that the sums from (ile) do not contribute. Purther ($($) together with (7b) imply $\bar{x}=c a_{m} \bar{x}_{0}^{n+1}$, where c is some non-zero number (a product of powers of -1 and square roots of positive numbers) ; therefore $x_{0}^{n+1} \in V^{\prime}$.

4．2 Corollary：The representation $\tilde{\mathrm{P}}_{\mathrm{k}}^{(\mathrm{n}+1)}$ from Proposition 3.2 Is irreducible for any A ．
Broof：Any non－trivial invariant subspace $V^{\circ} C \quad V_{n+1}$ of \tilde{P}_{A} ts in the same time invariant under P_{A} ，thus it contains the vacu－ um vector x_{0}^{n+1} ．It further implies $v^{7} \equiv p_{n}(L) x_{0}^{n+1} \subset v^{\prime}, v^{2} \equiv$
 sa that $V^{\prime}=\nabla_{n+1}$ ．
4． 3 Let us turin now to the problem mentioned at the end of the previous section．We shall prove the following important asser－ tion：
Theorem：Let the conditions

$$
\begin{equation*}
\left(A_{j}+A_{j-1}+\ldots+A_{k}+j-k\right) \neq H_{0} \tag{13}
\end{equation*}
$$

be fulfilled for any pair of integers $j, k, 1 \leqslant k \leqslant j=1$ ， $2, \ldots$, III ．Then the maximal representation $f_{n}^{(n+1)}$ of el（ $n+1$, e）defined by the formulae（11）is irreductble； it hes the highest weight $A=\left(\Lambda_{1}, \ldots, A_{n}\right)$ and the higheet－ －weight vector $x_{0}^{\mathrm{a}+1}$ ．
Preaf：In view of Proposition 3.2 and Corollary 4.2 it is suffi－ cient to verify that under the stated assumptions $V_{n+1}^{A}=V_{n+1}$ holds．We shall do it in few steps ：
4.4 We denote first as x_{s}^{n+1} the basia vectors（ 6 ）with all the indices equal to zero with exception of $m_{n 1}: m_{k j}=s \delta_{k n} \delta_{j,}$ ， especially x_{0}^{n+1} is the vacuum vector as before．The following statement holds：
Lemma ：If the conditions（13）are valid for $1 \leqslant k \leqslant j=n$ ，then the subspace v_{n+1}^{A} contains the vectors x_{b}^{n+1} for all 8 期
Proof：Let us introduce the following finite sequences of opers－ tors（for convenience written as columns）：

$$
\mathbf{R}_{1}=I \quad \mathbf{R}_{n+1}=\left|\begin{array}{c}
R_{1} E_{1, k+1}^{n+1} \tag{1}\\
R_{2} E_{2, k+1}^{n+1} \\
\vdots \\
R_{k} \frac{E_{k}^{n+1}}{n+1}
\end{array}\right|
$$

Let us further take an arbitrary $s \in \mathbb{N}_{0}$ and denote

$$
y_{n}=E_{n+1} x_{8}^{n+1}=\left|\begin{array}{c}
R_{1} E_{1}^{n+1}, n+1 x_{E}^{n+1} \\
R_{2} E_{2, n+1}^{n+1} x_{B}^{n+1} \\
\vdots \\
R_{n} E_{n, n+1}^{n+1} x_{E}^{n+1}
\end{array}\right|
$$

This column has 2^{n-1} rows．We divide it into two parts with $2^{\text {n－2 }}$ rows ：

$$
y_{n}^{\prime}=\left|\begin{array}{c}
n_{1} E_{1, n+1}^{n+1} x_{s}^{n+1} \\
\vdots \\
R_{n-1} E_{n-1, n+1} x_{5}^{n+1}
\end{array}\right| \quad \text { and } \quad y_{n}^{2}=\left|E_{n} E_{n_{r} n+1}^{n+1} x_{B}^{n+1}\right|
$$

and introduce

$$
y_{n-1}=\left(s-A_{n}\right) y_{n}^{1}-y_{n}^{2} .
$$

Purther we divide the column y_{n-1} into two parts：y_{n-1}^{\prime}（con－ sisting of the first 2^{n-3} rows）and y_{n-1}^{2} ，then we define $y_{n-2}=\left(s-A_{n}-A_{n-1}-1\right) y_{n-1}^{\%}-\delta_{n-1}^{2}$ ．Continuine this procedure， we put

$$
y_{n-k}=\left(s-A_{n}-A_{n-1}-\cdots-A_{n-k+1}-k+1\right) y_{n-k+1}^{1}-y_{n-k+1}^{2}
$$

for all $1 \leqslant k \leqslant n-1$ ．Pinally we obtain a one－row column，l．e．， a vector y_{1} ．We shall prove that the relation

$$
\begin{equation*}
y_{1}=\sqrt{5+1} \prod_{j=1}^{n}\left(s-A_{n}-n_{n-1}-\cdots-n_{y}-n+j\right) x_{s+1}^{n+1} \tag{地}
\end{equation*}
$$

holds．For this purpose we shall use the relations（ilc）together with（7e，b）．The latter imply

$$
\begin{equation*}
a_{j}^{k+1} a_{j}^{k+1} x_{s}^{n+1}=s \delta_{k n} \delta_{j 1} x_{B}^{n+1}, a_{j}^{n+1} x_{B}^{n+1}=\sqrt{8} \delta_{\operatorname{kn}} \delta_{j 1} x_{s-1}^{n+1} \tag{効隹}
\end{equation*}
$$

so that we obtain for y_{n} the following expression：

$$
\left|\begin{array}{ll}
R_{1} \bar{a}_{1}^{n+1}\left(s-\Lambda_{n}-\cdots-\Lambda_{1}\right) x_{s}^{n+1} & +R_{1} \sum_{j=1}^{n} \bar{a}_{j}^{n+1} E_{1 j}^{n} x_{s}^{n+1} \\
R_{2} \bar{a}_{2}^{n+1}\left(s-\Lambda_{n}-\cdots-1_{2}\right) x_{s}^{n+1}+R_{2} \bar{a}_{1}^{n+1} E_{21}^{n} x_{s}^{n+1} & +R_{2} \sum_{j=3}^{n} \bar{a}_{j}^{n+1} E_{2 j}^{n} x_{s}^{n+1} \\
\vdots & R_{n-1}^{a_{n-1}^{n+1}\left(s-1_{n}-1_{n-1}\right) x_{s}^{n+1}+R_{n-1} \sum_{j=1}^{n-2} \bar{a}_{j}^{n+1} E_{n-1}^{n}, j x_{s}^{n+1}+R_{n-1} \bar{a}_{n}^{n+1} E_{n-1, n}^{n} x_{s}^{n+1}} \\
R_{n} a_{n}^{n+1}\left(s-\Lambda_{n}\right) x_{s}^{n+1} & +R_{n} \sum_{j=1}^{n-1} \bar{a}_{j}^{n+1} E_{n j}^{n} x_{s}^{n+1}
\end{array}\right|
$$

Here the terps containing $E_{i j}^{n} x_{8}^{n+1}$ ，$i>j$ ，are equal to zero because of（䗑t）and the relation

$$
E_{i j}^{n}=\sum_{k=1+1}^{n} \bar{a}_{i}^{k} a_{j}^{k}-a_{j}^{i}, \quad i>j
$$

which is obtained in the same way as（lle）．Now we substitute for R_{n} from（ $\left.\dot{(}\right)$ ，then using further the relations（11a），（8） and（新立）we get

$$
\begin{aligned}
& R_{1} \bar{a}_{1}^{n+1}\left(s-A_{n}-\cdots-A_{1}\right) x_{s}^{n+1}+R_{1} \sum_{j=2}^{n-1} \bar{a}_{j}^{n+1} E_{1}^{n} j_{s}^{n+1}+R_{1} \bar{a}_{n}^{n+1} E_{1 n}^{n} x_{s}^{n+1} \\
& R_{2} \bar{a}_{2}^{n+1}\left(s-A_{n}-\cdots-A_{2}\right) x_{s}^{n+1}+R_{2} \sum_{j=3}^{n-1} \bar{a}_{j}^{n+1} E_{2 j}^{n} x_{s}^{n+1}+R_{2} \bar{a}_{n}^{n+1} E_{2 n}^{n} x_{s}^{n+1} \\
& R_{n-1} \bar{a}_{n-1}^{n+1}-\left(s-A_{n}-A_{n-1}\right) x_{s}^{n+1} \\
& R_{1} \bar{a}_{1}^{n+1}\left(s-A_{n}\right) x_{s}^{n+1} \\
& \text { : } \\
& R_{n-1} \bar{a}_{n-1}^{n+1}\left(s-A_{n}\right) x_{s}^{n+1} \\
& { }^{-}+R_{n-1} \bar{a}_{n}^{n+1} E_{n-1, n}^{n} n_{i}^{n+} \\
& +\left(s-\Lambda_{n}\right) R_{1} \bar{a}_{n}^{n+1} E_{1 n}^{n} x_{s}^{n+1} \\
& +\left(s-A_{n}\right) R_{n-1} \bar{a}_{\dot{n}}^{n+1} E_{n-1}^{n}, n_{x_{B}^{n+1}}
\end{aligned}
$$

Subtracting the lower half of this column fram the upper onemul－ tiplied by $\left(s-\Lambda_{n}\right)$ we obtain the following expression for y_{n-1} ：

$$
\left|\begin{array}{l}
R_{1} \bar{a}_{1}^{n+1}\left(s-\Lambda_{n}\right)\left(s-\Lambda_{n}-\cdots-\Lambda_{1}-1\right) x_{s}^{n+1}+R_{1}\left(s-\Lambda_{n}\right) \sum_{j=2}^{n-1} \bar{a}_{j}^{n+1} E_{1 j}^{n} x_{a}^{n+1} \\
R_{2} \bar{a}_{2}^{n+1}\left(s-A_{n}\right)\left(s-A_{n}-\cdots-\Lambda_{2}-1\right) x_{s}^{n+1}+R_{2}\left(s-\Lambda_{n}\right) \sum_{j=3}^{n-1} \bar{a}_{j}^{n+1} E_{2 j}^{n} x_{s}^{n+1} \\
\vdots \\
R_{n-1} \bar{a}_{n-1}^{n+1}\left(s-\Lambda_{n}\right)\left(s-\Lambda_{n}-\Lambda_{n-1}-1\right) x_{s}^{n+1}
\end{array}\right|
$$

In the next step we substitute for R_{n-1} from（ k ），then we use again the relations（11a），（8）and（竝䓝）and subtract the lower half from the upper one multiplied by $\left(8-A_{n}-A_{n-1}\right)$ ：
$y_{n-2}=\left(s-1_{n}\right)\left(s-1_{n}-1_{n-1}-1\right) x$

Repeating this procedure we obtain finally

$$
y_{1}=\prod_{j=1}^{n}\left(s-A_{n}-A_{n-1}-\cdots-A_{j}-n+j\right) \bar{m}_{j}^{n+1} x_{8}^{n+1},
$$

1．e．，the formula（锌）．The presented construction shows that there exists an element $p \in U L$ such that

$$
\rho_{n}(p) x_{s}^{n+1}=\sqrt{8+1} \prod_{j=1}^{n}\left(s-A_{n}-\cdots-A_{j}-n+j\right) x_{s+1}^{n+1}
$$

This vector is non－zero due to the assumption，thus if x_{s}^{n+1} belongs to the subspace $V_{n+1}^{A}=P_{A}(0 L) x_{0}^{n+1}$ then the same is true for x_{s+1}^{n+1} ．Since x_{0}^{n+1} is contained in v_{n+1}^{n} ，the proof is completed by induction．
4．5 Now we can continue the proof of Theorem 4．3．Since $\nabla_{n+1}^{n} c$ $\subset V_{n+1}$ ，we have to prove the opposite inolusion；it is cleariy sufficient to verify that all the basis vectors（6）of \rangle_{n+1} are contained in ∇_{n+1}^{\wedge} ．We decompose V_{n+1} in the following way ： let D_{n+1} be the set of all symbols．$I=\left(1, \ldots, I_{n}\right), I_{1} \in N_{0}$ and L_{n+1} be the complex vector space spanned by D_{n+1} ．Then we can write

$$
\begin{equation*}
V_{n+1}=L_{n+1} \odot V_{n} \quad, \quad x_{0}^{n+1}=I_{0} \otimes x_{0}^{n} \tag{14}
\end{equation*}
$$

where

$$
\begin{align*}
& \text { and } I_{0}(0, \ldots, 0) \text {. We shall prove first } \tag{15}\\
& I_{n+1} \odot x_{0}^{n} \subset V_{n+1}^{A}
\end{align*}
$$

Let us take $1=\left(l_{1}, \ldots, l_{k}, 0, \ldots, 0\right), 1 \leqslant k \leqslant n-1$ ．Using（ile）
we get

$$
\left(E_{k+1, k}^{n+1}\right)^{r}\left(1 \otimes z_{0}^{n}\right)=\binom{1_{k}}{r}^{1 / 2} r!\left(\left(1_{1}, \ldots, 1_{k-1}, 1_{k}-r, r, 0, \ldots, 0\right) \otimes x_{0}^{n}\right)
$$

According to Lemma 4.4 the vectors $x_{8}^{n+1}=(s, 0, \ldots, 0) \otimes x_{0}^{n}$ belong to V_{n+1}^{1}, so acting on them by powers of $\varepsilon_{k+1, k}^{n+1}$ we stay within V_{n+1}^{\wedge}. Starting with s large enough we can obtain in this way every basis vector of $L_{n+1} \otimes x_{0}^{n}$, thus the relation (15) holds. 4.6 Purther we shall show that V_{n+1}^{A} contains $L_{n+1} \otimes x_{r}^{n}$ for any $r \in \mathbb{N}_{0}$. We know that this is true for $r=0$, let us assume the same for $r=1, \ldots, s$. The proof is analogous to that of Lemma 4.4 : we start with an arbitrary $\tilde{x}_{8}=7.0 x_{8}^{n}$ and denote $\tilde{y}_{n-1}=R_{n} \tilde{x}_{s}$. Then we divide this column into two parts \tilde{y}_{n-1}^{1} and define $\tilde{y}_{n-2}=\left(s-n_{n}\right) \tilde{y}_{n-1}^{1}-\tilde{y}_{n-1}^{2}$. Continuing the procedure with

$$
\tilde{y}_{n-k}=\left(s-\Lambda_{n-1}-\ldots-\Lambda_{n-k+1}-k+2\right) \tilde{y}_{n-k+1}^{1}-\tilde{y}_{n-k+1}^{2}
$$

we arrive finally to the vector \tilde{y}_{1}. According to the construction it belongs to. V_{n+1}^{\wedge}; we shall prove

$$
\begin{equation*}
\tilde{y}_{1}=\sqrt{s+1} \prod_{j=1}^{n-1}\left(s-A_{n-1}-\cdots-\Lambda_{j}-n+j-1\right)\left(1 \otimes x_{s+1}^{n}\right)+\tilde{x}_{s}^{n} \tag{x}
\end{equation*}
$$

where \tilde{x}_{s}^{\prime} is some vector from $I_{n+1} \otimes x_{g}^{n}$. We write \tilde{y}_{n-1} using (11a), then we express $E_{1 j}^{n}$ with the help of relations (11c) and (7) obtaining thus for \tilde{Y}_{n-1} :
$\left|\begin{array}{ll}R_{1} \bar{a}_{1}^{n}\left(a-\Lambda_{n-1}-\cdots-A_{1}\right) \tilde{x}_{s} & +R_{1} \sum_{j=2}^{n-1} \bar{a}_{j}^{n} E_{1 j}^{n-1} \tilde{x}_{s}+a_{1}^{n+1} a_{n}^{n+1} \tilde{x}_{s} \\ R_{2} \bar{a}_{2}^{n}\left(s-A_{n-1}-\cdots-A_{2}\right) \tilde{x}_{s}+R_{2} \bar{a}_{1}^{n} E_{21}^{n-1} \tilde{x}_{s}+R_{2} \sum_{j=1}^{n-1} \bar{a}_{j}^{n} E_{2 j}^{n-1} \tilde{x}_{s}+\bar{a}_{2}^{n+1} a_{n}^{n+1} \tilde{x}_{s} \\ \vdots & +\bar{a}_{n-1}^{n+1} a_{n}^{n+1} \tilde{x}_{s}\end{array}\right|$

Now we can proceed further in the same way as in the proof of Lemma 4.4. The added vectors $\bar{a}_{j}^{n+1} a_{n}^{n+1} \tilde{x}_{s}$ belong to $L_{n+1} x_{s}^{n}$, thus the same holds for any linear combination of them. Finally we obtain

$$
\begin{aligned}
& \tilde{y}_{1}=\prod_{j=1}^{n-1}\left(s-A_{n-1} \cdots-A_{j}-n+j-1\right) \bar{a}_{1} \bar{x}_{s} \tilde{x}_{s}+\tilde{x}_{s}, \\
& \tilde{x}_{s}=\prod_{k=2}^{n-1}\left(s-A_{n-1}-\cdots-A_{n-k+1}-k+2\right) \bar{a}_{1}^{n+1} a_{1}^{n+1} \tilde{x}_{s}-
\end{aligned}
$$

$$
-\sum_{j=2}^{n-1} \prod_{k=2}^{n-j}\left(s-A_{n-1}-\cdots-A_{n-k+1}-k+2\right) \bar{B}_{j}^{-n+1} e_{n}^{n+1} \tilde{x}_{n}
$$

it proves the relation ($\dot{\alpha}$). The induction assumption implies $\tilde{x}_{s}^{\prime} \in V_{n+1}^{\wedge}$, then also the vector $\tilde{y}_{1}-\tilde{x}_{8}^{\prime}$ belongs to V_{n+1}^{1}. The conditions (13) are assumed to be valid for $j=1, \ldots, n$, especially for $j=n-1$, thus $\tilde{\mathbf{y}}_{i}-\tilde{\mathbf{x}}_{g}$ is a non-zero multiple of $\tilde{\mathbf{x}}_{g+1}$ which belongs therefore to V_{n+1}^{A}.
Purther we decompose V_{n+1} into the tensor product $V_{n+1}=$
$=L_{n+1} \otimes L_{n} \otimes V_{n-1}$ in the analogy with (14). Let us take some $k=$
$=1, \ldots, n-2$ and natural r and assume the vectors $x(m, l(k, s)) \equiv$ $\equiv m \in l(k, s) \otimes x_{0}^{n-1}$ to belong to V_{n+1}^{A} for any $\left.m \in L_{n+1}, I(k, s)\right) \equiv$ x ($1_{1}, \ldots, l_{k}, 8,0, \ldots, 0$) , 1_{1} arbitrary elements of N_{0} and $s=$ $=0,1, \ldots, r-1$. The relations (7) and (1/e) imply

$$
\begin{gathered}
\left.\left(E_{k+1, k}^{n+1}\right)^{r}{ }_{x(m, l}(k, 0)\right)=\sum_{j=0}^{r} r!\binom{m_{k}}{r-j}^{1 / 2}\binom{m_{k+1}+r-j}{r-j}^{1 / 2}\binom{1_{k}}{j}^{1 / 2}\left(m_{1}, \ldots\right. \\
\left.\ldots, m_{k}-r, m_{k+1}+r, \ldots, m_{r}\right) \otimes\left(1_{1}, \ldots, l_{k}-j, j, 0, \ldots, 0\right) \otimes x_{0}^{n-1},
\end{gathered}
$$

thus by induction V_{n+1}^{A} contains the vectors $x(m, l(k, r))$ for all $r \in \mathbb{N}_{0}$, i.e., if ∇_{n+1}^{n} contains the vectors $x(m, l(k, 0))$ with arbitrary $I(k, 0)$ and $m \in I_{n+1}$, then the same is true for $x(m, l(k+1,0))$. According to 4.6 the vectors $x(m, 1(1,0))$ belong to V_{n+1}^{A} so applying once more the induction argument we obtain $x(m, l(n-1,0))=x(m, 1)=m \in x_{0}^{n-1} \in V_{n+1}^{A}$ for any $m \in L_{n+1}$ and $l \in L_{n}$.
4.8 Now one has to repeat the considerations of Secs.4.6, 4.7 in order to "fill up" the third row. Continuing this procedure we arrive to the relation

$$
V_{n+1}=\sum_{k=1}^{n} I_{k+1} \subset v_{n+1}^{\wedge}
$$

which represents the desired result.

5. Diecussion

5.1 Let us assume all the components of the highest weight to be real, then coefficients of all polynomials used in the perforwed proofs are also real. It means that in this case the results obtained in the previous sections for al $(n+1, c)$ apply to the real form sl($n+1, R$) as well.
5.2 The finite-dimensional irreducible representations of $s l(n+1, c)$ may be described completely in the framework of Gel fand-Zetlin patterns (see Ref.18, sec.10.1). There exists a generalization of this method (Ref.18, sec.11.8, see also Ref.l, sec.2) which makes it possible to construct also some infinite--dimensional highest-weight representations. In the case of sl(3,c), for example, one has to replace the Gel fand-Zetlin patterns

$$
\left(\begin{array}{c}
m_{13} \\
m_{23}
\end{array} m_{33} m_{12} m_{22}\right)
$$

by

$$
\left(\begin{array}{c}
m_{13} m_{23} m_{33} \\
m_{12} m_{22} \\
m_{11}
\end{array}\right)
$$

with $m_{12} \geqslant m_{13}+1, m_{13} \geqslant m_{22} \geqslant m_{23}, m_{12} \geqslant m_{11} \geqslant m_{22}$. Action of the standard Gel fand-2etlin formulae on these patterns defines an infinite-dimensional highest-weight representation of sl(3,c) (determined by m_{13}, m_{23}, m_{33}). However, one can obtain in this way only representations with (possibly negative) integer components of the highest weight ; they correspond only to a small subset of the representations which we have studied here.
5.3 We have to compare our results first of all to the elementary representations introduced in Sec.2.6, because the latter are defined also for each weight Λ on H :
(a) every d_{A} is the highest-weight representation ; for our maximal representations this is true if the conditions (13) are satisfied, otherwise we obtain the highest-weight representation \tilde{P}_{A} by restriction of P_{A} to the subspace V_{n+1}^{A}. On the other hand, the highest weight representations which we obtain are always irreducible. This difference is due to different incomplete reducibility of d_{A} and ρ_{A} : symbolically

$$
d_{A}=\left(\begin{array}{ll}
\widetilde{d}_{A} & 0 \\
\pm & d_{A}^{\prime}
\end{array}\right) \quad, \quad p_{A}=\left(\begin{array}{cc}
p_{A} & \vdots \\
0 & p_{n}^{\prime}
\end{array}\right)
$$

where \tilde{d}_{A} and \tilde{p}_{A} are the irreducible components of d_{A} and P_{A}. respectively, and the star stands for non-zero blocks.
(b) Action of the operators $p_{1}\left(h_{i}\right), p_{i}\left(e_{i j}\right)$ on an arbitrary vector of ∇_{n+1} is obtained from the formulae (7) and (11). Bspecially, they allow us to calculate easily matrix elements of the
generators. This is not true for the elementary representations for which the choice of a basis in the representation space is itself complicated. According to our opinion, this fact represents the main advantage of the maximal representations. We pay, of course, a price for it : the formulae (4) defining elementary representations are common for all the complex semisimple lie algebras, while ours refer to the algebras A_{n} only. There exista, however, a hope of performing an analogous construction for the remaining classical semisimple Lie algebras.
(c) In the subsequent paper $/ 6 /$ we shall illustrate the irreducibility conditions on the example of $s 1(3, c)$. We shall prove that the conditions (13) are in this case necessary and sufficient for irreducibility of the maximal as well as the elementary representations. Further we shall show that starting from the canonical realizations (5) one can construct irreducible highest-weight representations also for some of the weights such that the corresponding elementary representations are reducible.

Acknowledgmente

The authors are grateful to Prof.A.A.Kirillov, Dr.A.U.Klimyk, Dr.W.Lassner and Prof.D.P. Zhelobenko for stimulating discussions. Two of them would like to thank also for hospitality extended to them : C.B. at the Karl-Marx University (Leipzig, GDR) and P.E. in the Institute of Theoretical Physics of the Ukrainian Academy of Sciences (Klev, USSR).

References

1 Gruber B., Klimyk A.U. J.Math. Phys., 1975, 16, p. 1816-32.
2 Naimark h.I. Theory of Representations (in Russian), Nauka, Moscow, 1976.
3 Zhelobenko D.P. Compact Lie Groups and Their Representations (in Russian), Nauka, Moscow, 1970.
4 Dixmier J. Algébres enveloppantes, Gauthier-Villars, Paris, 1974.

Harish-Chandra, Am.J.Math.,1955, 77, p. 743.
6 Burdfk C., Exner P., Hevlicek M.,H1ghest-Weight Representations of $\operatorname{si}(2, C)$ and $\operatorname{si}(3, C)$ via Canonioal Realizations. Ceeoh.J.Phys.(B) (in print).

Bxner P., Havlicek M., Lassner W. Czech.J. Phys., 1976, B 26, p.1213-28.

Havlıék M., Exner P. Ann. Inst. H. Poincaré, 1975, 23.p.313-33. Havlicek M., Lassner W. Rep. Math. Fhys.,1975, 8, p.391-9 Havlicek M., Lassner W. Rep.Math. Phys.,1976, 9, p.177-85 Havlíck M., Exner P. Ann.Inst.H.Poinceré, 1975, 23, p.335-47. Havlicek M., Exner P. Czech.J.Phys.,1978, B 28, p.949-62. Havlfek M., Lassner W. Int.J.Theor.Phys., 1976, 15.p.867-76. Havlfeek M., Lassner W. Int.J.Theor.Phys., 1976, 15,p.877-84. Havlicek M., Lassner W. Rep.Math. Phys. $=1977$, 12, p.1-8. Bourbaki N. Grouper et algébres de Lie, deuxieme partie, Hermann, Paris, 1968.
Seminaire "Sophus Lie" de 1 'Ecole Norm.Sup., vol. 1, Secrétariat Mathematique, Paris, 1954-55.
Barut A.O., Raczka R. Theory of Group Representations and Applications, PWN, Warszawa, 1977.

WILL yOU FILL BLANK SPACES IN YOUR LIBRARY?
You can receive by post the books listed below. Prices - in US \$, including the packing and regintered postage

P1,2-7642	Proceedinge of the International School of Youns Physicists on High Enerty Physics. Gomel, 1973.	10.63
D1,2-8405	Procesdings of the IV International Bympostum on Hich Enery and Elememury Particle Phytica. Varna, 1974.	8.89
P1,2-8589	The Intermational School-Seminar of Young scientists. Actual Problems of Elementary Particle Physice. Bo-	4.70
D6-8846	XIV Symposium on Kuclear Spectroscopy and Nuclear Theory. Dubna, 1975.	3.70
E2-9086	Proceedings of the 1975 JLNR-CERN School of Physics. Alushta, 1975.	16.00
D13-9164	Proceedings of the International Meeting on Proportional and Drift Chambers. Dubna, 1975.	10.00
D1,2-9224	Proceedings of the IV Internetional seminar on High Enercy Physics Problems. Duban, 1975.	4.00
	Proceedings of the VI Europenn Conference on Controlled Fusion and Plasme Physica. Moscow, 1978, v.II.	18.00
D13-9287	Proceedings of the VIII International Symposium on Nuclear Electronics. Dubas, 1975.	6.6
D7-9734	Proceodings of the International School-Seminar on Reactions of HezVI Nons with Kuclei and Synthesis	4.86
D-9920	Proceedings of the international Conterence on selected Topics in Nuclear Btructure. Dubas, $19 \% 6$.	18.00
D2-9788	Nomlocal, Nonlinear and Nonremormalizable Field Theories. Proceedilage of the IVth Interantional Bymponlum. Alunhta, 1876.	4.20
D9-10500	Proceedinge of the Becond Bymposium on Coliective Methods of AcceLeration. Duban, 1976.	11.00

D2-10533	Proceedings of the X International School on High Energy Physics for Young Scientists. Baku, 1976.	11.00
D13-11182	Proceedings of the IX International Symposium on Nuclear Electronics. Varna, 1977.	10.00
D10,11-11264	Proceedings of the International Meeting on Programming and Mathematical Methods for Solving the Physleal Problems. Dubna, 1977.	13.00
D17-11490	Proceedings of the International Symposium on Selected Problems of Statistical Mechanics. Dubna, 1077.	18.00
D6-11574	Proceedings of the XV Symposium on Nuclear Spectroscopy and Nuclear Theory. Dubna, 1978.	4.70
D3-11787	Proceedings of the III International School on Neutron Physics. Alushta, 1978.	12.00
D13-11807	Proceedings of the III International Meeting on Proportional and Drift Chambers. Dubna, 1978.	14.00
	Proceedings of the VI All-Union Conference on Charged Particle Accelerators. Dubna, 1978. 2 volumes.	25.00
D1,2-12036	Proceedings of the V international Seminar on High Energy Physics Problems. Dubna, 1978.	15.00
D1,2-12450	Proceedings of the XII International School on High Energy Physics for Young Scientists. Bulgaria, Primorsko, 1978.	18.00
R2-12462	Proceedings of the V International Symposium on Nonlocal Field Theories. Alushta, 1979.	9.50
D2-11707	Proceedings of the XI International School on High Energy Phystes and Relativistic Nuclear Physics for Young Scientists. Gomel, 1977.	14.00

Orders for the abovementioned books can be sent at the address: Publishing Department, JINR
Head Post Office, P.O. Box 79101000 Moscow, USSR

[^0]: * Nuclear Centre, Faculty of Mathematics and Physics of the Charles University, Povltavská ul., 180000 Prague, ČSSR

