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INTRODUCTION 

Two substantially different Galilee-invariant models are 
constructed in Section ]*· The first is based on the assump
tion that the matrix f(E) depends only on the kinetic energy 
of the pion and the target nucleon. The second model utili
zes a (A+l)-body generalization of the auxiliary scattering 
matrices which enter Faddeev equations 111 for a three-body 
system. Kinematical regions where the two models should lead 
to different predictions are determined. The concept of ef
fective nucleon momenta is useful also in studying the pion
nucleus inelastic processes, particularly the pion-induced 
knock-out reaction. 

Since the work of Lenz 121 it has been known that the 
exact first-order optical potential describes a non-local 
propagation of the resonating pion-nucleon system through 
the nucleus. On the other hand, if the static approximation 
is postulated, the pion-nucleon system decays at the point 
of its creation. If the leading m/M corrections are re
tained in the optical potential via the aforementioned fac
torization procedure, the potential mediates a nonlocal pro
pagation of the pion-nucleon system of a fairly general type. 
We arrive at this conclusion in Section 4. Disregarding the 
fact that we deal with the pion-nucleus scattering in Sec
tions 2-4, all the results obtained are fully applicable 
to the scattering of an arbitrary particle on a composite 
system if the projectile mass is considerably less than that 
of the target particles. 

3. GALILEO-INVARIANT OPTICAL MODELS 

There are two obvious possibilities of restoring the Ga
lilean invariance of the optical model, or, generally speak
ing, of models based on the impulse approximation. The de
finition of the auxiliary matrix t(E) is to be changed 
in such a way that the Green function d(E'!), Eq. (2.8), 
may contain either the two-body quantities or the (A+l)-bo
dy ones, but not a mixture of both. In subsections 3.1 and 
3.2 the correspondingly modified IA schemes are developed 
and the properties of the resulting optical potentials are 
discussed. 

*For Sections 1 and 2 see R.Mach, JINR, E2-12932, Dubna, 
1979. 
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3.1. Two-body model 

In the early applications of the impulse approximation, 
the projectile-scatterer energy was sometimes identified 
with the two-body kinetic energy rather than with the total 
reaction energy E. In this case the prescritpion for IA can 
be written as 

T (E) :: f d 1> d 
3
p ' d 3k 1 d 3k 'lk ~ p' > < p' k ~ I t (E) I k 1 p > < p k 11 (3. 1) 

and 
- -2 2 k' 2 k2 
E = E2 = l.. ( p + p + 1 + 1). 

2 2m 2M (3.2) 

Here, t(E 2) is again the pion-free nucleon scattering mat
rix (2.7). In the optical model, however, the energy E2 
ceases to be a fixed parameter, being related to the reac
tion energy indirectly, via the equation of motion (2.1). 
Energy E2 has been chosen as the mean sum of the kinetic 
energies in the initial and final states. This choice meets 
the detailed balance condition. Unfortunately, we did not 
succeed in e_xpressing the relation between the matrices 
r(E) and t(E) in a closed form similar to (2.9a). However, 
the iterative expansion of the matrix r(E) in terms of t(E) 
can be easily obtained. 

Recently, Wilkirl31 suggested a configuration space ver
sion of the two-body model. On the analogy of electrodyna
mics he_argued that the physically plausible choice of the 
energy E is the local pion kinetic energy 

E =E-V(f), (3. 3) 

where V(r) is an average potential felt by the pion inside 
the nucleus at the point r. The two-body choice (3.3) or 
its momentum space analogue (3.2) should be reasonable one 
in the absence of strong nucleon-nucleon correlations. Other
wise, the mean nuclear field is not a well-defined concept. 
It is very difficult, however, to make some quantitative 
estimates. 

Having chosen the energy E = E 2 , we can repeat the der i
vation of the optical potential. The equation (2.17b) is 
obtained again with the stipulation that the energy z is to 
be replaced by the manifestly Galilee-invariant expression 

2 2 2 
1 q r ,o + q i ,o /L ... ... ... ) ( /L ) 2 ) 

z2= 2;( 2 + MV1· (qr,o + qi,O + M v1 · (3.4) 

2 

.. 

• 

If the factorization approximation is applied (v1::0), we 
end up with the optical potential (2.19), where z 0 is to be 
replaced by 

1 Q ,2 Q 2 A 1 /L ... ... m2 
z =-(+ ----- Q'.Q+O(-)). (3 5) 

2,0 2m 2 A M M2 · 

According to the previous discussion, the error of the re
sulting optical potential is of the order of (m/M) 2 . 

3.2. (A+1) -body model 

An attempt has been made by Revai141 to approximate the 
matrix r(E) by means of a more complex operator than a two
body one. According to his suggestion, a special three-body 
problem should be solved, where the role of the third par
ticle is played by the remaining (A-n nucleons forming the 
nuclear core. The resulting pion-nucleon scattering matrix, 
which contains also some binding corrections, is then used 
as a starting point in IA. In actual calculations 151• however, 
the energy E is calculated from the pion-nucleon-core 
kinematics rather than from the solution of the three-body 
equations. The model being Galileo~noninvariant is suitable 
probably for heav~er nuclei, where the concept of the nuc
lear core has a sound meaning. 

We suggest a Galilee-invariant (A+ 1) -body generalization 
of IA, which consists of replacing the matrix r(E) by an au
xiliary matrix TrrA defined as 

TrrA = V+ vg(E) T" A (E), (3.6) 

where 
A -1 

g(E)=(E-h 0-I. hi-<01UAI0>+ id 
i=l 

( 3. 7) 

In contrast with the exact Green function G(E) , Eq. (2.2), 
only the ground state matrix element of the nuclear potenti
al UA is retained in (3.7). The relation between matrices 
r (E) and T "A (E) is analogous to ( 2. 9a) . Energy E is scaled 
here as 

E=E Ac + (3.8) 
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where EAc is the energy of the relative pion-nucleus motion 
and l s> 0 the nuclear binding energy. 

If the element < 0 I U AI 0> were dropped in ( 3. 7) , we would 
have the same auxiliary matrix, which is commonly used in 
solving the Faddeev equations (in the case of A=2 or 3 
nuclei). Nevertheless, we prefer to keep the matrix element 
in (3. 7), otherwise the matrix TIT A(E) would be evaluated at 
energies considerably remote from the reaction energy. This 
fact causes the well-known inadequacy of the leading term 
in the iterative expansion of the Faddeev equations, which 
usually strongly violates the unitarity condition. The de
fect is compensated, of course, by higher order iterative 
terms; however, it could lead to serious difficulties in 
the approximation scheme developed here. 

Prior to the derivation of the optical potential, we 
recall the obvious identity 

.... , ~- ~- I < ) 1.... .... .... <p,k1,o0 0,KA TITAE kA,o oo, k1,p> 

(2 )3A.,.3( .... ' .. k' .... k .... ) = IT U p + 1-p- 1 

s-. ... a-. ... ..... .... 
x o (k2-k 2).ooo (k/.- kA)<qrltr(zA+1 )lqi>. 

where 
.... .... 2 

(p +k 1) 
z =E- ---

A+1 2(m+M) 
1 A 2 
- I. k . - <0 I u A I 0> 0 

2M i=2 1 

(3.9) 

(3.10) 

Here, t(zA+1) is the pion-free nucleon scattering matrix as 
defined by (2.7). Besides the substitution (2.16), we made 
use of others 

... K 1 .... ..... ... 
k. =- +-(Q-Q')-v. 

J A 2A J 

.... ..., 
k' =~ 1 ........ i A- 2A (Q-Q')-v' j 

(3.11) 

j =2 ,3, oo•• A for momenta of "spectator" nucleons in evaluat
ing the matrix elements <p' OIT (E)IDP>.The resulting optical 

t . l . ITA poten 1.a 1.s 

<Q'O I u r (E Ac )I och 

4 

_A __ J <OiiJ..t2. ooo.l A-1 > 
(217)3A-3 

.. 

• 

A-1 .... ... .... ... A-1 .... .... 
x exp[i--(Q'-Q).(~A' 1 +~A 1)1exp[i I.~. · (~~ -~ . )] 

A - - j=1 J J J 

x<qr1tr(zA+1 )\qi><~:-1' 0 ... ~~.l11°> (3.12) 

A-1 3 A-1 3 A-1 3 
x n d ~j n d ~i n d .,., . 0 

j=1 j=1 j=1 J 

The momenta 
... .... .... 

... 1 (... ... 
'f'/1 =2 vA-vA-1 

... =A-1(VA+VA-1+ ... +v2_v )=-v 
17A-1 A-2 A-1 1 1 

(3. 13) 

... = A-2 ( v4+vAo1 + ... +V3 
TJ A-2 A-3 A-2 - v ) 

2 
ij A = VA + ... + v~ = 0. 

are canonically conjugated with the Jacobi coordinates lj. 
The optical potential (3.12) is Galilee-invariant since 

z =E __ 1_ p.l A-1 (Q'+C})2 ..... .... .... 
A+1 Ac 2m 1ir -A 4 - TJ • (Q' + Q) A-1 (3.14) 

and 

) 'R 2 }-C (TJ ,TJ 2 , ... ,TJA-1 --TJA 1 1 M -

1 A- 1 . + 1 2 
cc.,.,1 . .,.,2 ..... .,.,A-1)=2Mj;:1 T.,.,i + <0\UA\O>+Es· ( 3. 15) 

The expression (3.15) represents the "binding" correction 
and the terms in curly brackets in (3.14) can be inter
preted as the corrections due to the Fermi motion on the 
target nucleon. Nevertheless, the separation between the 
binding effects and the Fermi motion can be made only ap
proximately. 

Taking into account the identity 

<01C(~1.;2""'~A-1)10> =0, (3. 16) 

we neglect the term (3.15) in Eq. (3.14). The assumption 
is made here that the omitted term yields only a small con-
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tribution to the energy zA+1 for typical momenta of nuc
leons bound in the nucleus. It is important to note that 
the leading "binding" correction of the order of 
C(l'/1•1'/2 .... , 1'/ A- 1 ) / E Ac ... v~nishes in (3.12) in the limit of 
low momentum transfer (Q'-Q) ... 0 as a consequence of (3.16). 
Therefore, the attempts 15 •6 1 to simulate the binding cor
rections by a constant shift in the energy z are hardly 
justified. 

Neglecting the "binding" effects in (3.14), we are left 
with the optical potential (2.17b), where the energy z is 
now, of course, somewhat modified. When the momentum ~A- 1 is 
further neglected in (3.14), we arrive at the factorized 
optical potential (2.19) the energy dependence of which is 
given by 

z = E __ 1_ A-1 f.. ( Q' + Q )2. 
A+1,0 Ac 8M A :n1 (3. 17) 

The error of the last approximation is again of the order 
of (m/M) 2 . 

3.3. Comparison of the two models 

Two different IA schemes were developed in the previous 
subsections yielding two Galilee-invariant optical potentials. 
When the "binding" effects are neglected and the technique 
of the optimal effective nucleon momenta is used, the two 
optical potentials have the same factorized form (2.19), the 
validity of which is guaranteed up to the m/M terms. Then 
the only difference between the two- and (A+1)-body model 
consists in the energy dependence of the optical potential, 
which is given by z 2,0 , Eq. (3. 5), and z A+l, o , Eq. (3.17), 
respective~. Since the last energies depend on dynamical 
variables Q' and Q, the corresponding optical potentials 

are substantially nonlocal. This is true especially for the 
two-body model since the ~nergy z 2,o is built up solely 
from the momenta Q' and Q. 

Some points of comparison can be drawn from the inspec-
tion of the energies z 2,0 , z A+l,O and z 0 , Eq. (2.21). In 
the expressions for z 0 and z A+l,O, the energy of the pion
nucleon subsystem is multiplied by ((A-1)/ A) 2 and (A-1)/A, 
respectively. Therefore, we can expect that the predictions 
of the (A+1) -body and the Galileo-noninvariant optical mo
dels will differ appreciably only in the case of the lightest 
nuclei. It is interesting to note that our (A+1) -body model 
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as well as the three-body one suggested in ref. 151 implies 
the evaluation of the pion-nucleon scattering matrix at 
somewhat lower energies than the standard Galilean noninva
riant optical model. 

On the energy shell, Q'=Q=v'2:nlE Ac• the energies z2,0 and 
z A+l,O increases with the increasing scattering angle (}. 

The angular dependence of an analogous type was earlier dis
cussed in the case of the Galileo-noninvariant optical mo
der71. Assuming, for example, the pion elastic scattering 
by 4He at E

77 
= 20 MeV in the laboratory system, the energies 

z 2,o and z A+l,O reach the values from the intervals 17.4-21. 2 
and 17.4-19.3 MeV, respectively. For higher energies E 77 , 

the range of energies z A+1,o and z 2,0 becomes larger; then 
however, the relativistic kinematics is to be used. For the 
reactions going predominantly via the single scattering 
mechanism, the predictions of the two Galilean invariant 
optical models may differ substantially only in the region 
of large scattering angles, since z 2,0 ((J=OO)=z A+l,O ((}=0°) 

and z 2,0 (8=180°)- z 2,0 ((Jdl 0 )=2(z A+l,O ((}=180°)- Z A+l,O ((}=0°)). 

A different situation occurs when the multiple scattering 
terms contribute significantly and, especially, when also 
the off-shell effects are important. Actually, off-energy
shell values of the optical potential are required in solving 
the dynamical equation (2.1), the energy z 2 being bound in 
the interval zero-plus infinity. On the other hand, the 
values reached by ZA+l extend from EAc to minus infinity. 
Therefore, the pion-nucleus scattering matrix can reflect 
quite different aspects of the underlying pion-nucleon am
plitude in the two optical models studied. The pion-nucleus 
elastic scattering will provide a severe test of the optical 
models considered in the ~33 resonance region as well as in 
the small energy ( E

77 
<;;. 60 MeV) interval since the multiple 

scattering and the off-shell effects seem to play an impor
tant role here. 

From the technical point of view, the two-body optical 
model exhibits some attractive features in comparison with 
the(A+1rbody one. Because the energy z2 is always positive, 
there is no need to construct models for pion-nucleon am
plitude in the nonphysical negative energy region. Moreover, 
the optical potential is never too far from the energy shell 
in eq. (2.1) since the energy z 2 lies between the energies 
corresponding to the initial and final state momenta Q and 
Q'. This is not the case of the energy z A+l,O . Therefore, 
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there are only minor input uncertainties in the two-body 
optical model. 

The inherent difference between the two optical models 
becomes apparent when the characteristics of 77 -mesoatoms 
are evaluated. In this case, the energies z A+1,o < 0 and 
z 2 0 ~ 0 represent two nonoverlapping intervals. Neglecting 
th~ remote poles and cuts, the pion-nucleon amplitude is 
a real quantity for z A+1,0< 0. Therefore, the optical poten
tial of the (A+1) -body model is real, too, and the model 
describes the 77 -mesoatom as a stable system. Because of 
z 2 o ~ 0, the corresponding optical potential is complex and 
pr~vides some phenomenological model for the true pion ab
sorption. Using this model, the 77-mesoatomic level shifts 
and widths are estimated and the possible physical origin 
of the imaginary part of the optical potential is discussed 
in Section 5. 

4. PROPAGATION OF THE PION-NUCLEON SU~SYSTEM 

The meaning of the particular IA scheme chosen in con
structing the optical model becomes more transparent if the 
optical potential is transformed into the configuration space. 
Closely following the considerations of Lenz121, we assumed 
here that the pion-nucleon amplitude is dominated by the ~33 
resonance of a Breit-Wigner form. The model is simple enough 
to allow for analytic solutions in the case of the configu
ration space optical potential and provides an insight· into 
the propagation of the pion-nucleon subsystem in the nuclear 
medium. 

The pion-nucleon scattering matrix reads 

... ... = ~ r r12 
< qrJt(z)Jqi> 11 o z-R+ir/2 

q ( . qi 
2 

p2c 

where R 
zation 

297 MeV, r/2= 55 MeV, p =V211z and 
2c 

f _ P2c a 
0- ----477 

(4. 1) 

the normali-

(4. 2) 

is determined via the optical theorem at the resonance 
energy. Further, a is the spin-isospin averaged total pion
nucleon cross section. 

For the scattering matrix (4.1), the optical potential 
(2.17b) reduces to 

8 

-+ A-1 ....,. , ....,. _,. _,. 

<Q' OJ Ur (EAc )J OQ > = ~ f e i~(Q -Q)•(<f~-1 +cf A-1) 
(2 77 )3 

-+ -+ -+ 
(4. 3) 

iV' ·<<f' ~ x e 1 A-1-<,A-1) 

x d3 cf' d3 cf d
3v A-1 A-1 1 

with 

Poo ( <f.A-1 ,.; A-1 ) 
z-R + tr/2 

-+ -+ 

q r • q i ---
2 

p2c 

Aar P Ac 
to= -:nil (4. 4) 

....,. -+ .... ;:t ....,. 
Momenta qr and q

1 
depend on Q', ~ and v1 , cf. (2.18a,b). 

Since we are not interested in the well-known nonlocality 
of the optical potential18 1 caused by the term (q r • q 1 ), we 
set approximately ( q r • q i) I p ~c= 1 . Effects associated with 
the finite range of the pion-nucleon interaction are also 
left aside since the problem of our main concern is the re
lationship between the energy dependence of the pion-nucleon 
amplitude and the modes of propagation of the pion-nucleon 
subsystem in nuclei. 

In the standard Galileo-noninvariant model, the energy 
z is given by (2. 18c) (we set P =0 in (2 .18c)), and the 

optical potential in the configuration space is obtained 

· Kr' ... I 
<r'OJU (EAc)JOr> =-...L(_A_)

2
t
0

(m+M)p(r',r)e
1 

r-r. (4 5) 
r 2 77 A -1 Jr, - r I . 

The nonlocal potential (4.5) describes the intermediate pro
pagation of the free resonating pion-nucleon system from 
the point r where the pion-nucleon collision takes place 
to r' where the system decays back into the' pion-nucleus 
channel. The propagation is characterized by the complex 
momentum 

K2 = 2(-A-)
2

(m+M) (E Ac -R +ir /2).' 
A-1 

(4. 6) 

If the m/ M term is neglected in Eq. (2.21) for the energy z 
the optical potential reduces to 

<r'OJU(E )JOr>=t p(r)B
3
cr'-r) 

r Ac 0 E -R+ir/2 
Ac 

(4. 7) 
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Therefore, the intermediate propagation of the pion-nucleon 
system is neglected in the static approximation. 

We extend now the configuration space analysis of the 
optical potential to the Galilee-invariant models. 

4. 1. (A+1) -body model 

The energy Z=ZA+1 is given by {3.14). In the extreme 
static approximation picture z A+1 -. EAc and we arrive at 
the expression {4.7) for the optical potential the error 
of which is of the order of m/M. 

The technique of effective nucleon momenta developed in 
the preceeding section makes it possible to incorporate the 
effects of the order of m/M into the optical potential. 
To this end we use {3.17) for the energy zA+1,0 and obtain 
the potential 

-.,01 (E )IO-. 1 A :lllM r' r <r U A r>=- -- --t0 --p(.L.±..!.-) 
r c 277 A-1 J.L 2 

{4. 8) 

exp(iK A+1 I r'-rl) 
X . 

1 ;-- 11 

The m/M terms obviously restore the main features of the 
nonlocal propagation of the pion-nucleon system in a nucleus. 
The propagation is characterized by the slightly modified 
momentum 

K2 
= 2-~ :lllM (EA -R +ir/2) 

A+1 A ..... l J.L c (4.9) 

and by the mas:; :lllM/1.1. =-(m+M)/(1+m/AM). It can be concluded 
that even the factorized optical potential {2.19) describes 
the nonlocal propagation of the pion-nucleon system, but 
the density matrix is approximated by the usual nuclear 
density p(r) taken midway between the points where the 
system is created and where it decays. 

The appearance of the density matrix p(r', r) is connec
ted with the terms of the order of (m/M)n, n >-_2. It is in
structive to use the exact Eq. {3.14) for the energy zA+1 
{of course, neglecting C ( 1J 1, 1J 2 , ••• , 1J A- 1 )) in constructing 
the configuration space optical potential. We obtain 

<r'OI U (EA )! Or>= - -1- __ A_ to :lllM 
r c 277 A-1 p. 

{4.10) 
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xI /v·ii 

where 

iKA+1<v>!r''-r'l 
e 

I?--?! 
(

->' --; -> -> d 3 d 3 
·P r +TJ 2, r -TJ/2)--v ~ 

(277) 3 • 

K2 (v)=2~ mM (E -R+ A-1 L + ir ). 
A+1 A-1 J.L Ac A 2M 2 (4.11) 

As a result of the (A+1) -body nature of the model, the pion
nucleon system does not move through nucleus as a free 
particles with a fixed momentum. The presence of the "spec
tator" nucleons causes an additional nonlocality of the po
tential and leads to the effective downward shift in the 
resonance position, cf. {4.11). 

4.2. Two-body model 

Quite different aspects of the pion-nucleon off-shell 
dynamics are emphasized by the two-body model in comparison 
with the (A+1)-body or the noninvariant one. If the pion
nucleon scattering is dominated by an s-channel resonance 
(e.g., by ~33 ), the resonance condition 

z- R:: 0 (4 .12) 

indicates in the case of the noninvariant model that the 
resonating quantity is the energy which belongs to the mo
tion of the pion-nucleon system as a whole. The kinetic ener
gy of the relative pion-nucleon motion is not directly in
fluenced by the resonance. On the contrary, the last energy 

is the resonating quantity in the two-body model ( Z= z2 , 
cf. (3.4)) whereas the motion of the pion-nucleon system 
is not affected by the resonance. This is the reason why 
the optical potential 

<r'OIUr!Or>=~ J.L2 I jLy.~ -iK 2<Y>I-;,_-; 1 

277 m e 7lf e ,-r--1·1 {4. 13) 

->' -> 3y 
( r + r -> ) d3 d xp ---+TJ TJ---

2 (277)3 

characterizes rather the propagation of the pion inside the 
pion-nucleon system than the motion of the system as a whole. 
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The potential (4.13) was obtained from (4.3), where z= z
2

•
0

, 
cf. (3.5). We have 

2 y2 
K2(Y)=2:lll(R-if'- 81il) (4.14) 

and (4.13) is correct up to the terms of the order of m/M . 
If the complete energy z 2 were used in (4.3), the den

sity matrix p (1', f) would enter the expression for the opti
cal potential instead of the nuclear density p(r). Therefore, 
also in the two-body model, the appearance of the density 
matrix p(r ' , r) is connected with the terms of the order of 
(m/M)0 , n ~ 2 . It is not surprising that even in the extreme 
static limit m/M-+ 0 the optical potential remains nonlocal. 
The nonlocality simulates the dependence of the optical po
tential on the reaction energy EAc' which has been suppressed 
in the two-body model. 

The pion-nucleon scattering matrix enters the optical 
potential at the energy which is indirectly related to the 
reaction energy EAc (due to the equation of motion). There
fore, the two-body model is not expected to work very well 
in the vicinity of the s -channel resonances, where the 
pion-nucleus cross sections are rapidly varying functions 
of the reaction energy. Particularly in the region of the 
1'133 resonance, the (A+l) -body model seems to be more appro-
priate. It .will be shown in the next section that a natural 
area of applicability of the two-body model seems to be 
a region where the t -channel resonances play an important 
role in the pion-nucleon scattering. Such a situation occurs 
in the low energy interval ( E Ac S:: 80-100 MeV) where the 
pion-nucleon s-waves are dominated by the p -and u-meson 
exchange 191 
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