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Hamcpait X.

CTtoxacruueckoe nonyuenue ypaeHeHua CUBAWMHCKOrG
anA camoTypOyReHTHOro ABvKEHMA cBOGOAHON HacTH bl

B pamkax nogxoga Kepwoy W MMMmoTesw O CTOXaCTUUHOCTM
MPOCTPAHCTBA MOAYUESHH RENATUBUCTCKME YPABHEHMA CTOXacTudec-
KoW MexaHmkn. B Hawel mopenm cywecTsByeT eue COBOKYMHOCT
YPaBHEHKMM FUAPCAMHAMUUECKOrC THNa ANA perynspHod v{x,t)

M cToxacTuueckoh uU(x,t) CKOPOCTeNM YacTuuw. Ecnu yuecTh une-
He AOpAZKa 92, rage U snementapuan anvHa, To 3Tw ¥DABHEHWA
AanT ypaBHgH_l:lH CuBawmnHCKOrO AnA ?(i’,t) B nNpeaenbHoM Mepexo-
ge, korga u(x,t)=> 0. A B npepgene £ 0 nonyyaeTca ypaeHe-
HMe HboToHa.

PaGoTa swnonHena JlaBopaTopuu TeopeTudeckol tuavKk
oudan.,

Mpenpear O6beIMHBHAOrO HHCTHTYTA ANEPEEIX uccaencBaxul, OySme 1979

Namsrai Kh. E2 - 12949

A Stochastic Derivation of the Sivashinsky
Equation for the Self-Turbulent Motion of a Free
Particle

Within the framework of the Kershaw approach and of a
hypothesis on the spatial stochasticity, relativistic equa-
tions of Lehr-Park, Guerra-Ruggiero and Vigier for the sto-
chastic Nélson mechanics are obtained. There is another set
of equations of the hydrodynamical type for a drift ¢ & .ty
and stochastic U(Z,t) velocities of a particle in our model
Taking into account quadratic terms in f, the universal
length, we obtain from these equations the Sivashinsky equa-
tions for the w#(&,1t) in the case u s 0. In the limit

£ -0, these equations acquire the Newtonian form.

The investigation has been performed at the Laboratory
of Theoretical Physics, JINR,
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1. INTRODUCTION

Recently, Sivashinskyfhhas noted a formal analogy between
the eguation of motion for a flame front and the Hamilton-
Jacobi equation for the motion of a free particle. He has
shown that if one introduces terms, which contain higher
order derivaties with respect to X; and describe a flame
structure of the front, then a plane flame front is unstable
to perturbations of a sufficiently long wavelenght’ 2/ Bs
a result, the initial deterministic equation can generate
a solution of a random-function type. An attempt was made
to interpret the equaticn with higher order derivatives as
an equation which describes a motion of a "quantized" par-
ticle.

However, within the Sivashinsky approach a selection of
a unique destzbilizing inherent field (self-generated field
potential) cannot be solved and a clear phy51cal basxs of
this selection is absent.

In this paper we wish to show that an equatlon of the
Sivashinsky type for the "self-turbulent motion of a free
particle may be constructed in the stochastic theory which
is based on the hypothesis of the spatial stochasticity’®/
At the same time we make an attempt to give a proper foun-
dation for. the mentioned selection of the potentlal of the
self-generated field.

There are three approaches to the construction of the
theory of the stochastic processes in physics. Two of them
are connected with diffusion processes and with properties
of electromagnetic vacuum as a source for the randommess
present in the Nature. Basic ideas and problems of these
two schools are reviewed in/5/,

The third approach is based on the postulate that the
random behaviour of a physical system is caused by the
stochastic character of the physical space. A stochastic
space, which can be used in theories of elementary partlcles
was first considered in papers ®/, (see also review’’



Mathematical spaces with a stochastic metric and a dguantized
domain were investigated by Frederick®4and Roy 4 respecti-~
vely. Paper/104s devoted to the construction of the relativis-—
tic kinematics of massive and massless particles in
the stochastic phase space.

Following an idea of Blokhintsev’'‘we have investigated
in the previous paperﬂ3the problem of motion of a particle
in the stochastic space with a small stochastic component
and we have obtained the ecuations of Nelson stochastic
mechanics in both the nonrelativistic and relativistic cases.

2. NONRELATIVISTIC EQUATIONS OF MOTTION

We consider motion of a single scalar particle, the coor-
dinates of which in a stochastic space R; oX;) are defined
by two terms

xi._x +by
X; being the reqular part of the coordinate and bj,some small
random vector with a distribution 7(b;) obeying the conditi-
on

fdr(b, ) =1, dr{b;) > 0.

Since in our model the actual points of the space are
of a stochastic nature, neither these points can be used
as a basis for a coordinate system, nor one can take a deri-—
vative with respect to them. However, the space of common
experience {(i.e., the laboratory frame) is nonstochastic
on a large scale. It is only in the micro-world where the
stochasticity manifests itself. One can then continue mathe-
matically from the microworld to this large-scale nonstochas-
tic space. This mathematical construction provides a non-
stochastic space which the stochastic physical space can be
referred to. This is the Frederick argument . In our case
the mathematical construction reduces to averaging with the
distribution 7(b;) at any point of the space Rg(X;) at
a given time. N ~

Therefore the averaged quantity <f(x;,t)> on Ra(%;) with
7(bj) is called the physical value of f(%,t). Assumption
about smallness of the stochastic component in the space
Ry(% ;) means that

F(x,,t) = <f(x; +b, ,1)> = [a°br(b,) (%, + b,,1) =

F) 1 9%
Lt —b.b.-
3%, f(x; .t + =b

= <f(x;,t) +by Pl Ja?ian(xk,t)+---> =

j (1)



= f(x; . t)+ ERAL(x,, 1), (0

where { is some universal length. We suppose that
f{b;)=r{=b; } . In the first approximation in the parameter
{ we have

<£(xi ) = r(xi,t).

Namely, our previous paper/3/has toncerned with this approxi-
mation,but now we shall not neglect the second terms in (1).
Then in the space-time of the large-scale a physical value
f(x;,t) has the form

F(x,,t) = f(x;,t) + (X, t). (2)

WE shall now make an attempt to obtain a general form of
dynamical equations for a scalar particle, in the case when
the term of order 2 is present in expression for the velo-
city and the force due to the eguality(2)

+ > + + fi* >fi fi
. = N Vo .= . o+ 1, .
VJ vJ + JE and i i Jp

*

We assume that the small values vi and f ¢ in the Smolu-

I
chowski-type equations for the V; take part only in a sym-
metrical combination with respect to transformations At--At
and 8%;»-8%;, i.e., they are even functions of At apd &x; .
Following Kershaw'Ye can construct equations for V. by the
formulas 3/ !

+ + + +
T 1 + - + .
v (xi,ttAt)+ {i;ng (x .t tm)“"“"Nj”Vj(xﬁﬁxi't)

+ ot At o+
" 16§‘—’.;ij G FomiL ) SR T8 )
! (3)

+
+ 2,_( f'j,g(xixﬁxf,t))] .
tox T} :

1

— * W . * + 3 +
xp(®, 78X OV, (x5, FOX 51 5% ,A0d % (8x 7).



s - b - H + -
Vi(k;,t % At}+{§n2v3’? (x,,t T Ap =—I\I——$—_1r’[vj (x; tox¥ . t)+

— At L+ ¥
+ 3 viom, tsxt,t);—m—(fj‘(xiiap*i,t)+

+ 3 ff% (x th?, thl x

X px; *ox% 0¥ (x; £8x T, 15 5xT,And Mex T, (4)
-+
where

\
= o0 T 8 0V, (x 7ox L uiax T, Ad *(5x T

are normalization constants, the symbol Eimeans symmetriza-

tion in the variables [...} and
1 + +
= et exp | - (5 TV T (X LA Z/4D , At}
= (4nD, At)32 iV (Y ot

In our case we have

% _ + _1 ¢t =
{igj’g(x - = 51 Bi 0 (x+y)= 5le, (x4y)+g , (x-V)),

for any function g, Ly
Upper {lower) sign 'corresponds to v (v]) - We assume

* + P
D,=D_=D, expand Vi, p, ¥i, fj,and f';7 in Taylor
series, integrate and retain only the terms of the first
order in  At, then we get

avi Vo
m(—2—+vEI VvIy=¢F + mDe-4i- vevt ., va’—'),
] ] P 3 b]
* {5)
M- 4 vF Vv i) o't D4 v vE Ly2viy,




; _ 1, + - N P
We pass to the variables Vj = 2(‘"3 v Y . uy = 2(vj vj)-.

=D Vilnp and sum (subtract) the eguations in (5) in pairs,
so we obtain the equations describing different processes
+
dcvj —Adsuj = ij{\ /m

(&)
du +axd v =F~ /m
¢ 5 j jnA

dcvj —}\d;vj =F‘j,/\/m

(7
dcuj +,\dsuj =Fj:}\ /m
g 2,204

where dc=a_t_+vivi’ d o =u; V, +DV"+ L7V, A =,
+ 1 .+ - + 1 ...+ r- - 1 e+ ’-
-1 =1 F~ -1 -1,
Fj,l 2(fj +fj )’Fj(-t) 2(f ”J ), i1 2(:“] j )

- 1 .+ - _ 1+ .- _1 e+ -
ﬂhn“?“i“” Lﬂl“z¢j*% ) FWGa(H AREIPE

3 __1 ;+_ — ' _L +_,—
B =g @7 1) Fegye 5y -1

Notice that the left-hand sides of equations (6) possess

a definite parity under the time reversal operation. Indeed,
since

Vi a—Vj N ui-»ui, dc —)--dc and ds"'ds'

by t » -1t , then it can be easily seen that the expression
d,vj-Adgu; does not change, but dguj;+Aidgvy (A =11}
changes sign under t » -t . Therefore, the right-hand side
of the corresponding equations (6) describing a force must
be chosen so that the separated equation will remain inva-
riant under the time reversal. This regquirement is fulfilled,
if we assume t"g - £, f-'"'—»f}— under the t -+ ~t, Then

Fj+A does not change, but F‘;A changes sign and

N -F’ s B by t-~t.
Fi *Fien i ien YR



Therefore the four equatlons (7) indeed reduce to a pair
of eguations.

If the terms of order Df® in the expression for d, are
neglected, then, as one can expect, we obtain the same fun-
damental equations (6) of Nelson, Pena-Auerbach and Skager-
stam, which we have obtained in”3/

The other set of equations (7} is analogous to the hyd-
rodynamical equations for the "liguids” v, and u,, pro-
vided D 1is interpreted formally as a viscosity coefficient.

In the limit u; =>0, i.e., VT Evgfwe obtain from (&)
and (7) the Newtonian equaticn

dcvj=F}/m
and, the following equations
'%%-%DN2+E%ﬁVj=ﬂﬂ/m

for a particle, respectively.

The last eguations in the case F, A"O represent equati-
ons of the Sivashinsky type for a free particle. For
example, assuming A =-1, we get

- 2 _ 2 o4
dcvj_ DV v; D? ij, (8)

which is invariant under the Galilean transformation.

3. RELATIVISTIC GENERALIZATION OF THE SCHEME

In paper / we have considered a method for an extension
of our techniques to the relativistic case. A basic hypothe-
sis was the following:

i) the stochasticity of the space lléx#) appears in the
Euclidean region ¢f the variables x# only;

ii} a shift of the coordlna;e Xg+X,+ 17 , is equivalent
to the consideration of the physical gquantities as functions
of complex times 1 +ir in the limit r +0.

In our case r is the random variable which makes possible
introducing of the hypothesis about a stochasticity of the
Euclidean space E , (X, , 7).

The importance of this shift in the time variable was
noted in 718/, In particular, a connection between quantum
mechanics and the Markov processes may be made more tran-
sparent {(see 713/ ),
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In the relativistic case the expression (1) acquires the
following form

. . 4
Fla )= <f(& +¥; Xy +1y,)> = [dygr(yg)-
(9N

. 2
f(x; +¥; » X +1y,) = fx,, 0+ of(x,1),

where
62 32 E E
O= — ==rr—— e = -
8X% + 8X§ and r(y#) Pat .Y# B

Using the language of random fiuctuations in the Eucli-
dean space stochasticity means that the fluctuations appear
in the Euclidean space E (x s Th Thus, in this case we
have the following expre551on for the transition probability

density

2
y
‘I’(yE,AS) L“"'—'_expg - E ls

(4 7DAs) 2 4DAs (10)

where S is some invariant parameter (proper time) .
According to our model it is possible to generalize the
equations {3) and (4) in the following way

ft wf 1 i
Uy (x, ,8+eds) + 2wy (%, ,8 +eAs) = Ff a4 (x  ~ey; B, +HY,,8)+

As
+ X “f (K, —e€¥{ X o+iy 2 +iy, )+
¥£Y'} = v 4 0 4
1
i¥gs

A . .
+ Z F’; (x5 —cyi,x0+1y4))]p(xi-syi,x0+1y4,s)x

t’)’l
tiyh)
) 4 {11)
x\I'J_,(xi—-eyi X +1y4,s;y,As)d Vg »

u :
(2 ,S5—eAS) + 2 u X s8- As =1 hx X+ ,X 41y ,8)+
£ (5 €As) R ( eAs) NT flu’y ( €y, X +iy ,.9)



Ead : EAS ’ .

+ X u'li1 (xi+eyi,x0+:y ,s)--—m—(F‘t“(xi+fyi,x0+1y4) +
€y,
U

iy,

+ X F""’“E i i

{ € + (xj+syi,x0+ly4))]p(xi+syi,x0+1y4,s)><

iy4

X llli-(xi ey, ,X 0+1’y4 83y ,As)d 4yE .

(12}
where
+ 4y . .
N~ =d E‘Pi(xi;yi,x0+1y4,s.y,As)p(xi+yj,xO +iy, .8
¢ - +1 for u‘li

~1 for u*

*

F‘ly and F'i"u are some forces, and VY1 can be chosen in the

form
.2
1 W =¥3) n i
v - — CXpi-————— |, ¥ "= (+uAs,u +AS),
- (4?7Di AS) 4Di AS - - -
(D_ =D, =D)
u't

are four-dimensional velocity vectors, and D is the

diffusion coefficient. From (11) and {12) we obtain after
some calculations

uft . v,
m as_ +u;avug ) = F‘E us mD(—%u——aVui + Dgu’i ).
dut v v. {13)
+ 13 . 2u
m( +u_d, uy) = Fi#s mD(—-]—)--avu'; + uﬁuﬂ_’f),

. ) 1 .
where g, I -é-(uﬁ —u#) =-D3¥In,



and O, =0 0202 |

Then the relativistic equations for velocities v* and ut
acquire the form

1
D v ~aD 0" =g}
1, o (14)
D u* +ADSV” =7H¢A
1
D, —aDvH = ok
{15)
&

+v &, , D ﬂuyav+D(D+ﬂ%2),)\=¢1,

d
here D, = g " s

The functions ¢{* ,...¢ # are expressed through F!,...,FF
in the same way as in the nonrelativistic case.(ﬁgﬁ“(égfﬂt)

does not change {(changes) sign, but ¢ﬁ —*¢j§ and ¢;” -4—n¢iﬁ
under the "time" reserval 8-»-8.
Sivashinsky-type equations (8) now have the form

Dv# =~D(a+ %0 ®)vk (16)

invariant under the Lorentz transformation.

We see that if we neglect the term of order DfZ in the
définition of the operator Dy, then in the case A=1 we
have from (14) the relativistic equations of Guerra-Ruggi-—
ero 14/ and Vigierf15ﬂ which we have, however, obtained
by a different method.

The application of the methodfls/which is based on the
concept of a derivative with respect to the direction of
some time-like wvector is useful and interesting in the re-
lativistic description of a particle motion. So, for example,
by this method the eguations (11) and (12) beccme essential-
ly simple due to the elimination of the dependence upon bl
in the expression for the ¥: . In this case ¥: can be
chosen in the following form

2

¥, = (47DAsy Y © expi - 1,

4DAs +



where the guantities 5, and s_ may be taken instead of the
proper time; they can be interpreted as some parameters such
that the derivativies with respect to them are equal to
3/9sy=u¥d .

Then the equationsz (13) acquire the form

Jut F# a
L= +2u” g uk tDojy uk 4 im T
E F/
o R .
au , F'i
= 12uvavu“i])ueuﬁ_+ { fm™1!
aSt ) F_'u' '

Having in mind the definition of the derivative with res-
pect to directions uﬁ and uf , we obatin from these equa-
tions the equations (14) and (15) with D, =v” 43,  and
Dg=u”g, +Dog . The equations of the type (14) with A=1
and D,=v"d,, , Dg=u¥9,+D0  have been obtained first by
Pena-Auexrbach 17/ and Lehr-Park 718/ . They are, of course,
equivalent to the one with D, e +VV6V and !'DS=UVQ,+DD-

4. CONCLUSION

We see that starting with the hypothesis about the spati-
al stochasticity and the assumption u;=>0, we cbtain the
Sivashinsky equation. He has shown that Galilei-invariant
turbulence -~ producing potentials imply instability of the !
uniform rectilinear motion of a particle and yield random '
fluctuations of its trajectory. Despite the fact that the
clagsical-trajectory concept is retained, the mechanics of
the particle then admits quantum-~type effects: an uncertainty
relation, de Broglie-type waves and their interference, dis-
crete energy levels, and zero-point fluctuations.

These zero-point fluctuations, as we have seen previously,
are responsible for the space stochasticity on a small scale.
The self-interaction potential of a particle (the right-
hand side of equations (8) and (16)) which generates turbu-
lences in the motion of a free particle is of a stochastic
origin. In other words, stochasticity (disappearing in the
limit u;=>0) as a self-memory makes the motion for vi (%5.1)
unstable.
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