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1. INTRODUCTION 

The scattering of a particle by a system of bound scat­
terers can yield valuable information about the amplitude 
of the elementary scattering act and about the properties 
of the bound system as well. Since the pioneering works of 
Fermi 111 and Goldberger and Watson121 the impulse approxima­
tion (IA) has been the basic ingredient of practically all 
microscopic models of elastic scattering (optical model, 
Glauber theory) and inelastic scattering (plane or distorted 
wave impulse approximation, coupled channel method) on a com­
posite target. IA refers to procedure which makes it possible 
to reduce effectively the many-body problem of projectile­
composed system scattering to the two-body one. Practically, 
one assumes that the projectile is scattered by a free tar­
get particle the impulse distribution of which is determined 
by the wave function of the bound system. 

In spite of the fact that the calculations based in IA 
have been refin~d considerably in the last few years / 31, 
there is a fundamental uncertainty concerning the choice of 
the energy dependence of the elementary scattering amplitude. 
In fact, the energy E at which the projectile-free scatterer 
amplitude is calculated represent~ a free parameter of the 
model. This deficiency would not be so serious if IA were 
used only in such kinematical situations where the elementary 
amplitude depends weakly on the energy (as was required in 
the original derivation 11·21 ). Nevertheless, for lack of 
other techniques, one often assumes IA to be valid also in 
the resonance region ( ~33 resonance in the pion-nucleon 
system) or at energies which are considerably less than the 
mean kinetic energy of the bound particle ( " , K-meso­
atoms). In such a type of calculations, the elementary am­
plitude is usually evaluated at the reaction energy E of 
the projectile and the whole composite system. 
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A further defect of IA has been recently pointed out 
by Nagaraja~ et al. 141, namely that the standard choice of 
the energy E= E leads to models which are not Galilee-in­
variant. We believe that the low energy scattering should 
be described in terms of Galilee-invariant expressions (if, 
however, the number or type of particles does not change 
in the reaction). Moreover, the requirement of the Galilean 
invariance could restrict somewhat the arbitrariness in 
choosing the energy E. Those are the reasons for a carP.ful 
reexamination of IA. 

Elastic scattering of a pion by nuclei is studied here 
in the framework of a nonrelativistic optical model. Only 
when numerical calculations are reported, some relativistic 
corrections are introduced. The Galilee-invariant optical 
model is derived from the elementary pion-nucleon scattering 
amplitude f(E) using a correspondingly modified IA. In 
Section 2, an explanation is given as to why the optical 
potential and other models based on the standard IA violate 
the Galilean invariance. Further, a relationship is revealed 
between the choice of the energy E and the validity of the 
factorization approximatio~. 

The factorization approximation is connected with an 
approximate treatment of the motion of the target nucleon 
(Fermi motion). If the dependence of the pion-nucleon am­
plitude on nucleon momenta is either completely neglected 
(static approximation) in constructing the optical potential 
or the pion-nucleon amplitude is evaluated at some fixed 
effective nucleon momenta, the optical potential is obtained 
in factorized form: the elementary amplitude by the nuclear 
form factor.Usually, one assumes the target nucleon to be 
at rest in laboratory system: however, more appropriate ef­
fective nucleon momenta have been also introduced / 5-8/ . 

The main result of Section 2 consists in the following 
statement: If the energy E is chosen in such a way that the 
resulting optical model is Galilee-invariant, then there 
exists a unique combination of effective target nucleon mo­
menta in the initial and final states, by means of which 
the optical potential can be expressed in factorized form 
while the error caused by the factorization procedure is 
of the order of (m/M) 2 ~ 1/ 50. An arbitrary factorization proce­
dure used in connection with a Galileo-noninvariant poten­
tial leads to an error of the order of m I M - 1/ 7 , m and M 
being the mass of pion and nucleon, respectively. 
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2 . . IMPULSE AND FACTORIZATION APPROXIMATIONS 

In the framework of the nonrelativistic potential 
the pion-nucleon scattering matrix T(E) is given by 
two-body equation 

T(E)= U(E)(1+G(E)PT(E)). 

theory, 
the 

(2. 1) 

Here, P=l0><01 is the projection operator, which projects 
onto the nuclear ground state. The Green function 

-1 G(E) = (E-h 0 -H A+ if) 
(2. 2) 

contains the pion kinetic energy operator ho and the nuclear 
Hamil toni an H A . The nucleus consists of A nucleons, and th~ 
Hamiltonian HA can be split into its kinetic and potential 
energy parts 

A 

H = ~ h .+ UA . (2 3) A ~1 I • 

The complex many-body character of the problem is hidden in 
the potential matrix U(E), which fulfils the equation 

U(E) = Ar(E) + (A-1)r(E)G(E)U (E)-

-A r (E)G(E) PU(E). 

The Watson formulation 12 •4 1 of the optical model is used 
here. 

In the following, the first order optical potential 

U(l)(E) = Ar(E) 

(2 .4) 

(2. 5) 

will be considered. Neglecting the remaining terms in (2.4), 
we assume roughly that virtual nuclear excitations do not 
yield an important contribution to the elastic scattering 
(coherent scattering approximation) . The pion scattering 
matrix for a bound nucleon r(E) is defined as191 

r (E )=v + VG(E) U r(E) . 
(2.6) 

Here, v is a pion-nucleon potential and U is the projec­
tion operator which projects on the antisymrnetric nuclear 
states. The operator r(E) is still a very complicated many­
body quantity. 
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In order to reduce the scattering problem to a two-body 
one, we introduce the pion-free nucleon scattering matrix 
t(E) as 

t(E) = V+ vd(E)t(E), (2. 7) 

where 

- - -1 
d(E) = (E-h

0
-h

1
) . (2.8) 

The following relation holds between the matrices r(E) and 
t (E) 

r(E) = t(E)+ t(E) (G(E) -d(E)) r (E). 

Further, the impulse approximation is introduced by the 
relation 

r(E) = t(E ). 

(2.9a) 

(2. 9b) 

The energy of the pion-nuc~eon subsystem is a dynamical va­
riable in many-body theories (e.g., in the Faddeev theoryiDf; 
therefor_e we lack any reliable guide for the choice of the 
energy E._ The validity of IA and particularly the choice 
made for E can be tested, in principle, via Eq. (2.9a) . . 
However, this tedious task has never been undertaken up to 
now and one usually postulates 

E=E. (2.10) 

Adopting for a moment the choice (2.10), we analyze in 
detail the first order optical potential 

-> -> (1) ->-> 
< p 'K '0 I u (E) I 0 K p > 

'(-+, ..... , -+ .... 

A 
lr1·k1-rrk 1) fe _, _, 

(
217

)6 P/t',((r'11 r 1 

(2. 11) 

-+,-+, ........... 3,3 3 3, 
x < p k 1 I t (E) I k 1 p > d k id k 1 d r 1 d r 1 

in arbitrary system. To accomplish this, we introduce the 
density matrix 

-+, -+ -+, -t,-+ -+ -+ -+-+ -+ A 3 
p (r 1 ,r 1)= f<K Olr1 r2 ... r ><r ... r2r 110K>II d ri 
K'K A A i=2 (2. 12) 
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for the target nucleon "1". The spin and isospin variables 
are suppressed in (2.11), assuming that the nuclear spin J 
and isospin T are both equal to zero.In the Table,the ki­
nematical variables are introduced into the three systems 
of our interest. The pion-nucleus and the pion-nucleon cent­
re-of-mass system '"ill be referred to as Acm and 2cm, res­
pectively. ~amiliar relations hold for the momenta defined 
in the Table 

P "K 
-> -> 

-> p k 1 Q = :lJi ( m - AM ) ' q i = 11 ( rn - M ),etc . . (2. 13) 

where 

/.l =m M/ (m+M) ~1 = mAM/(m+AM), (2. 14) 

is the pion-nucleon and pion-nucleus reduced mass, respec­
tively. 

Table 

Notation used for energies and momenta of the interacting 
particles 

Arbitrary system A em 2cm 

Initial (final) 
pion momentum p(p') Q(Q') qi(~) 
Initial (final) 

-> -> 
nuclear momentum -;. (/Z') -Q(-Q') 

Initial (final) 
momentum of nucleon "1" k1(i{~) k(k') -q .... i(-qf) 

Reaction energy 
(momentum) E E Ac(p Ac) z(p2c) 

In order to express the optical potential in terms of 
Galilee-invariant variables, it is advantageous to introduce 
the Jacobi coordinates /5I 

~~ = -rA- -r A-1 l= 
-> -> -> 
r A+ r A-1 + ··· + r 2 

A-1 
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... 
~2 = 

... ... ... 
r A+ r 4.=..!_ - r A-2 ---2-- l A-l= t -?1 

... 
1: _ rA+rA·t+ . .. + r3 
s A-2 -

... 
- r 2 l· =t -;i 

A-1 A - 2 

into (2.11) and (2.12) and to define 

... , ... ,1 3 3 ... , ,... , ... ,... ) ... I c ) I ... <p k1 t(E)jk1p>=(211) 8 (p +k1 -p-k 1 <qr tr z qi > . 

If the substitutions 

K A-l ~ -+ ~ -+ -+ -+ 
1{1 =A- 2A (Q-Q )-vl = kerr -vl 

1<., ...... -+ 

k ' A-1 (Q Q') ... , k' ... , =-+-- - -v = -v 1 A 2A 1 - err 1 

are used in (2.11), we encounter two delta functions-

(2. 15a) 

(2.15b) 

(2 .16) 

o,3( ... ' ... , ... ... ) "3( ... ' ... ) . . d~ ' u p + K - p -K u v1 - v 1 . After 1ntegrat1on over -v1 , 
the resulting expression for the optical potential is ob­
tained 

< p'K'' OJ u 0
\E) I O/(p> = (277 )38 3(p' +K' -p-K) < Q' 0 I u /E Ac) I 0 Q > 

<G ; ol u (E )jOG > = _A_J i t~ 1 (Q'-Q>·£' +l > C2.17al r Ac 3 e A-1 A-1 

... 
i v1 

x e 

(211) 

<~:-1 -lA-1 >p00 Cl~_ 1 ,lA-l ) < iir I tr(z) j qi > 

31: , 31: d3 
X d SA-ld SA-l v 1 . 

(2.17b) 

The density matrix p 00 (~ ... A-l•~:_ 1) does not contain the 
motion of the nucleus as a whole. In obtaining Eq. (2.17b) 
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we used the invariance of the transferred momentum p'-p = 

=Q' -Q under the Galilean transformation. 
It is instructive to write down the explicit expressions 

fo r the kinematical variables on which the pion-nucleon scat­
tering matrix depends 

... ..., A-1 J.L ... , ... J.L ... ... .1:!:... ... 
q r=Q- 2-A- M(Q + G) + Mvl=qr,o + M vl (2 .18a) 

... A 1 J.L ... ... J.L ... J.L ... 
Qi=Q- 2~ M(Q '+ Q) + Mvl= qi ,o + Mvl (2.18b) 

(i) +kt)2 p2 
----- = EA + _....:;____ __ 

2(m + M) c 2(m+AM) 
z = E 

(2.18c) 

-1 - c! P + ~CQ'+ Q)-v l 
2(m +M) J.L A 2 A 1 

From (2.18~) we can see that the energy z depends on the 
momentum P = p + ; of the whole pion-nucleus system. The 
dependence of the optical potential on the momentum P can­
not be removed by any substitution for the variable ~ since, 
except for the energy z, the other terms in (2.17b) contain 
the obviously Galilee-invariant quantities Q', Q and E Ac· 
It can be concluded from (2.18c) that the optical potential 
depends on the system in which it is evaluated and the Gali­
lean invariance defect is more serious in the case of light 
nuclei. 

The step of our derivation, in which the dependence on 
momentum P was introduced into the optical potential, can 
easily be traced out in (2.8) and (2.10). In fact, the Green 
function d(E) contains the (A+l)-body energy E and the two-
body Hamiltonian (ho+h 1 ) as well. The behaviour of these 
quantities is apparently quite different with respect to the 
Galilean transformation. In the next Section we shall g~ve 
two alternative definitions of the auxilliary matrix t(E), 
i.e., we shall construct different impulse approximation 
schemes, which maintain the Galilean invariance of the optical 
potential. Now we investigate in some detail the problems 
associated with the factorization approximation. 

The optical potential (2.17b) becomes much simpler when 
the terms J.L v1/ M are neglected in the expression for 
<qrltr (z)jqi>. Then we have 

<Q 'OIUr(EAc )jOQ > =AF(Q' -Q) <qr 0 It (z 0 )!q . 0 >, (2.19) 
, r 1 , 
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where the momenta qr,o and q i ,O are defined by (2 .18a,b) 
and . A-1 ~. ~ ~ 

.., .., I -a(Q -Q)•.fA-1 -> ""' 3 

F(Q '-Q)=f e Poo ( .fA-1 , .fA-1 ) d .f A-1 (2.20) 

is the nuclear form factor. For definiteness, we wo rk in 
Acm(P=O) , where 

... ... 2 
z = E - l.( A-1 )2 (Q '+~ 

0 Ac 8 A m+ M (2 . 2 1) 

The meaning of the factorization pro c edure lead ing t o (2 .1 9) 
can be explained in the following way. The pion-nucleon 
scattering matrix is evaluated at fixed effective nucleon 
momenta k~rr and k' eff rather than folded with the density 
matrix over all nucleon momenta (compatible with the momen­
tum conservation in the elementary scattering act) . 

It should be noted that in the standard static approxima­
tion one neglects not only the terms containing the variable 
v1 , but all the terms in (2.18) proportional to m/ M. A more 
consistent approach relies on the assumption that the target 
nucleon is at rest in the laboratory system. This is equiva­
lent to the following definition of the effective nucleon 
momenta: 

... 
k =z-1i. 

err,o A 
... -+ k . - K A-1 -+ -+ 

err,o -p;+A(Q'-Q). (2.22) 

While the early use 1 5- 71 of the more sophisticated defi­
nition (2.16) has been motivated mainly by intuitive consi­
derations, it will be shown here that the effective momenta 
(2.16) represent the optimal choice. 

In order to estimate the error caused by the factoriza­
tion approximation, we represent the pion-nucleon scattering 
matrix in (2.17b) as a power series 

• 

< q f I tr (z)! qi > = < G'l t r (E Ac) I Q > 

+ x[(4+ ~ )<qrlt/EAc)l<ft>]x=O 
aqr a'it 

x Cv1 - ~-;.1 (0 ' +Q))- r[~<Q'It/z)IQ>]x=O 
P Ac P 2c 

A-1 2 ... -+ 2 A-1 -+ -+ ~ 2] 2 x[(-) (Q'+Q)- --v 1.(G'+Iol)+v1 +O(x ). 
2A A 

(2. 23) 

• 

Here, x = m/M and p 2c =V2JL z . Therefore, the terms linear 
in x contain the variable v1 in two different combinations: 

2 -+ -+ 
v 1 and (a· v 1 ), where a is a constant vector. Earlier it 
has been shown 1 51 (see also 191 ) that the identity 

-+ ... 
A-1 -+ -+ . -+ ~· ~ 
i-(Q'-Q)•(~' +~A-1) IV1•(<,A-1-<,A-1) 

f 2A A-1 (-+ -+ ) e e a-v 1 
(2.24) 

.... -+ 3. 3 3 
x pOO(~A-1t~A-1 )d :;A-1d :;A-1d V1= O 

holdp for J =0 nuclei. Thus the (a.~ 1) terms vanish when 
(2.23) is substituted into Eq. (2.17b). The proof of (2.24) 
is based on the substitution 

... i-: 1· <l~_ 1-~:_ 1 > . ... · ... ... ... 1-:1. <(\-rlA-1 > 
v1e ~ t<v~ A-1-v~~-1)e (2.25) 

Inserting (2.25) in the integral (2.24) leads to the va­
nishing Fourier component of the nuclear current. By virtue 
of the substitution (2.16) ·the ,;oordi!;ate~JA_ 1 and (A-1 
enter the expression exp(i(A-1)(Q'-Q).(~~_ 1 +t A- 1)/A)syrnmetri-

rt .... ..... 4 

cally. That is the reason why no (~o~'..:.Q)F(Q'-Q) terms arise 
when the per partes integration succeeding the substitution 
(2.25) is performed in (2 . . 24). The effective nucleon momen­
ta kerr and Kerr defined by (2. 16) are unique in the 
following sense: Any other (linear) combination of pion and 
nucleon momenta necessarily cause an error of the order of 
m/M in the optical potential since the (a. v1) terms do not 
vanish. Particularly, it is the case of the effective momen-
ta k'err,o and kerr,o as defined by (2.22). 

The v1 term in (2.23) yields a nonvanishing contribu­
tion to the optical potential. Solely due to this term, the 
inaccuracy of the resulting optical potential (2. 19) i _s of 
the order of m/M . The question arises as to whether the 
peculiar appearance of the Vf term in the two-body energy 
z has something to do with the Galilean noninvariance of 

the last quantity. Let us suppose for a moment that the 
energy z depends only on the scalar combinations of the 
Galilee-invariant kinematical variables, such as E Ac 1 q~(r) , 
-+ ..... , 2 ...... , -+, 
q 1 • qr and maybe also qi(f) , q 1 ·<If , etc. 1 where 

..... ..... -+ -+ 
-+ , p k; , p, k 1 
Q.=(--...&-) Q=(---). (2.26) 
1m M r mM 
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Evidently, the v~ term enters such combinations only to­
gether with the coefficient (m/ M)2,e.g., 

................ p. ........ .... P.22 
q( qi=qr,o • qi ,O + Mv1-(qr.o +qi,O )+(M) v1 · (2.27) 

Therefore, no v~ terms linear in p. I M arise in (2. 23) . 
We can conclude that the factorization approximation yields 
an optical potential correct up to m/M terms, provided 
that the effective momenta k~rr and kerr are defined ac­
cording to (2.16) and the Galilee-invariant version of the 
impulse approximation is used. 

A detailed discussion of the possible Galilee-invariant 
forms of the energy z is postponed until the next Section. 
We would like to emphasize once more that the quality of 
the factorization approximation is intimately connected with 
the particular IA scheme used in constructing the optical 
potential. Generally speaking, the factorization approxima­
tion based on the optimal effective momenta k~rr and kerr 
will give much better results in Galilee-invariant models 
than in the noninvariant ones. 

The factorization approximation is not, of course, of 
primary importance since the integration over d 3v 1 and d3 .;~_ 1 
can be performed numerically in (2.17b). Such studies have 
been recently undertaken by several authors 1 12 ·131. Practical­
ly, however, the time-consuming numerical integration makes 
it impossible to take into account other important correc­
tions, such as corrections to the coherent scattering appro­
ximation or to the true pion absorption. According to our 
opinion, _the surplus in accuracy achieved when the factoriza­
tion approximation is abandoned hardly warrants the additio­
nal effort since the main difference between the exact and 
the approximate results comes from the dubious v~ term in 
~~, Galileo-noninvariant expressions for the two-body energy 
. z • .Tl!e- .calculated results of 1131 are worth mentioning in 
thi.~ .x;espect. The differential cross sections for elastic 
rr--; : .He ... scattering lie closer to the experimental data when 
~?Lcula~ed in the factorization approximation frame than 
the.. '-exact ~esults (i.e., when the d3 v 1 and d

3.;A,_ 1 integra­
tions. are.. performed) • 

Tne ~onp~pt of optimal effective nucleon momenta appeared 
to be a useful tool also in studying inelastic pion-nucleus 
prbce~ses. Recently, we have investigated the pion-induced • 
knock-out reactions 1 141 on 4He (e.g., the reaction 
- 4~e(rr-,rr-p) 3H ) in the modified plane-wave Galilee-invariant 
impulse approximation. In order not to violate the Pauli 
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principle, we assumed the pion quasielastic scattering by 
a nucleon and by a three nucleon cluster as well. Also for 
the knock-out reaction we succeeded in finding effective 
nucleon momenta, which render the factorization approxima­
tion valid up the m/ M terms. In this case, the effective 
momenta differ, of course, from those defined by (2.16). 

In concluding this Section - remark will be made con­
cerning the .T f 0 nuclei. Now, Eq. (2. 24) is not valid any 
more and terms like 

~<OIJIO>F(Q'-Q) 
AM 

(2.28) 

contribute to the optical potential. We have shown
1151

that 
except for very special situations such terms can be neglec­

ted. 
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