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Kanwaii B.H., Ckaukos H.5. E2 - 12919

Tounoe pemweHne PEenATHBUCTCKON KYNOHOBCKOMN
npofneMs ANA CBA3AHHHX COCTOAHMMA ABYX JacrTuy
B KBAa3WMOTEHUMANbHOM MOAXOoAHE

Uensiw paboTsl ABNAETCA HAXOMAEHWE TOUHBIX pewenuin pensa-
THBUCTCKOTC KBA3UNOTEHUMaNLHOTO ypasHeHwAa Hapmwesckoro,
koTopoe npepcrtaBnAeT cofoid npAamoe pensTueucTckoe 060GweHMe
ypaesenua llipepuHrepa B uMRynecHOM npeacTasneHuu. BriGparHbii
B KaUeCTBe KBA3MNOTEeHUWana nporaratop obMeHa GeaMaccOBLM
ME30HOM TaKKe NpefCcTaBneH B BUAE reOMeTpuuecKoro obob-
WUEHWA HEPENATHBUCTCKOFC noteHuywana Kynowa. Mokasano, uTo
COOTBETCTBYKNUMM DelleHNeM DPENATUBUCTCKOrS ABYXUACTHUHOMO
YPaBHEHUs RBARETCA NpPAMOe reoMeTpuueckoe oSobueHue Hepe-
NATUBUCTCKMX PElleHnd B CMLICME 3aMeHB 3BKNUAOBON reoMeTpuu
NMPOCTPEHCTRBA MMAYNLCOB Ha reoMmeTpun JloGauvesckoro,

PaboTa BunonHena a flaGopaTopun TeopeTuueckol
dn3amxn OHAY,

Ilpenpunr OSvenmaensoro mucTaTyTA AfepHEX Hcchenosanult, JyGua 1879

Kapshay V.N., Skachkov N.B. E2 - 12919

Exact Solution of the Relativistic Coulomb
Probiem for Two-Particle Bound States in the
Quasipotential Approach

A composite system of two relativistic particles is
studied on the basis of the Kadyshevsky quasipotential
equation, in which the "Coulomb' potential is taken in
the form of a propagator of the massless-scalar-particle
exchange. The obtained exact solutions to this equation
are shown to be a geometrical generalization of nonrelati-
vistic Coulomb wave functions in the sense of change of
the Euclidean geometry of momentum space to the Loba-
chevsky geometry.

The investigation has been performed at the
Laboratory of Theoretical Physics, JINR.
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1. INTRODUCTION

The description of the two-particle relativistic system
is one of the principal prcblems of the guantum field theory.
To study this problem within the four-dimensional Feynman-
Dayson formalism a completely covariant equation has been
derived and named by the Bethe-Salpeter equation/1-2/. How-
ever there is no clear physical interpretation of wave
function dependence on the relative time of twe particles
in the framework of the four-dimensional Bethe-Salpeter
approach. A guasipotential approach suggested by Logunov
and Tavkhelidze 4/ does not contain this shortcoming.

& guasipotential approach of Kadyshevsky ®/ is based
on the Hamiltonian formulation of quantum field theory 8/,
A distinguishing feature of such a formulation is that
4-momenta of all the partlcles even in intermediate states
are on mass surfaces™

~p*® =m*. {1.1)

As a result quasipotential equations for a relativistic
scattering amplitude and wave function appear to be three-
dimensional. In the case of spinless particles with equal
masses (m1=ﬂn2=nﬂ these equations are written in the

form

A(p.3)~——V(p GE ) ¢
- o (1'2)
1 + o mdk A(k,
s Ve GO
@2 Vk2+m2 RE,-2E;+i¢

*When it is not needed we use a unit system h=c¢ =1,

2
Efﬂ"—l——,where ¢ is the charge of an electron.
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-3 1 e ) mdg -
2E -2E ¥ =V kG E Y (k). (1.3)
(2E ~2E )Y (D) Rl “)\,-r;zme o &)

Here all the momenta are given in the system of the inertial

- -3 -+ S5 o = a5
centre (py =-py =p), E,=yp 2 m? Ek=qv'k2+m2 » 2Eq is the
total energy of the system, and V(ﬁ.k,Eq) is the quasipo-
tential.

Condition (1.1) in the 4-momentum space gives a hyper-
boloid surface, the upper sheet of which represents a cons-
tant negative curve space - three-dimensional Lobachevsky
space. Forms of equations (1.2) and (1.3) differ from cor—
responding nonrelativistic Lippman-Schwinger and Schrédinger
ones only by relativistic sense of expressions for Ep, Ek
and element of integration volume

dQ»:—L-——mdk_:*
Y VEZim?
which is an element of volume in the Lobachevsky space.

For bound state problem, according to procedure /4:5/,

a quasipotential is formed with the use of the relativistic
scattering amplitude on the mass surfacg, as solution of

(1.2) relative to, unknown function V(ﬁ,k:E(IL In this case
the amplitude A(P,q) is considered to be given, for instance,
by diagrams of field theory. In ref.”® there was suggested

a modification of this approach, allowing to keep the loca-
lity of one-boson exchange amplitudes, chosen as a gquasipo-
tential in the Lobachevsky space beyond the energetic surface
Ep= E q -

In the present paper, equation (1.3) in the case of
a quasipotential, corresponding to the exchange by a mass-

, {(1.4)

less scalar particle, - the "relativistic Coulomb"
-+ -3 ez
Vip.k;E )= — (1.5)
(P~ k)

is being investigated.

The difference between (1.5) and quasipotentials, arising
from the production in the pointed manner, is in the ab-
sence of a factor, containing a parameter dependence on
a system energy 2Eq. We have omitted this factor because
its calculaticn, needed in Practical applications does not
cause any difficulty, and its absence makes a geometrical
analogy of nonrelativistic and relativistic equations more
evident.

As is seen from ref,/10/ quasipotentials of one-boson
exchange in the momentum representation can be represented

4



in the "absolute form",that is,in the form of a direct geomet-
rical generalization of nonrelativistic potentials. This
allows us to represent eguation (1.3} with quasipotential
(1.5) in the form of an analcogue of the Schrddinger equa-
tion with the Coulomb potential in the Lobachevsky momentum
space, and to find solutions (1.3) also in the form of

a geometrical generalization of known nonrelativistic wave
functions.

In the next paragraph we shall give necessary information
about the Lobachevsky geometry. In §3 equation (1.3} with
quasipotential (1.5) is transformed to the "absolute form”.
In §4 exact relativistic wave functions - solutions of egqua-
tion (1.3) are found and a relativistic condition of level
guantization of two-particle system energy is derived.

2. THE LOBACHEVSKY GEOMETRY
AND A RELATIVISTIC KINEMATICS

It is known that all the formulae of the relativistic
kinematics, including a relativistic velocity addition law,
can be obtained by the substitution of the Euclidean geo-
metry of the three-dimensional velocity space for the Loba-
chevsky geometry/1113/. Thus in a special xelativity theory
the relq}ive ve{pcity of two particles, moving at the velo-
cities V, and Vy - o .
Vi - Vi

- - k -+ 9
. vy —Vy —[1—(1—-?2—) ] _;;E (Vka -vy)
v =
1 32 3 ’ (2.1
* u__liul-fﬂi_) )
c? c?

from the geometrical point of view represents the difference
between two vectors: ¥, and V, in the Lobachevsky space/12-18/

In the relativistic theory, where the gnergy of the par-
ticle P is expressed over the momentum P by formula (1.1),
a thrgg—dimensional velocity is determined by the relation

P
P Po
One may introduce various coordinate systems on surface
(1.1). As coordinates in the Lobacheysky space we choose
the Cartesian coordinates of wvector P on the hyperplane
P,=0 onto which, the hyperboloid is mapped while projecting
from the point{W,UL Thus, all the three-dimensional ﬁ -

space with a metric:



5
s =ap?_
m%:p

32
dp) n AT
g = gij(p)dp‘dpJ (2.2)

will serve now as a model of the Lobachevsky momentum space.
Volume element (1.4) can be obtained from this metric. In
the nonrelativistic limit (C-=) 5 hyperboleid curve tends
to zerc and the Leobachevsky space turns into an ordinary
Plane three-dimensicnal Euclidean momentum space. Here

a »dp; as? .ap’2 A group of the Lobachevsky space motions
realized on hyperboloid (1.1) is the Lorentz group., Pure |
Lorentz transfermations Ly {("boosts™), when Leym,0)=(k k),

T PR eA ko _ Pk
LiTp =0k =&, -p- K e ), (2.3)
~1 ° P k —El;
@ B =0OK)° =A% = 0O (2.4)

in the nonrelativistic limit turn into transfosmagiogs gf
the translation in the plane Euclidean space: p(~)E~p — K.
In the spherical coordinates

Ep = Py =mchxp,]—5=a

(2.5}

equality - (2.4) takes on the form of a theorem on a cosine
of a compound angle in the Lobachevsky trigonometry*”246/
- -

Sy, = hx, Ohx, — i shy shy, . (2.6)

The hyperbolic angle x in the relativistic kinematics
is called rapidity 7/. A distance in the velocity space of
relativistic particles, that is, in the Lobachevsky space,
is known to be measured in terms of rapidity /17:187.  px-
pression

=mdy, - .
dsp. mdy, (2.7)

as it follows from (2.2) serves as an analog of a radial
Euclidean length element



d8; cuer™ 4191 _ _ (2.8)
in the momentum Lobacheysky space.

The vector Apk =p(-)X  can be considered as a relati-
vistic geometric generalization of the momentum transfer
vector B- E and is a difference between two vectors in
the Lobachevsky momentum space. Really, using a relativis-
tic pirticle Ehree-—dimensional velocity definition

‘?k =—:;—, \?p=—p—o—, it is easy to show from (2.3) that
> D 5
7. Apk Pl
rel Aop’k (p (_)k)o

where the sign {-) means a difference of vectors in the
Lobachevsky space /7'8/. With the help of (2.3) and (2.4)

it is easy to see that the gquadrate of the four-dimensional
vector of the momentum transfer is expressed by the vector
Pk in the following way /7'8/

t=(p-k)2-2m2-2mym? + @K)?. (2.9)

In the space of relativistic velocities a particle half-
velocity notion, proposed in ref. 13/, plays an important
role. Values of analogous sense in the Lobachevsky momentum
space: half-momentum of a particle

- X

rrp=(rrp,rr )= p {(2.10}
and half-transfer-momentum «

XA o )

Gatmd . N me oy
(2.11)

e > A A . =mny sh
Kpk ~MEASITT Sp T MEATEXAS

have been considered in 719/, Relation (2.9) in terms of
half-transfer momentum vector takes an "absolute" form

t =)(k—D)?_=-'—4n?2 - S L (2.12)
because if the noi?-:relativistic limit (when "p"”p sisl Z
and « - = ——-—) it turns into a nonrelativistic rela—

p.k p,k,euc]
7



tion
2 A - a2
t=(k-p)" »=(k ~p)" =~4& pek,eucl | (2.13)

without changing its form {see consideration in ref, A0/ }.
An expression for a relativistic kinetic enerqgy in half-
momentum terms also takes an "absolute" form, since
~p

272

m

E =mehy  =m +

p {2.14)

3. "ABSOLUTE" FORM OF QUASIPOTENTIAL EQUATION
IN THE COULCMB INTERACTION CASE

The Schrddinger integral equation, describing the inter-~
nal motion of bound systems of two nonrelativistic particles
with equal masses (m;=mgy=m), is written in the form:

52 - 1 - - - ey :
(g— = eM¥(D) =~ —— [V(p~ k)¥W(k)dk. (3.1)
2 (2m?®
Here 5 . K are particle momenta in the centre mass system,
io= —zm r € ==¢ ,where €, is nonrelativistic binding energy.

-+
In the case of a Coulomb interaction the potential Vip-k)
has the form:

Vip - k) L (3.2)
P-k)=- NN -
-k~

Using the Buclidean half-momentum of the particle 7 byencl

and the Euclidean half-transfer-momentum « Dsk,eucl? &Ssume
(3.1) with potential (3.2) in the form .

g
47 2
, 1 - 1 e -
(_ P euc+f )‘P(p)-= r 3 ‘P(k)dk' (3-1')
m b 3 2
(2") 4x pskseucl

Let us turn to the relativistic case. Using relativistic
expressions (2.12) and {2.14), and taking into account that
the binding energy in the relativistic cage is expressed
over the total system energy'ZE‘_l by the formula

E, =2m -2E_ €3.3)



we write down (1.3) with quasipotential (1.5) in the form
"2

+Eb)‘l' ()=

2 (3.4)

p,k

Comparing {3.1'}) and (3.4) we see that all the values
in (3.4): gquasipotential (1.5}, volume element (1.4),and
a relativistic free Green function (here and below p-lpl
and so on)

(2 11)3

2 2 -1_ -1
Gy ®WED=2VP +m” -2E ) »@mmxp—ﬁh) {3.5)

are relativistic geometric generalizations of corresponding
nonrelativistic expressions: potential (3.2), the volume
element dk, and a nonrelativistic free Green function

g
2 -1 47 g oucl

@.eb)ﬂ(—;—+sb | ey, ). (3.6)

non

This sets us thinking that solutions (3.4) can represent
a geometrical generalization of nonrelativistic Coulomb
wave functions.

Equation (3.1) with potential (3.2) by means of a partial
expansion

Y@ =¥y (p)ng(E )= —;—gg @Yy, (er) (3.7

is reduced to a one-dimensional integral eguation for the
function gf(py

2
(% +e, gy (p)-——-— f g (-2 )gg(k)dk (3.8)

where Q¢ is the Legendre function of a second kind. In the
case f=0 with the help of explicit form

-1 241
Q. (® 5 in P (3.9

integrating by parts in (3.6) we transform it:
LA
T‘u'-" “p gO(p) =
92 o 2p o0 (3.10)

= pf dk [ g&Idk "
472 g4 p2k? k




Substitution of the knéwn expressicn for a nonrelativistic
wave function of a ground state into (3.10)

p 2 ' )

g (P) = ~g————— =pCG" (p,¢ (3.11)
PO ¥ ep e )R non™ b
leads to the condition
2 o0 2 =
e dk e
1 = f = [ G (k,e Jds (3.12)
472 (k2/2#+‘b ) 4n 2 0 non b k,euct
determining a binding energy of a ground state
22 )
M 2y &, 3.1
N (47 ) 5 ( 3

Further, the fact that equation (3.10) for the function

¢0 (p);-l-}—go {p) <can be written down in the form

-1
G . ®ey )¢0 ® =
(3.14)
seucl bad -1, .
- g (kMG (ke )
Gron Poey 1=G7l (ke dymy O mom TP

non

2 oo ds
e k
= sz

0

dr

plays an important role.

4. SCOLUTION OF THE KADYSHEVSKY EQUATION

Consider equation (1.3) with quasipotential (1.5). Using
a partial expansion

s - 1 -
Y@ =dgpg Yy @©)) = 7 Pa.t (DY, () (4.1)
we obtain for the function ¢, ¢(p) a one-dimensional
equation

(2E, ~2E )¢ (@) =

2 EE, ~m% .2

e p dk
[ Qy 8105 —

478 pk
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In the case [ =0 due to (3.9) equation (4.2) with parametri-
zation (2.5) takes the form:

@mchxp—qu)¢%0 @) =

X, X
g2 @ 5 +—2—k) (4.3)
- ({ | ——= | 6 ®mdyx, -

X Xk
LA
shig- -

Integrating by parts in (4.3), we take into account that

—d—lnlx! P L1 then this equation for the _(By=y¢ __(P)
dx X G 9,0

in terms of relativistic free Green function (3.5) is written
in the form:

Gt ®Ey (P)=

2

e dsy

]
v ]
=3

by =1 ’

f oy ®I4G KSE ).(a.4)
2 - — . q rel q .
5 xe0 GG F )= G (E )k

The integral over the ds; =mdy, in (4.4) analogous of the
one over the dSg aye; in (3.14) is understood as a Cauchy
principal value. Now, due to the fact that (3.5) and (2.7)
are the relativistic geometric generalizations of (3.6) and
(2.8) we obtain that relativistic partial equation (4.4} is
a geometric generalization of (3,14} and both the equations
have an absolutely identical structure.

By analogy with (3.11) we find solution (4.4) in the
form:

b, ®=CF ®E). (4.5)
We substitute (4.5) into (4.4) and integrate over dG;i(kﬂEq)
Then with the help of the algebraic identity

G 1

rel

-1 ~1
®E)-G . ®E ) G (&E )=

ret

- - -1 (4.6}
=G (P’Eq)l[Gfell (p'Eq)-Grell (k’Eq)] 1+C'n=,-1 (-k'Eq)}

1



and accounting that (for instance, see ref. 720/ ), as in the
nonrelativistic case,

20 ds
P a _
0 ~1 -G~
G1'e] (p'Eq) Grel (k’Eq) (4.7)
=P f k ={
0 EChxp—zcth
we arrive at the relation:
32 50 )
1= G k,E )ds_ .
) e (EQs, (4.8)

Introducing the parametrization Eq=mcosx g We represent
(4.8) in the form of the algebraic eguation:

A Eq
- - Arccos ——
e?  TTXq S m
1= - = — {4.9)
4rn® 2rrSm)(q 47 EZ
2yl - .
m2

determining a binding enexrgy of a ground state of the
relativistic Coulomb system.

Formula (4.8) represents a gecmetric generalization of
(3.12), as a substitution of the Euclidean half-momentum
Ty, 5 LOr the relativistic one 7y of the binding energy
ecg for (3.3); and (2.8), for (2.7). Therefore it is evident
that theE.y, defined from (4.8) in the nonrelativistic
limit turns into (3.13).

Construct now solutions for equation (4.4), corresponding
to excited states*’. Note that by (4.6) differentiation over
Eq one more additional identity can be obtained:

e}

-1 ~1,1 ~
| _(p,E q) -Gre} {k’Eq)] Grel (k.E q )=

o N - 4.10
=[Grell (p,Eq)—Grei(k.Eq)] IGrL] (p|Eq)+ (4.10}

£ i Tt
+i§1Grel 0BG ) kEg). ’

*A nonrelativistic spectrum problems for (3.14) can also
be solved by the method stated below.

12



Insert the fellowing polynomial over GreL(p,Eq)

(p.Eq) (4.11)

n
(n) - ()
d]q (p)ﬂrzzj_ B G rel
into equation (4.4).
There B are some coefficients not yet defined. By in-
tegration in the r.h.s. of (4.4) and using (4£.10), (4.7), we

transform (4.4) to:
n

(o}
= rB Grel(p E ) =

T=1

(m

n T i
=2, G ®Eq) 2 By Fioryq(Egs (4.12)

where

o2
Fo(Eq) =S [ G7 (& Ep)ds, . (4.13)
47 k=0
It is evident that function (4.11) is a solution of eguation
(4.4), if the coefficients B?ﬂ satisfy the algebraic
system of equations

n
B = 2 BUF ., B C=n.n-1..1) (4.14)

1I=T

One of these equations (at [ =0 }:

2
n=e

4n2k£0Gtes (k. Eg)dsy (4.15)

represents a condition of quantization, that is, defines the
eigenvalue of the energ? El ycorresponding to function (4.11).
Assuming Eg E —HICOlegcondltlon (4.15) can be represented
in the expllc1t form: :

(4.16)

To define the wave function ¢ it is necessary to
know the coefficients B(n) It is easy to see that with
the help of the system of equations (4.14) (at r¥n), in
which the E, is fixed by condition (4.15}, the coefficients
B(nnj.",B(n) . can be expressed through one value B() that

13



cannot be defined from the integral equation and is fixed
by an additional condition of the normalization type.

5. CONCLUSION

Thus there has been obtained a solution of the integral
quasipotential Kadyshevsky equation (1.3) for a composite
system of two relativistic particles in the case of a quasi-
potential, taken in the form of a Propagator of a massless
meson exchange (1.5). The principal point here was the
transformation of the nonrelativistic and relativistic equa~
tions with the Coulomb interaction to the "absolute” form,
when the constituent values differ only by a geometric na-
ture.

It has been determined that in the case [ =0 partial
equations (relativistic and nonrelativistic ones) are
written down in terms of only one variable - a free Green
function and have the same structure. It is shown that re-
lativistic wave functions and condition of guantization,
written in (EeHGLEh)terms have the form absolutely analogous
to the nonrefgtivistic one.,

Further publications will be devoted to the problems
of solutions for the case ! #0; to the account of the Cou-
lomb guasipotential dependence on the system total energy,
as well as to the consideration of other quasipotentials.

The authors express their gratitude to V.G.Kadyshevsky,
A.D.Linkevich, A.V.Sidorov, I.L.Solovtsov and S$.G.Shulga
for usefull discussions and interest to work.
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