

объединенный ииститут
 ядериых исследований
 дубиа

3/3-80
E2 - 12885
A.V.Sidorov, N.B.Skachkov

DESCRIPTION OF WIDTH
AND SPECTRA
OF TWO RELATIVISTIC FERMIONS
BOUND STATES

A.V.Sidorov, N.B.Skachkov

DESCRIPTION OF WIDTH
AND SPECTRA
OF TWO RELATIVISTIC FERMIONS
BOUND STATES

Submitted to $T M \Phi$

Сидоров А. В., Скачков Н.б.

Описаные шидин и епектров связанных состояний

двух релятивистских фермонов
Чельш работы яөляется построение формалиама для релятивистского описания систешы двух частиц со спином $1 / 2$. Используется ввухчастии-
 ционном препставлении сведено в поибпижении ОВЕР к системе роностия парциальных уоавчемй, которая яэлается релятивистсиим анапогом нерелятияистской систен Хаиами-Пшонстона, Кетодом ВКБ решена задача о спектре масс свпзанных состоянй. © пеполнзованием точного релятивистского купоновского решения двухчастичной задачи полученн выраме ния для ширин лептонных распадов в кварковой модели.

Работа вмполнена в Лаборатории теоретической мизикм, оияи.

Прөпринт Обьдиненного инствтута ядерных нсследованиа. Дубна 1979
sidorov A.V., Skachkov N.B.
E2-12885
Descriptions of Width and Spectra of Two Relativistic Fermions Bound States
The aim of this article is the construction of the formalism for the relativistic description of two particles with spin $1 / 2$. We use the two-particle three-dimensional equation, obtained by quasipotential approach. Quasipotentlal equation in the relativistic configurational space with OBEP potential is reduced to the system of partial equal tem. WKB approach is used to cat idth of mesons in quark model.

The investigation has been performed at the Laboratory of Theoretical Physics, JINR.

Preprint of the Joint Institute for Nuclear Research. Dubna 1979

I. Introduction

The present paper may be treated as a eequel to papers/1-3/ on the three-dimensional relativiatic deacription of two-particle aystem with apin $1 / 2$ in the quantum Pield theory. Prinoipal formulae, allowing the practical application of our mathematical technique are obtained herein. It will be applicable to such attractive problems as the calculation of levels and widh of aystems like positronium, muon and baryon as well as bound states in a quark - antiquark syatem, that is old \int, w, φ and new $Y / \psi, \gamma$ mesons. Lately a nonrelativietic quark model based on the Solrödinger equation is widy used for the mass epectrum deacription of hard vector mesons of the $T / 4$-partiole type. Por this purpose a confining potential is chosen and added by the Breit-Fermi potential accounting for apin effecte.

$$
\begin{equation*}
T(r)=V_{\text {con } f}(r)+V_{\text {spin }}(r) \tag{1.1}
\end{equation*}
$$

The Breit-Fermi potential is known to represent v^{2} / c^{2} expansion of Peyman matrix element of one-bomon (OBEP) or onegluon exchange. However, auch a quasirelativiatio approach applied to ordinary light vector ρ, w°, P mesons is not selfconsistent. It was ahown in peper $/ 4 /$ that in this case the contribution of relativietic corrections appears to be of the same order as the contribution of the nonrelativistio Hamiltomian,
which was initially taken as the principal one. Therefore an essentially relativiatic approach is needed bere.

In the present paper for the mass spectrum deacription of a gystem consisting of two fermions (for example, quark and antiquark). We use the equation of quasipotential approach $/ 5 /$. As in previous papers we use the relativistic three-dimenaional two-particle quasipotential equation, obtained by Kadyahevsky, on the basis of the covariant Hamiltonian formulation of field theory and later in papers $/ 6 /$ on the basis of the covariant technique of equating times in the two-particle wave function of Bethe-Salpiter equation. In the case of equal masses $m_{1}=m_{1}=m$ this equation, written in the centre-of-mas-aystem $\left(\overrightarrow{p_{1}}=-\overrightarrow{p_{2}}=\vec{p}\right)$ has the form

Now consider in more detail the part of quasipotential (1.1), containing spin effects. In the case of vector-boson exchange the quasipotential in r.h.s. of equation (1.1) represents the
$\mathcal{M}^{\mathcal{M}}$ is the mass of a boson, $\xi^{\boldsymbol{G}}$ are two-component spinors.
Applying to (1.3) the auggested transformation $/ 1 /$ from the four-dimenaional repreaentation to the three-dimenaion one 1) and separating the wigner matrix of spin rotation, we obtain:

[^0]Peynman matrix element/1/
\[

$$
\begin{equation*}
\left.T_{V}(2) \vec{k}(-) \vec{p} ; \vec{p}\right)=-\frac{g_{v}^{2}}{\mu^{2}+4 \vec{x}^{2}}\left[4 m^{2}+4\left(\overrightarrow{\sigma_{1}} \vec{x}\right)\left(\overrightarrow{\sigma_{2}} \vec{x}\right)-\left(\vec{\sigma}_{1} \vec{\sigma}_{2}\right) \vec{x}^{2}+\right. \tag{1.4}
\end{equation*}
$$

\]

$+8 p_{0} x_{0} i\left(\overrightarrow{\sigma_{1}}+\overrightarrow{\sigma_{2}}\right)[\vec{p} \times \vec{x}]+\frac{8}{m^{2}}\left(p_{0}^{2} x_{0}^{2}+2 p_{0} x_{0}(\vec{p} \vec{x})-m 4\right)+$

$$
\left.+\frac{8}{m^{2}}\left(\overrightarrow{\sigma_{2}} \vec{p}\right)\left(\overrightarrow{\sigma_{2}} \vec{x}\right)\left(\overrightarrow{\sigma_{2}} \vec{p}\right)\left(\overrightarrow{\sigma_{2}} \vec{x}\right)\right] .
$$

Here the quantity \vec{X} means a half-transfer of momentum, that can be expressed through the mowentum transfer in the Lobachevsky space introduced into $/ 7 /$:

$$
\begin{equation*}
\vec{\Delta}=\vec{k}(-) \vec{p}=\Lambda_{p}^{-1} \vec{k}=\vec{k}-\frac{\vec{p}}{m}\left(k_{0}-\frac{\vec{k} \vec{p}}{p_{0}+m}\right) \tag{1.5}
\end{equation*}
$$

by the formula $\vec{x}=\vec{\Delta} \sqrt{m / 2\left(\Delta_{0}+m\right)} \quad / 1 /$.
Expression (1.4) has a form of the geometrical generalization of the Breit-Fermi potential taken in the momentum representation.

It is convenient to solve equation (1.3) by transformation to the relativistic configurational representation (RCR), introduced initially in $/ 7 /$. To obtain this, instead of the Fouriertranaformation there is used an expension over the complete and orthogonal system of functions in the Lobachersky space/9/.

$$
\begin{align*}
& \xi(\vec{p} ; \vec{n}, r)=\left(\frac{p_{0}-\vec{p} \vec{n}}{m}\right)^{-1-i r m} \\
& p_{0}=\sqrt{m^{2}+\vec{p}^{2}}, \vec{n}^{2}=1
\end{align*}
$$

For these functions in papers $/ 6,12 /$ we found an expansion

$$
\begin{aligned}
\xi(\vec{P} ; \vec{n}, r) & =\sqrt{\frac{\pi}{2 \sin x}} \sum_{l=0}^{\infty}(2 l+1) \frac{\Gamma\left(i \frac{r}{x}+l+1\right)}{\Gamma\left(i \frac{r}{x}+1\right)} \sum_{-\frac{1}{2}+i \frac{r}{x}}^{-\frac{1}{2}-\ell} P_{e}\left(\frac{\vec{P} \vec{n}}{P}\right)_{(1.7)}= \\
& =\sum_{l=0}^{\infty}(2 l+1) i \rho_{l}(c h x, r) P_{l}\left(\frac{\vec{P} \vec{n}}{P}\right)
\end{aligned}
$$

as well as the condition of completeness and orthogonality for radial parte

$$
\begin{aligned}
& \frac{2 \operatorname{sh} x \operatorname{sh} x^{\prime}}{\pi \lambda^{3}} \int_{0}^{\infty} r^{2} r p_{e}(\operatorname{ch} x, r) p^{*}\left(c h x^{\prime}, r\right)=\delta\left(x-x^{\prime}\right) \\
& \frac{2 r r^{\prime}}{\pi x^{3}} \int_{0}^{\infty} \operatorname{sh}^{2} x d x p_{e}(c h x, r) p_{e}^{*}\left(c h x, r^{\prime}\right)=\delta\left(r-r^{\prime}\right)
\end{aligned}
$$

In $/ 2,3 /$ there was d1soussed a problem on the form of the seoond and third terme (1.4) in the relativietic configurational representation. There are transforms of all the five epin atructures present in (1.4) in this paper.

Equation (1.2) transformed into RCR is a finite-difference one and may be reduced to the eystem of partial equations, being a relativiatio analog of the nonrelativiatic Hamada-Jonston system $/ 11 /$.

To solve partial finite-difference equations we use the suggested analog $/ 12 /$ of WKB method for RCR.

Calculation of the electromagnetic decay width of mesons is another important problem. To determine lepton width of vector mesons we use the V.Royen-Weisacopff Pormuls (with account of colour).

$$
\begin{equation*}
\Gamma_{V \rightarrow e^{+} e^{-}}=16 \pi \alpha^{2} M_{v}^{-2} e_{q}^{2} /\left.\psi_{n e}(0)\right|^{2} \tag{1.9}
\end{equation*}
$$

and for the two-photon decay of peeudoscalar mesone we use formula /14/

$$
\begin{equation*}
\left.\Gamma_{p \rightarrow \phi \gamma}=12 \pi \alpha^{2} m^{-2} e_{q}^{4} / \psi_{n e}(0)\right)^{2} \tag{1.10}
\end{equation*}
$$

In these formulae M_{V} is the mass of a meson; m and e_{p} are the mass and charge of quarks, and $\Psi_{n e}(0)$ is WF of system of a quark and anti-quaric. Usually instead of this WF the nonrelatiristio WP is used in the Coulomb field negleoting the rest of the apin part of the OBEP. The widh of states with $\ell \neq 0$ in terms of the relativistio theory is known to turn into zero due to the behaviour of the WP at the origin of coordinates as $\psi_{e}^{\text {monree }}(r)={ }_{a} e$ This behaviour is of a kinematioal character and is conneoted with the behaviour of free solutions $j_{e}(k r) \rightarrow(k r) e$ for $\geqslant \rightarrow 0$. In a relativistic equation there is used another
complete system of funotions (1.6) having an essentially different behaviour as $\Gamma-0$, so that $\Psi_{e}^{(0)}(0) \neq 0$ at $e \neq 0$.

In aection 2 a quasipotential equation will be transformed to the aybtem of partial finite-difference equations, in the relativistic configurational representation; section 3 is devoted to the solution of unbounded equations of the syatem through the WKB metbod; section 4 gives formulae for the width of vector meson decays and peeudoscalar mesons, using the exact Coulomb solution of the quasipotential equation at $\Gamma=0$.

2. Syatem of Partial Two-Particle Equations in the

 Relativiatic Conilgurational RepresentationFor the quasipotential and WF the transformation into the relativiatic configurational repreaentation is performed by formulae:

$$
\begin{align*}
& V(r, \vec{n} ; \vec{p})=(2 \pi)^{-3} \int d \Omega_{\Delta} \xi^{*}(\vec{\Delta} ; \vec{r}) V(\overrightarrow{0} ; \vec{p}), \tag{2,1}\\
& \Psi(r)=(2 \pi)^{-3} \int d \Omega_{p} \xi(\vec{p} ; \vec{n}, r) \Psi_{G_{\Delta} G_{2}}(\vec{p}) \tag{2.2}
\end{align*}
$$

In $/ 15 /$ the physical meaning of the parameter r present in the function is discussed in detail.

Applying (2.1) to (1.4) we obtain:

$$
\begin{equation*}
V(r, \vec{n} ; \vec{p})=V_{1}\left(r, p_{0}\right)+V_{2}\left(r, \vec{n} ; p_{0}, \vec{p}\right) \tag{2.3}
\end{equation*}
$$

$V_{1}\left(r, p_{0}\right)=-g_{V}^{2}\left\{\left(2 p_{0}^{2}-1\right)\left[V_{V V_{k}}(r)+\frac{16 \pi S\left(r^{2}+1\right)}{r} S(\vec{n})\right]+\right.$
$\left.+\left[\frac{\mu^{2}}{3} V_{k u k}(r)-\frac{8 \pi}{3} \frac{\delta\left(r^{2}+1\right)}{r} \delta(\vec{n})\right] \cdot\left[\left(\vec{\sigma}_{1} \overrightarrow{\sigma_{2}}\right)-(\vec{s} \vec{p})^{2}+\vec{p}_{\vec{s}}^{2}\right]\right]$
$V_{2}\left(r, \vec{n} ; p_{0}, \vec{p}\right)=-g_{V}^{2}\left\{(\overrightarrow{S L}) \frac{4}{2}\left[P_{0} A(r)+(\vec{p} \vec{n}) P(r)\right]-\right.$
$\left.-4 i p_{0}(\vec{p} \vec{n}) A(r)+\left[S_{S_{1}, 2}-(\vec{S} \vec{L})^{2} \frac{4}{r^{2}}\right] \varphi(r)\right\}$.
The following notations are introduced here:

$$
\begin{align*}
& \vec{S}=\frac{\overrightarrow{\sigma_{1}}+\overrightarrow{\sigma_{2}}}{2} ; \vec{L}=[\vec{p} \times \vec{\Gamma}] ; \vec{S}_{19}=3\left(\overrightarrow{\sigma_{1}} \vec{n}\right)\left(\overrightarrow{G_{2}} \vec{n}\right)-\left(\overrightarrow{\sigma_{1}} \overrightarrow{G_{2}}\right) \tag{2.6}\\
& A(r)=\frac{1}{\Gamma(r-i)}(r \text { th } r a \sin \alpha+\cos a) \text { Iuk }(r) \tag{2.7}\\
& \varphi(r)=\frac{r^{2}}{3(r i)(r-1 i)} \int \mu^{2}+3 \frac{\mu}{r}\left(1-\frac{\mu^{2}}{2}\right) \frac{\text { the } \alpha}{\sqrt{1-\mu^{2}}}+ \tag{2,8}\\
& \left.+\frac{3-2 \mu^{2}\left(1-\frac{\mu^{2}}{4}\right)-\frac{3}{2 \operatorname{chra}}}{1-\frac{\mu^{2}}{4}}\right]_{\text {Yuk }}(r) \\
& V_{\text {ruk }}(r) \text { - the Yukawa potential transform: } 4 /\left(\mu^{2}+4 \bar{x}^{2}\right) \\
& V_{\text {ruk }}(r)=\frac{1}{4 \pi r} \frac{c h r a}{5 h r \pi}, \alpha=\arccos \frac{\mu^{2}-2}{2}\left(\mu^{2}<4\right) \text {. } \tag{2.9}
\end{align*}
$$

In formulae (2.3)-(.29) we assume the mass of interacting particles m to be equal to 1.

Formula (2.3) is splitted into two parta $V_{1}\left(r, p_{0}\right)$ independent of the aingle vector "relativistic coordinate" direction \vec{n} and $V_{2}\left(r_{1}, \vec{n}, p_{0}, \vec{p}\right)$ containing the dependence on $\vec{\eta} \quad$ through expressions of the type

$$
\begin{equation*}
(\vec{p} \vec{n}),[\vec{p} \times \vec{n}], S_{12} \tag{2.10}
\end{equation*}
$$

The necessity of such a aplitting becomes obvious in the course of the transformation of the complote equation (1.2) into RCR using formulae (2.1), (2.2).

$$
\left(2 E_{q}=2 \vec{H}\right) \Psi_{\left.\sigma_{1} G_{g}, \vec{p}\right)}=f d \Omega_{p} d \Omega_{k} d \vec{r}_{I} \xi(\vec{P} ; \vec{n}, k)_{x}
$$

$\hat{H}=\operatorname{ch}\left(i \lambda \frac{d}{d r}\right)+i \frac{\lambda}{r} \operatorname{sh}\left(i \lambda \frac{d}{d r}\right)+\frac{\Delta \theta \infty}{(r / x)^{2}} \exp \left(i \lambda \frac{d}{d r}\right)$
$\Delta_{\theta \phi}$ - angular part of the Laplas operator, $\lambda=\frac{f}{m C}$. Due to the character of the addition theorem of the relativistic plane waves /16/:

$$
\begin{align*}
& \xi(\vec{k} ; \vec{n}, r)=\xi\left(\vec{k}(-) \vec{p} ; \vec{n}_{\Lambda_{p}}, r\right) \xi(\vec{p} ; \vec{n}, r) \tag{2.13}\\
& \vec{n}_{\Lambda_{p}}=\left[m \vec{n}-\vec{p}\left(1-\frac{\vec{p} \vec{n}}{p_{0}+m}\right)\right] /\left(p_{0}-\vec{p} \vec{n}\right) \tag{2.14}
\end{align*}
$$

$V_{2}\left(r, \vec{n} ; \rho_{0}, \vec{p}\right)$ enters into equation (2.12) in a nonlocal way: $\left(2 E_{q}-2 \vec{H}\right) \Psi(\dot{\vec{r}})=\sum_{\sigma_{1} \sigma_{2}}{\underset{\sigma}{2} \sigma_{2}^{\prime}}^{V_{1}\left(\sigma_{1} \sigma_{2}^{\prime} \sigma_{2}^{\prime}\right)} \underset{\sigma_{1} \sigma_{2}^{\prime}}{\Psi(\vec{r})}+$

aince substituting it into the equation the dependence on vector $\overrightarrow{n_{1}}$ turns to the dependence on vector $\overrightarrow{n_{1}}{ }_{p}$. The vector rotation $\vec{n}_{1} \rightarrow \vec{n}_{\text {Ip }}$ taken into account gives the following dependence of expressions (2.10) on the vector \vec{P} and P_{0} :
$\left(\vec{p} \vec{n}_{1_{p}}\right)=m^{2} /\left(p_{0}-\overrightarrow{p_{n}}\right)-p_{0}$
$\left[\vec{p} \vec{n}_{1 \wedge_{p}}\right]=m\left[\vec{p} \times \vec{n}_{1}\right] /\left(\rho_{0}-\vec{p} \vec{n}_{1}\right)$
$\left(\overrightarrow{\sigma_{1}} \cdot \overrightarrow{n_{i_{1}}}\right)\left(\overrightarrow{\sigma_{2}} \vec{n}_{\lambda_{p}}\right)=Z_{1}^{\top}+Z_{2}^{\top}$
$z_{1}^{T}=m^{2} \cdot\left(\vec{\sigma}_{1} \vec{n}_{1}\right)\left(\overrightarrow{\sigma_{2}} \vec{n}_{1}\right) /\left(p_{0}-\vec{p} \vec{n}_{1}\right)^{2}$
$z_{2}^{\top}=\frac{m^{2}}{\left(p_{0}-\vec{p}_{i}\right)^{2}}\left\{-\frac{1}{m}\left[\left(\vec{c}_{l} \vec{n}_{i}\right)\left(\vec{\sigma}_{2} \vec{p}\right)+\left(\vec{c}_{d} \vec{p}\right)\left(\vec{c}_{2} \vec{n}_{l}\right)\right]\left(1-\frac{\vec{p}_{n} \vec{n}_{i}}{p_{0}+m}\right)+\right.$

$$
\left.+\frac{1}{m^{2}}\left(\vec{\sigma}_{1} \vec{p}\right)\left(\vec{\sigma}_{\alpha} \vec{p}\right)\left(1-\frac{\overrightarrow{p_{n}} \vec{n}_{1}}{p_{0}+m}\right)^{2}\right\}
$$

However, with the help of the correlation:

$$
\begin{equation*}
\exp \left(i \frac{1}{m} \frac{d}{d r_{1}}\right) \xi^{*}\left(\vec{p} ; \vec{n}_{1}, r_{1}\right)=\frac{m}{p_{0}-\vec{p} \vec{n}_{1}} \xi^{*}\left(\overrightarrow{p_{i}} ; \vec{n}_{1}, r_{1}\right) \tag{2.19}
\end{equation*}
$$

exprassions (2.16), (2.17) and the firat term Z_{1}^{T} from (2.18) can be localazed. Z is a relativistic generalization of the expression $\left(\vec{G}_{\Omega} \vec{n}\right)\left(\vec{G}_{2} \vec{n}\right)$ present in the operetor of tensor forces. Confining ourselves to Z_{1}^{\top} in accounting tensor forces we obtain the r.b.s. of equation (2.15) to be of a local

$$
(2 E-2 \hat{H}) \Psi_{\sigma_{1} \sigma_{2}}(\overrightarrow{\vec{r}})=\sum_{\sigma_{1}^{\prime} \sigma_{2}^{\prime} \sigma_{2} \sigma_{2}} \hat{V}\left(\overrightarrow{\sigma_{1}}, \frac{\sigma_{2}^{\prime}}{\prime}\right) \Psi_{\sigma_{1}^{\prime} \sigma_{2}^{\prime}}(\vec{F})
$$

The rotation $\vec{n} \rightarrow \vec{n}_{\wedge \rho}$ in tensor forces taken into account gives an additional apin-bpin interaction

$$
\begin{align*}
& \varphi(r)\left[3\left(\vec{\sigma}_{1} \vec{n}_{1 n_{p}}\right)\left(\overrightarrow{\sigma_{2}} \vec{n}_{1 \Lambda_{p}}\right)-\left(\overrightarrow{\sigma_{1}} \overrightarrow{r_{2}}\right)\right] \rightarrow \tag{2.21}\\
\rightarrow & \varphi(r-2 i \lambda) S_{12}+\left[\varphi(r-2 i t-\varphi(r)]\left(\overrightarrow{\sigma_{1}} \vec{\sigma}_{2}\right),\right.
\end{align*}
$$

An angular and spin dependences of equation potential (2.20) are determined by five structures, having the same form as in the nonreletivistic theory:

$$
\begin{align*}
& \tilde{V}(\vec{r}, \vec{p})=V_{S}+V_{T} S_{I 2}+V_{L S}(\vec{L} \vec{s})+V_{G}\left(\vec{G}_{L} \overrightarrow{C_{2}}\right) \cdot V_{(\vec{L} \vec{s})^{2}}(\overrightarrow{\vec{S}} \vec{L})^{2}(2.22 \\
& \begin{array}{l}
\text { Functions } \left.V_{i}(P)\left(i=s, S / 2 ; \angle S ; G ;(\angle S)^{2}\right) \hat{p}\right) \\
\text { on vector modulus } \vec{p}
\end{array} \\
& \text { on vector modulus } \vec{P} \text { and difference operatore } \hat{\vec{p}} \\
& \text { and } \hat{P}_{0}=A \quad \text { in the following way }(\lambda=1) \text { : } \\
& V_{S}=\left(2 p_{a}^{2}-1\right)\left[V_{\text {ruk }}(r)+\frac{16 \pi}{r} \delta\left(r^{2}+1\right)-\right. \tag{2.23}\\
& -4 i p_{0}\left[\left(\frac{r-i}{r}\right)^{2} \exp \left(-i \frac{d}{d r}\right)-P_{0}\right] A(r) \\
& V_{T}=\left(\frac{r-2 i}{r}\right)^{2} \exp \left(-2 i \frac{d}{d r}\right) \tag{2.24}
\end{align*}
$$

$V_{L s}=4 P_{0} \frac{r}{(r i)^{2}} A(r)+\left[\frac{r(r-i)}{(r+i)^{2}} \exp \left(-i \frac{d}{d r}\right)-p_{0}\right] \frac{r}{(r+i)^{2}} \varphi(r)$
$V_{G}=\left[\left(\frac{r-2 i}{r}\right)^{2} \exp \left(-2 i \frac{d}{d i}\right)-1\right] \varphi(r)-\frac{\mu^{2}}{3} V_{I u_{K}}(r)-\frac{8}{3} \frac{\pi}{r} \delta\left(r^{2}+1\right)$
$V_{(L s)^{2}}=-\frac{4 r}{(r+i)(r+2 i)} \varphi(r)$
We introduce a redial function $R_{e \prime \text { 'es }}^{j}(r)$
$\Psi_{q_{1} G_{1}, \sigma_{2}}^{s}\left(\overrightarrow{j C M C^{\prime} M^{\prime}}=\sum_{e^{\prime} S^{\prime} \mathrm{S}}^{j}(r)\left\{\Omega_{j e M}^{* S}(\vec{n})\right\}\left\{\Omega_{j e^{\prime} M}^{S^{\prime}}(\vec{n})\right\}_{C_{1} G_{2}}\right.$
The subatitution of (2.28) into equation (2.27) gives us a system of four partial equations. Two of the gystem of equetions, obeying the case of $S=0, e^{\prime}=j$ and $S=1, e^{\prime}=j$ are uncoupled:
$\left[2 \hat{H}_{e}-2 E_{g, e}+V_{e, S}^{S}(r)\right] R_{e}^{S}(r)=0 ; e^{\prime}=j ; S=0,1 . \quad$ (2.29) $V_{e j}^{s=0}(r)=-g_{r}^{2}\left(V_{s}-3 V_{\sigma}\right)$

$$
\begin{equation*}
V_{e^{\prime}=j}^{s=1}(r)=-g_{V}^{2}\left(V_{S}+2 V_{T}+V_{G}-V_{L S}+V_{(L s)^{2}}\right) \tag{2.30}
\end{equation*}
$$

Hainitonian Hé is obtained from expression (2.12) for the \hat{H} through the aubstitution of the operator $\Delta_{\theta \infty}$ for its eigenvalue $e(l+1)$. The other two WP describing atatea with a apin $S=1$ are defined by the aystem of two coupled equations

$$
\begin{align*}
& V_{e_{i}^{\prime}+1}(r)=g_{V}^{2}\left[V_{S}-(j+2) V_{L S}+(j+2)^{2} V_{(2 S)^{2}}-\frac{2(j+1)}{2 j+1} V_{T}+V_{G}\right] \tag{2.33}\\
& V_{e=j-1}(r)=g_{V}^{2}\left[V_{S}+(j-1) V_{L S}+(j-1)^{2} V_{S S)^{2}}-\frac{2(j-1)}{2 j+1} V_{T}+V_{G}\right] \tag{2.34}
\end{align*}
$$

$$
\begin{equation*}
\tilde{V}_{T}(r)=-g_{V}^{2} \frac{6 \sqrt{j(j+1)}}{2 j+1} V_{T}(r) \tag{2.35}
\end{equation*}
$$

Writing down system (2.29), (2.32) we follow the approximation on the phenomenological use of the OBEP, accepted in paper /11/ we neglect the \vec{p} quadratic terms in the apin-apin interaction $\vec{p}^{2} \vec{S}-(\vec{p} \vec{s})^{2}$ and confine ouraelves to the account of the terms proportional to $m^{2}\left(\vec{\sigma}_{1} \vec{\sigma}_{2}\right)$. In expressions (2.24)-(2.27), es it has already been noticed, ρ_{0} is understood as a difference operator \hat{f}. However, in obtaining numerical evaluations the reasonable approximation which is not reduced to the nonrelativistic one is the use, instead of the operator \hat{H}, of the eigenvalue of energy ρ_{0} (as in the problem of a positronium /17/) of one bound partical in the part of potential (1.1), consisting of the sum $V_{\text {couf }}(r)$ and the scalar part of potential $(1.4), V=\frac{4 m^{2}}{\mu^{2}+4 \bar{Z}^{2}}$.

3. Suasiclassical Solution of Partial Equations

We write down uncoupled equations (2.25) in such a forms

$$
\begin{equation*}
\left[\hat{H}_{e}-X(r)\right] R_{e}(r)=0 \tag{3.1}
\end{equation*}
$$

where $X(r)=\left(2 m+E_{\text {found }}-V(r)\right) / 2 m$,
and the potential $V(r)$ is defined through expreseions (2.30), (2.31).

Regular in the zero free solution $(V(r)=0$) of equation (3.1), according to $/ 7 /$ bas the form:

$$
\begin{align*}
& \psi_{e}^{f r e e}(r, x)=\sqrt{\frac{\pi}{2} \operatorname{sh} x}(-1)^{e+1} \frac{(-r / x)^{(e+1)}}{r} \operatorname{D}_{(\operatorname{ch} x)}^{-\frac{1}{2}-e} \\
& c h x=\left(2 m+F^{(3.2)}\right. \tag{3.3}\\
& \operatorname{ch} x+\frac{1}{2}+i / x
\end{align*}
$$

where $P_{V}^{\mu}(\operatorname{ch} x)$ is the Legandre function and $(-r / x)^{(e+1)}$ is the generalized degree defined by the expression: $\left(-\frac{r}{\lambda}\right)^{(l+1)}=i^{(l+1) \Gamma((f+(t))} \underset{\int(i \pi)}{ }$. The Legandre funotion $P_{-\frac{1}{2}+i+x_{2}}^{-i-e}(\operatorname{ch} x)$ is real. Thus in expression (3.2) only the factor $\left(\frac{H_{4}}{\Gamma}(\mu+1)\right.$ appears to be complex.

We separate this factor by the substitution:

$$
\begin{equation*}
\psi_{e}(r, x)=\frac{(-r / x)^{(e+1)}}{r} h_{e}(r, x) \tag{3.4}
\end{equation*}
$$

We obtain the following equation for the function $K_{e}(r, x)$

$$
\left[2 \ln \left(i \lambda \frac{d}{d r}\right)-\frac{2(e+1)}{i r \lambda} \operatorname{sh}\left(i \lambda \frac{d}{d r}\right)-X(r)\right] K_{e}(r, x)=0
$$

Note, that the Hamiltonian of the equation (3.5) in contrast to (3.5) appears to be a real operator. In the case of the potential is real, Ke (r, x) is also a real function. When the interaction is absent, the Legandre function appears to be

$$
\begin{align*}
& K_{e}(r, x)=P_{-\frac{1}{2}+i r / x}^{-\frac{1}{2}-e}=\left(\frac{\operatorname{sh} x}{2}\right)^{e+\frac{1}{2}} \frac{\exp \left[-x\left(i \frac{r}{x} h e+1\right)\right]}{\Gamma\left(\frac{3}{2}+e\right)} x \\
& \quad \times \vec{F}\left(i \frac{r}{x}+e+1, l+1, i l+2 ; 1-\exp (-2 x)\right)
\end{align*}
$$

The conditions of the orthogonality for these functions will be written down analogously to (1.6b):

$$
\begin{aligned}
& \frac{1}{\lambda} \int_{0}^{\infty} \operatorname{sh}^{2} x d x P_{(c h x)}^{-\frac{1}{2}+e} P_{-i+i r x}^{-\frac{1}{2}-e}-\frac{1}{x}+i \frac{r}{\lambda}-\frac{r(r-r)}{\left(-\frac{r}{x}\right)^{+(e+1)}\left(-\frac{r^{\prime}}{\lambda}\right)^{(e+1)}}
\end{aligned}
$$

We solve expressions (3.5) by the WKB method. Suppose:

$$
\begin{equation*}
K_{e}(r)=\exp \frac{i}{\hbar} g(r) ; g(r)=g_{0}(r)+\frac{\hbar}{i} g_{1}(z) \ldots \tag{3.8}
\end{equation*}
$$

Inserting (3.8) into (3.5) and keeping terms of the zero order in h, we derive a differential equation for $g_{0}(r)$:

$$
\begin{align*}
& \frac{\lambda}{\hbar} g_{0}^{\prime}(r)=\operatorname{arcch} X_{\Lambda}(r)-i \operatorname{arctg} \Lambda \frac{\hat{\lambda}}{r} \tag{3.9}\\
& X_{n}(r)=X(r) \cdot\left[1+\left(\Lambda \frac{\lambda}{r}\right)^{2}\right]^{-1 / 2}, \Lambda=l+1
\end{align*}
$$

The imaginary part in (3.9) contributes into the preexponential factor. With the account of the term of the order Z, we arrive at the equation forg ${ }_{i}(2)$:

$$
\begin{equation*}
g_{1}^{\prime}(r)=-\frac{X_{\Lambda}^{\prime}(r)+i \frac{\hbar \Lambda}{r^{2}+\hbar^{2} \Lambda^{2}}}{2\left(X_{\Lambda}^{2}(r)-1\right)} X_{\Lambda}(r) \tag{3.10}
\end{equation*}
$$

$$
\begin{align*}
& \text { Thue we obtain for the function } K_{l}(r): \\
& K_{g e}(r)=\left[X_{\Lambda}^{2}(r)-1\right]^{-1 / 4}\left(r^{2} / x^{2}+\Lambda^{2}\right)^{-\frac{\Lambda}{2}} \tag{3.11}\\
& \left.\operatorname{xexp} \frac{i}{\lambda} \int_{2}^{2} d r^{\prime} \operatorname{arcch} X_{\Lambda}\left(r^{\prime}\right)-\frac{X_{1}\left(r^{\prime}\right)}{2\left[X_{\Lambda}\left(r^{\prime}\right)-1\right]} \cdot \frac{\lambda \Lambda}{r^{2}+\lambda^{2} \Lambda^{2}}\right]
\end{align*}
$$

Here r - is a turning point, defined from the condition $X_{1}\left(2_{4}\right)=$ $=1$. In the case $\boldsymbol{r} \boldsymbol{\sim} \dot{R}_{-}>\lambda$ that is characteristic of energies
$E \ll 2 m c^{2}{ }^{1)}$ formula (3.11) gets simplified. We write it down in the form of a standing wave

$$
\begin{equation*}
K_{q e}(r)_{2 \gg}=\left[x_{1}^{2}(r)-1\right]^{-/ / 4}\left(\frac{r}{x}\right)^{-l-1} \sin \frac{1}{\lambda} \int_{2-}^{2} d r^{\prime} \operatorname{arcch} X_{\Omega}\left(r^{\prime}\right) \tag{3.12}
\end{equation*}
$$

The factor r^{-e-1}

a quasi-classical condition of quantization

$$
\begin{equation*}
\int_{2}^{2+} d r^{\prime} \operatorname{arcch} X_{\Lambda}\left(r^{\prime}\right)=\lambda \pi\left(n+\frac{1}{2}\right) \tag{3.13}
\end{equation*}
$$

For the majority of potentials a spectrum is formed at the distances $\Gamma \gg \lambda$. This allows us to neglect imaginary terms in $V_{i}(r)$ (2.23-2.27). In such an approach, potentials (2.30, 2.31) become real and we can find energy levels for a singlet $(S=0)$ and triplet $(S=1, e=j)$ states.

4. Galculation of Electromagnetic Decay Width of Meson

To illustrate, the use of quasi-clasaical formulas, obtained in § 3, we calculate the $/\left.\psi(0)\right|^{2}$ value of $W P$ quadratic at $r=0{ }^{2}$) that is present in formulas for electromagnetic width of mesons (1.9), (1.10). In the case of the massless-particle (gluon) exohange to the first teri of the quasi-potential (1.3) $V=-g_{v}^{2} \frac{4 m^{2}}{x^{2}}$, there corresponds the potential $V(r)=\frac{\text { cth (rmor) }}{r}$ in the Γ-space. There have been obtained in (19) exact solutione and a speotrum in the field of suoh a potential. The function cth (rmFi) changes essentially only at a distance of the order of λ from the origin of ccordinate and, as 18 seen in $/ 7 /$, its presence does not influence the form of the speotrum.

1) Por the free motion, for example: $\frac{r_{-}}{\hbar} \approx \frac{2 m c^{2} A}{E} \gg 1$.
2) Note $\Gamma=0$ means that particies are at the Compton wave length distance $/ 15 /$. A possibility of subetitution of nonrelativiatic WF in (1.9) for $\left.\mid \Psi^{\text {nonre }}\right)^{2}$ has been discussed
in $/ 15 /$.

Consider a potential, being a combination of the OBEP transform in RCR, taking into account only the Coulomb part and a confining potential. The value of energy levels is in general influenced by the potential behaviour at large diatancear>> . In this region we may neglect a hypergoemetrical factor in the Coulomb potentiel

$$
\begin{equation*}
V(r)=-\frac{\alpha}{r}+V_{\operatorname{con} f}(r) \tag{4,1}
\end{equation*}
$$

at small r a Coulomb term dominates (region I at the Figure). In this region a wF $\psi(r)$ coincidea with the exact regular solution at $\Gamma=0$ in the potential $-\alpha / 2$:

$$
\begin{aligned}
& Y_{e}(r)=C_{e} \frac{\Gamma\left(i \frac{\Gamma}{x}+e+1\right)}{r \Gamma\left(i \frac{\Gamma}{x}\right)} K_{e}(r) \\
& K_{e}(r)=\exp \left(-i \frac{\Gamma}{\lambda}-i x x\right) F-1\left(+1+\frac{i r}{x} ; l+1+i x, i x+1 ; 1-e^{-i x}\right)_{(4.3)}
\end{aligned}
$$

$$
x=\alpha / 2 \operatorname{sh} x,
$$

where C_{e} is an unknown noxmalizing factor. This factor enters into the definition $\Psi(0)$.

To obtain this we consider an asymptotios of the exact solution (4.2) at large Γ, written in the form of a standing wave

$$
\begin{gather*}
Y_{e}(r) \underset{r \rightarrow \infty}{\rightarrow} C_{e} \frac{2 \Gamma(2 l+2) \exp \left[-\frac{\pi}{2} x+(e+1) x\right]}{(2 \operatorname{sh} x)^{e+1} R_{e}[\Gamma(l+1-i x)]} \times \tag{4.4}\\
\times \frac{1}{r} \sin \left[x r+x \ln (2 r \operatorname{sh} x)+\eta_{e}-\frac{\pi}{2} e\right],
\end{gather*}
$$

where Z_{e} is the relativistic Coulomb phase:

$$
\begin{equation*}
\eta e=\arg \Gamma(e+1-i x) \tag{4.5}
\end{equation*}
$$

The Coulomb phase can be also calculated through the WKB method:

$$
\begin{equation*}
\eta_{e}^{w K B}=\frac{1}{\lambda} \lim _{r \rightarrow \infty}\left[\int_{R-}^{2} \operatorname{arcch} X_{1}^{\text {coue }}\left(r^{\prime}\right) d r^{\prime}-\int_{2-}^{2} \operatorname{arcch} X_{1}^{\text {free }}\left(r^{\prime}\right) d r^{\prime}\right] \tag{4.6}
\end{equation*}
$$

$$
\text { Assume the Coulomb constant to be small } \alpha \ll 1 .
$$ This is characteristic for the description of the J / ψ and γ-particlea in the potential model $/ 20 /$ and agrees with the hypothesis of asymptotic freedom. Further with the neglect of the terms of the first order in α and by integration in (4.6) we arrive at the following result:

$$
\eta e^{W K B}=x-x \ln \sqrt{x^{2}+1^{2}}-1 \arcsin \frac{x}{\sqrt{x^{2}+1^{2}}}
$$

The forms of expressions (4.5) and (4.7) coincide with their nonrelativistic analogs. The difference is that \mathcal{P} is determined by relation (4.3), that in the nonrelativistic limit turns into a dimensionless quantity, used in the schrödinger equation $x \Leftrightarrow \frac{e^{2}}{\hbar^{2}}$. Phases te and MekB for $2 \gg 1$ differ only by terms of the order $x^{-1} / 21 /$. Hence in the Coulomb field the exact solution $\psi_{(}^{\text {coc }}{ }^{e}$ and the quasiolassical wave function $\psi_{(r)}^{w i r}$ coinoide up to a factor in the region of large r (range II, figure 1) under the condition $\alpha \ll 1, x \gg 1$. If we can neglect a confining part of the potential (4.1) at such a large r, then in region II it is possible to equate an exact Coulomb solution (it is true in regions II and III /22/) and quasi-clessical solution obtained for regions II and III ${ }^{122 / \text {. Thus, we obtain the following normalizing }}$

$$
C_{e} 2 \Gamma(2 l+2) \frac{\exp \left[-\frac{E}{2} x+(e+1) x\right]}{(2 \operatorname{sh} x)^{e+1}}=\frac{C^{w k B}}{\left[X_{n}^{2}(r)-1\right]^{1 / 4}} .
$$

The conatant $C^{\text {KKE }}$
in nonrelativistic case

$$
\int\left|R_{n e}\left(r^{\prime}\right)\right|^{2} r^{\prime 2} d r^{\prime}=\frac{\left|c^{w k s}\right|^{2}}{2} \int_{R-}^{?_{+}} \frac{d r^{\prime}}{\sqrt{x_{n}^{2}(r)-1}}=1_{(4.9)}
$$

Integral in (4.10) is easily calculated by differentiation of quantization conditions (3.13) over n :

$$
\left|C^{w k B}\right|^{2} \approx \frac{2}{\pi x} \frac{d X_{n} e}{d n} ; X_{n, e}=\left(2 m+E_{n e}\right) / 2 m(4.10)
$$

Calculatiag to exact Coulomb WF in the limit of $r \rightarrow 0$ and obtaining C_{e}^{+}, value from (4.8) and (4.10), we finally ob-

$$
\left|\Psi_{n e}(0)\right|^{2}=\lambda^{-3} \prod_{e!}^{\ell}\left(e^{\left.e^{2}+x^{2}\right)} \times \frac{e x p \pi x}{4 x \operatorname{sh} \pi x}\left|P_{-\frac{1}{2}+i x}^{-\frac{1}{2}-l}(\operatorname{ch} x)\right|^{2} \frac{d x_{m_{p} e}}{d n}\right.
$$

This expression differs from zero even for states with $\ell \neq 0$. So, using (4.11) we can apply formulae (1.9), (1.10) to the description of electromagnetio width of states with any velues of ℓ.

In this paper a system has been obtained of partial equations describing two particles with spin 1/2, interaoting through the one-vector-boson exohange. There have been solved uncoupled equations of the system by WKB method for a wide class of confining potentiala and a condition of quantiaation and the exprassion for $/ \psi_{n}(0) /{ }^{2}$ have been found. These results can be applied to the calculation of mass apectrum and width of electromagnetic decays of systems of $\bar{e}^{+} e^{-}, \mu^{+} \mu^{-}, c \bar{c}, \rho \overline{D_{N}} N \bar{N}$ type.

The authore are grateful to V.G.Kadyeheveky, S.P.Kuleshov for fruitful discussions, and are thankfull to V.Kapshay, S.G.Kovalenko and I.L.Solovtsov for interest in the work.

1. Skachirov N.B. Theor. 1 Math. Fiz., 1975, 22, p. 213.
2. Skachkov N.B., Solovteov I.L. JINR Preprint, E2-9763, E2-10026, Dubna, 1976.
3. Skachkov N. B., Solovteov I.L. JINR Communication, P2-10320, Dubna, 1976.
4. Barbieri R. et al. Nucl. Phys., 1976, B105, p. 122.
5. Logunov A.A., Tavkhelidze A.N. Fuovo Cim., 1963, 22, p. 380.
6. Paustov R. N. Ann. Pbys., 1973, 78, p. 176.
7. Kadyabevsky V.G., Mir-Kasimov R.M., Skachikov N. Bo Kuovo Cim., 1968, 58, p. 233.
8. Poldy L. Le, Wouthuysen S.A. Phys.Rev., 1950, 78, p. 29.
9. Shapiro I.S. Dokl. Akad. Hauk SSSR, 1956, 106, p. 647.
10. Kadyshevaky V.G., Mir-Kasimov R.M., Skachkov N. Bo Soviet Journal of Particles and Muclei, 1972, v.2, p. 635.
11. Hamada T., Johnston I. P. NucI. Phys. 1962, 34, p. 382.
12. Donkov A.D. et al. Int. Conf. on Hadron Interactions at High Energies, Baku, 1971.
13. Van Royen Ro, Weisskopf V.P. Kuovo Cimo, 1957, 50, p. 617.
14. Pirenne J. These Univ. of Paris, 1944; Wheller J.A. Ann. N.Y. Acad. Sci., 1946, 48,p. 219. Pomeranchuk J.Ya. Doklady Akademil Nauk SSSR, 1948, 60, p. 263.
15. Skachkov N. B. JINR Preprint, E2-7892, Dubna, 1974.
16. Mevrodiev, S. Sch. , Skachkov N.B. Theor. 1 Math. Piz., 1975, 23. p. 32.
17. Berestecky V.B., Zifebic E.N., Pitasvaky A.P. Relativistic Quantum Theory, ∇. 1, Pizmatgiz, 1968.
18. Poggio T.C., Schnitzer H.J. Brandeis Univ., 1979.
19. Preeman M., Mateev M. P., Mir-Kasimov R.M. Mucl. Phys., 1969, B12, p. 197.
20. Appelqust T., Barnett M. R., Lane K., SLaC-PUB-2100, 1978.
21. Flüqqe S., Practical quantum Mechanica, I. Springer-Verlag, 1971.
22. Bell J.S., Pasupathy J. ReP.TH 2649-CERN, 1979.

Received by Publishing Department on October 251979.

[^0]: This transformation (1) plays the same role as the Foldy-Wenthuyeen one $/ \mathrm{B} /$, allowing one to pass to the threedimensional description of the spin. Howevar, in contrast to (8) the discussed in (1) transiornation does not deal with the expansion of interaction terms in powers of V^{2} / c^{2}.

