

объединенный
 ИНСТИТУT
 Ядерных

исследований
дубна

P.S.Isaev, S.G.Kovalenko

QUARK PARTON MODEL
WITH LOGARITHMIC SCALING VIOLATION
AND HIGH ENERGY NEUTRINO
INTERACTIONS

Исаев П.С., Коваленко С.Г
Модель с логарифинчески нарушенным скейлингом и
нейтринные взаимодействия при высоких энергиях
в рамках предложенной ранее кварк-партонной модели е логарифнычески нарушенным скейлингом рассчитаны сечения глубоконеупругих $\nu(\bar{\nu}) \mathrm{N}$-взаимодействий. Дана оценка вклада процессов рождения山армованих цастиц. При вычи слениях учтены Проведено сравиение с ахсперимеита

альными данными. Получены оценки угла Вайнберга, а также масс с-кварка и W-бозона.

Работа выполнена в Лаборатории теоретической физики, оияи.

Препринт Объединенного ивствтута ядерных псследовании. Дубна 1978
Isaev P.S., Kovalenko S.G.
E2 - 12870
Quark Parton Model with Logarithmic Scaling
Violation and High Energy Neutrino Interactions
In the framework of the proposed earlier quark parton model wi logarithmic scaling violation we calculate cross sections of deep inelastic $\nu(\bar{\nu}) \mathrm{N}$-interactions, evaluate the contribution of the charmed particle production. The kinematical mass corrections to scaling violations and threshold effects are taken into account.

Joint analysis of the experimental data on deep inelastic ep-, ed-scattering and charged current neutrino interaction are performed by using the unique set of free parameters of the model. Evaluatio
of the
c-quark and
W -boson masses are obtained. We analyse oreutral current and all into account scaling violation effects. Considering the Weinberg angle θ_{w} as a fitting parameter we have fitted the relevant data

The investigation has been performed at the Laboratory of Theoretical Physics, JINR.

Preprint of the Joint Institute for Nuclear Research. Dubna 1979

Introduction

Earlier /1-2/ we have proposed a quark parton model with logarithmic scaling violation, which well describea the data on deep inelastic $e(\mu) p, e(\mu) d$-electromagnetic scattering. In the present paper we will consider bigh-energy neutrino-nucleon interactions.

In recent years the neutrino phyeics theory and experiment have been auccesafully developed. As a result, an essential progress has been achieved in underatanding such fundamental problems as the isotopic and Lorentz structure of weak interactions in investigating properties of new particles. In this connection a possibility arises to distinguish effects of the structure of
interacting particles from effects due to the apecial dynamics of weak interaction, and threaholds of new particle production.

So, deep inelastic $V(\bar{V})$ N-intersctions become a source of an important information on quaris atructure of hadrons. Even now the neutrino data being employed together with the data on deep inelastic electromagnetic interactions provide us with a rather atrict test of models of the nucleon structure. Here we consider our model.

We have obtained predictions of the model on the case of deep inelastic $\quad V(\bar{V}) \mathbb{N}-i n t e r a c t i o n s$. The kinamatical masa corrections to scaling and threshold effecte due to the new particle
production have been taken into account. At high energies such effects become particularly important.

The paper is organized as follows:
In Sea. 1 we briefly formulate the main assumptions of the model and write the explicit form for the quark-gluon momentum distributions allowing for the charm suppression in the nucleon. The final expressions contain only two free model parameters.

In Sec. 2 we obtain the correspondence rules bstween quark distributions and structure functions for the interactions with the hadron V-A current of the general form. The thresholds of newquark production and kinematical mass corrections to scaling are taken into account. In the framework of the model with the help of these rules there have been calculated cross sections of deep-inelastic $\quad V(J)_{N-i n t e r a c t i o n s ~ f o r ~ b o t h ~ c h a r g e d ~ a n d ~ n e u t r a l ~ c u r r e n t s . ~}^{N}$. Total cross-sections of the charmed particle production have been calculated as well. We used the Weinberg-Salam - GIM/3/ (WS-GIM) model as the basis for the weak interaction dynamics.

Sec. 3 is devoted to the analysis of the experimental data. Estimations of the C-quark, W-bosson masses and the Weinberg angle θ_{W} have been obtained as well as the model parameters from the best fit to the data.

1. Quark-Gluon Distributions

The basis of our model $/ 1-2 /$ is the analogy between the system of "equivalent" photons in quantum electrodynamica and the quarkgluon "sea" of the nucleon. We also suggeat renormalizability and asymptotic freedom of the quark-gluon interaction. As it has been pointed out in $/ 2 /$ our model does not contradict QCD. We hope that the model can be justified in the framework of QCD in a certain way.

With the mentioned assumptions the "bare" quark and gluon distributions can be obtained. The "bare" distribution (see /2/) is the one which does not reflect the Pact that quarks and gluons are constituents of a concrete hadron.

The spectrum $f\left(E_{\gamma}\right)$ of "equivalent" photons has the form:

$$
\begin{equation*}
f\left(E_{\gamma}\right) \sim \alpha / E_{\gamma} \tag{1.1}
\end{equation*}
$$

where α is the constant of the electromagnetic interaction; E_{γ}, the energy of the equivalent photon.

By analogy with (1.1) we shall write the "bare" distributions of quarks φ and gluons ψ of the nucleon "sea" in the forms
$\varphi=a^{\prime}(g) \cdot \frac{1 / 3}{\sqrt{x^{2}+\sqrt[\mu^{2}]{P^{2}}}}, \phi=a^{\prime \prime}(g) \cdot \frac{e^{-\beta x}}{\sqrt{x^{2}+\frac{\mu^{2}}{p^{2}}}}$,
where g is the constant of the quark-gluon interaction; $\sqrt{x^{2}+\mu^{2} / p^{2}}$, the energy of the quark (gluon) of mass μ, carrying the fraction x of the total nucleon longitudinal momentum $P . a^{\prime}(g)$ and $a^{*}(g)$ are some unknown functions of g. The nature and the role of the exponential Boltzmann factor in the gluon distribution were discussed in papers /1,4/. The vacuum polarization, appearing in a nucleon because of the quark-gluon interaction results in the change of bare coupling constant g to the effective one $\bar{g}\left(Q^{2}\right)$. In the case of a renormalizable interaction $\bar{g}\left(Q^{2}\right)$ depends logarithmically on Q^{2}. Thus:
$\varphi=a^{\prime}\left(\bar{g}\left(\ln Q^{2}\right)\right) \cdot \frac{1 / 3}{\sqrt{x^{2}+\frac{\mu^{2}}{P^{2}}}}, \phi=a^{\prime \prime}\left(\bar{g}\left(\ln Q^{2}\right)\right) \frac{e^{-\beta x}}{\sqrt{x^{2}+\frac{\mu^{2}}{P^{2}}}}$.

Here we obtain factorization of the x and Q^{2}-dependence of the "bare" distributions.

The strict calculation of the functions $Q^{\prime}\left(Q^{2}\right)$ and $Q^{\prime \prime}\left(Q^{2}\right)$ in the framework of QCD may be a subject for a subsequent paper. Here we still use the phenomenological representation for U^{\prime} and $a^{\prime \prime}$ as in/1,2/:

$$
\begin{equation*}
a^{\prime}\left(Q^{2}\right)=a^{\prime \prime}\left(Q^{2}\right)=a\left(Q^{2}\right)=a / \bar{g}\left(Q^{2}\right) \tag{1.4}
\end{equation*}
$$

In the case of QCD:

$$
\begin{equation*}
\bar{g}^{2}\left(Q^{2}\right) / 4 \pi=\frac{12 \pi}{25 \ln Q^{2} / \Lambda^{2}} \tag{1.5}
\end{equation*}
$$

where $\Lambda=0.5 \mathrm{GeV} / \mathrm{c}$ (conventional value).
Applying the method, described in $/ 4 /$ to the formulae (1.3) we shall obtain the distribution functions of the U, d, s, c quarks, $\bar{U}, \bar{d}, \bar{S}, \bar{C}$ antiquarks and g-gluons inside a proton. Final expressions for exact $S U(3)$-symmetry have the form: $U=2 G_{v}+G_{c}, d=G_{v}+G_{c}, \bar{S}=S=\bar{u}=\bar{d}=G_{c}, g=6 \cdot e^{-\beta x} \cdot G_{c}$
$G_{v}\left(x, Q^{2}\right)=x^{-1 / 2} \frac{(1-x)^{2 a\left(Q^{2}\right)}}{B\left(\frac{1}{2}, 2 a\left(Q^{2}\right)+1\right)} \frac{\Phi\left(Q\left(Q^{2}\right), 2 a\left(a^{2}\right)+1 ;-\beta(1-x)\right)}{\phi\left(a\left(Q^{2}\right), 2 a\left(a^{2}\right)+3 / 2 ;-\beta\right)}$
$G_{c}\left(x, Q^{2}\right)=\frac{a\left(Q^{2}\right)}{6 \cdot x} \cdot(1-x)^{2 a\left(Q^{2}\right)+1 / 2} \cdot \frac{\phi\left(a\left(Q^{2}\right), 2 a\left(Q^{2}\right)+\frac{3}{2} ;-\beta(1-x)\right)}{\phi\left(\alpha\left(Q^{2}\right), 2 a\left(Q^{2}\right)+3 / 2 ;-\beta\right)}$
$\phi(\alpha, \beta ; Z)$ is a degenerate hypergeometric function.
For the case of the broken $S U(4)$-symmetry of the nucleon "sea" (i.e., charm is suppressed) it looks like

$$
\begin{align*}
& U=2 G_{v}+\left(1-\alpha_{c}\right) G_{c}, d=G_{v}+\left(1-\alpha_{c}\right) G_{c}, \\
& \bar{U}=\bar{d}=\bar{s}=S=\left(1-\alpha_{c}\right) G_{c}, c=\bar{c}=3 \alpha_{c} G_{c}, \tag{1.6}
\end{align*}
$$

Here $0 \leq d_{c} \leq \frac{1}{4} \quad$ is a parameter of the charm suppression in a nucleon. The mechanism of the charm suppression, that we use, is defined by the change from $Q^{\prime}\left(Q^{2}\right)$ to $\left(1-\alpha_{c}\right) Q^{\prime}\left(Q^{2}\right)$ and from $Q^{\prime}\left(Q^{2}\right)$ to $3 \alpha_{c} Q^{\prime}\left(Q^{2}\right)$ in the expressions for the light and for the charmed quark "bare" distributions, respectively.

It is natural to consider the α_{c}-parameter to depend on X and Q^{2}, as there exist obvious intuitive and more strict /5/ indications to the strong suppression of the charmed-quark distributions in a nucleon below threshold of charm production. We will not establish the form of $\alpha_{c}\left(x, Q^{2}\right)$ function and we shall further consider d_{c} parameter to be some average value of this function in the kinematical range we are interested in.

2. Calculation of Cross Sections

Cross bections of the inclusive reactions:

$$
\begin{align*}
& V(\bar{V})+N \rightarrow \mu^{-}\left(r^{+}\right)+X \tag{a}\\
& \nu(\bar{V})+N \rightarrow V(\bar{V})+X \tag{b}
\end{align*}
$$

are calculated in the lowest order in the weak interaction constant G. In this case the differential cross section has the form
$\frac{d^{2} \sigma^{ \pm}}{d x d y}=\frac{G^{2} \mu E}{\pi}\left(\frac{\mu_{e x}^{2}}{Q^{2}+\mu_{e x}^{2}}\right)\left[\left(1-y-\frac{\mu x y}{E}\right) F_{2}^{ \pm}+\frac{x y^{2}}{2} F_{1}^{ \pm} \mp\left(y-\frac{y^{2}}{2}\right) x F_{3}\right]_{0}^{ \pm}(2.1)$
where $\mathcal{M e x}=\mathcal{M}_{W^{*}}{ }^{*} \mathcal{M}_{2} ; \quad E$ is energy of the neutrino beam. In the framework of a parton model one may obtain general correapondence rules $/ 6 /$ between quark distributions and structure functions $F_{i^{*}}^{ \pm}$for the interactions with the hadron $V-A$ current of the general form:

$$
\begin{equation*}
J_{\mu}=\sum_{i j} \bar{q}_{i} \gamma_{\mu}\left(C_{i j}^{V}+C_{i j}^{A} \gamma_{5}\right) q_{j} \tag{2.2}
\end{equation*}
$$

q_{i} is the field of the 1-th quark; $C_{i j}^{V}$ and $C_{i j}^{A}$, the vector and axial coupling constanta. Wo obtain these rulea taking into account kinematical mass corrections to the scaling violation and threshold effects due to the heavy quarics production. Our consideration is restricted to the conventional parton picture with Q^{2} dependent quark and gluon momentum distributions. It provides us with a natural interpretation for the final regults.

Let us write the hadronic tensor $W_{N V}$ within the parton $W_{R U}^{m o d e l s}=\sum_{i j} \int_{0}^{t} \frac{d^{\prime} z}{z}\left(K_{\mu v}^{i j}(z) \cdot 2 \pi \cdot \delta\left(\left(p_{i}+q\right)^{2}-m_{j}^{2}\right) \varphi_{i}^{+}\left(z, Q^{2}\right)\right.$

$$
+\tilde{K}_{m i}^{j i}(2) \cdot 2 \pi \cdot \delta\left((p s+q)^{2}-m_{i}^{2}\right) \Phi_{j}\left(z, Q^{2}\right)
$$

Here $Q_{i}^{+}\left(z, Q^{2}\right)$ and ${Q_{i}^{-}}_{-}^{-}\left(z, Q^{2}\right)$ correspond to the momentum distribution functions of the 1-th type quarks and antiquarks. K Kiju and $\tilde{K}_{\mu v}^{i j}$ are tensors of the quark transitions

$$
\begin{gathered}
K_{\mu v}^{i j}=\frac{1}{2} \cdot \sum_{\sigma_{i} ; \sigma_{j}}\left\langle P_{j} \sigma_{j}\right| J_{\mu}(0)\left|P_{i} \sigma_{i}\right\rangle\left\langle P_{i} \sigma_{i}\right| J_{V}^{t}(0)\left|P_{j} \sigma_{j}\right\rangle \\
\tilde{K}_{H V}^{j i}=K_{\mu v}^{i j}
\end{gathered}
$$

Rewrite (2.3) in the following form

$$
\begin{aligned}
W_{\mu v}=\frac{\pi}{\mathcal{M}} & \sum_{i j} \int_{-\infty}^{\infty} \frac{d z}{z}\left\{q_{i}^{+}\left(z, Q^{2}\right) \cdot K_{\mu v}(z) \delta\left(z-q_{j}\right)\right. \\
& +q_{j}^{-}\left(z, Q^{2}\right) \cdot \tilde{K}_{\mu v}^{j i}(z) \delta\left(z-\xi_{i}\right) \theta(z) \theta(1-z)
\end{aligned}
$$

where an averaging on the initial quarle polarization and a summa-
tion on the final one have been performed. $g_{i}=\frac{Q^{2}+m_{i}^{2}}{2 \Omega V}$ is the reduced f-scaling variable, that coincides with the conventional f-scaling varisble $/ 5 /$ to the second order in m_{i}^{2} / Q^{2}. Performing an integration in the (2.5) and comparing an equal Lorentz structures in left and right hand side, we obtain correspondence rules:

$$
\begin{align*}
& F_{k}^{ \pm}=\sum_{i j}\left(F_{j i(k)}^{ \pm}+F_{i j(k)}\right) \\
& F_{j i(1)}^{ \pm}=\left(C_{i j}^{\nabla^{2}}+C_{i j}^{1^{2}}\right) \varphi_{j}^{ \pm}\left(\xi_{i}, Q^{2}\right) \theta\left(1-\delta_{i}\right) \\
& \tilde{F}_{i j(1)}^{ \pm}=\left(C_{i j}^{V^{2}}+C_{i j}^{A^{2}}\right) \varphi_{i}^{\mp}\left(f_{j,} Q^{2}\right) \theta\left(1-f_{j}\right) \\
& F_{j i(3)}^{ \pm}=\mp 2 C_{i j}^{V} \cdot C_{i j}^{A} \cdot \varphi_{j}^{ \pm}\left(g_{i}, Q^{2}\right) \theta\left(1-f_{i}\right) \\
& \tilde{F}_{i j(3)}^{ \pm}= \pm 2 C_{i j}^{V} C_{i j}^{1} \varphi_{i}^{\mp}\left(f_{j}, Q^{2}\right) \theta\left(1-\rho_{j}\right) \\
& F_{j i(2)}^{ \pm}=f_{i} F_{j i(1)}^{ \pm}, \quad \tilde{F}_{i j(2)}=\rho_{j} \tilde{F}_{i j(1)} \tag{2.7}
\end{align*}
$$

In these expressions $\theta\left(1-f_{i}\right)$ factors correspond to the thresholds of production of quariss with masses $m_{i} \cdot F_{i j(k)}^{ \pm}$and $\widetilde{F_{i j(k)}}$ are the partial structure functions of the quaris transitions

The summation in (2.6) is performed over such a set of quark transtions which leads to the final hadronic state of the considered reaction.

Below we display the expressions for structure functions that have been obtained with the help of the (2.6)-(2.7) in the framework of the standard 4-quark model of weak and electromagnetic interaction WS-GIM $/ 3 /$ in the following three cases

1. The charged current interactions.

The structure functions in this case are defined by the charged hadronic current:

$$
\begin{align*}
J_{\mu}^{c} & =\bar{u} \gamma_{\mu}\left(1+\gamma_{5}\right)\left(\cos \theta_{c} d+\sin \theta_{c} S\right) \\
& +\bar{C} \gamma_{\mu}\left(1+\gamma_{S}\right)\left(\cos \theta_{c} \cdot S-\sin \theta_{c} \cdot d\right) \tag{2.8}
\end{align*}
$$

and have the form:

$$
\begin{aligned}
& F_{1 p}^{ \pm}=F_{1 p}^{ \pm(1)}(x)+F_{1 p}^{ \pm(2)}\left(g_{c}\right) \theta\left(1-g_{c}\right) \\
& F_{2 p}^{ \pm}=x \cdot F_{1 p}^{ \pm(1)}(x)+f_{c} F_{1 p}^{ \pm(2)}\left(g_{c}\right) \partial\left(1-g_{c}\right)
\end{aligned}
$$

$$
\begin{aligned}
F_{3 p}^{+} & =2\left(\bar{u}(x)-\cos ^{2} \theta_{c} \cdot d(x)-\sin ^{2} \theta_{c} \cdot S(x)+\bar{C}(x)\right) \\
& -2\left(\cos ^{2} \theta_{c} \cdot S\left(f_{c}\right)+\sin ^{2} \theta_{c} \cdot d\left(f_{c}\right)\right) \theta\left(1-f_{c}\right) \\
F_{3 p}^{-} & =2\left(\cos ^{2} \theta_{c} \cdot \bar{d}(x)+\sin ^{2} \theta_{c} \cdot \bar{S}(x)-थ(x)-c(x)\right) \\
& +2\left(\cos ^{2} \theta_{c} \cdot \bar{S}\left(f_{c}\right)+\sin ^{2} \theta_{c} \cdot \bar{d}\left(f_{c}\right)\right) \theta\left(1-f_{c}\right)
\end{aligned}
$$

$$
\begin{aligned}
& F_{1 p}^{+(1)}(x)=2\left(\bar{u}(x)+\cos ^{2} \theta d(x)+\sin ^{2} \theta S(x)+\bar{C}(x)\right) \\
& F_{1 p}^{-(1)}(x)=2\left(\dot{u}(x)+\cos ^{2} \theta \cdot \bar{d}(x)+\sin ^{2} \theta \cdot \bar{S}(x)+C(x)\right)
\end{aligned}
$$

$$
F_{1 p}^{+(2)}\left(g_{c}\right)=2\left(\cos ^{2} \theta_{c} \cdot S\left(f_{c}\right)+\sin ^{2} \theta_{c} \cdot d\left(f_{c}\right)\right)
$$

$$
F_{1 p}^{-(2)}\left(g_{c}\right)=2\left(\cos ^{2} \theta_{c} \cdot \bar{S}\left(g_{c}\right)+\sin ^{2} \theta_{c} \cdot \bar{d}\left(g_{c}\right)\right)
$$

where $f_{c}=\left(Q^{2}+m_{c}^{2}\right) / 2 \mu_{V} \quad, M_{c}$ is the mass of a charmed quark (in the case of light quarks in the final state the variable g_{i} reduces to the usual X).
2. The neutral current interactions.

We derive structure functions for these processes from the neutral hadronic current

$$
\begin{gathered}
J_{\mu}^{N}=\sum_{i=1, d, S_{2} c} \bar{q}_{i} \gamma_{H}\left(C_{i}^{v}+C_{i}^{A} \gamma_{s}\right) q_{i} \\
C_{u}^{V}=C_{u}^{c}=1 / 2-\frac{4}{3} \sin ^{2} \theta_{w}, C_{s}^{v}=C_{d}^{v}=-\frac{1}{2}+\frac{2}{3} \cdot \sin ^{2} \theta_{w} \\
C_{s}^{A}=C_{d}^{1}=-C_{c}^{A}=-C_{u}^{A}=1 / 2
\end{gathered}
$$

$$
\begin{aligned}
\begin{aligned}
& F_{1}^{ \pm(w)}=\left[\left(\frac{1}{2}-\frac{4}{3} \sin ^{2} \theta_{w}\right)^{2}+\frac{1}{4}\right](u(x)+\bar{u}(x) \\
&\left.+\left(C\left(f_{c}\right)+\bar{C}\left(g_{c}\right)\right) \theta\left(1-g_{c}\right)\right)+ \\
& {\left[\left(\frac{1}{2}-\frac{2}{3} \sin ^{2} \theta_{w}\right)^{2}+\frac{1}{4}\right](\bar{S}(x)+S(x)+d(x)+\bar{d}(x)) } \\
& F_{2}^{ \pm(w)}= {\left[\left(\frac{1}{2}-\frac{4}{3} \sin ^{2} \theta_{w}\right)^{2}+\frac{1}{4}\right][(\bar{u}(x)+\mathcal{U}(x)) x} \\
&\left.+\left(C\left(g_{c}\right)+\bar{C}\left(f_{c}\right)\right) \cdot g_{c} \cdot \theta\left(1-f_{c}\right)\right]+ \\
& {\left[\left(\frac{1}{2}-\frac{2}{3} \sin ^{2} \theta_{w}\right)^{2}+\frac{1}{4}\right](\bar{S}(x)+S(x)+d(x)+\bar{d}(x)) \cdot x } \\
& F_{3}^{ \pm(N)}=\left(\frac{1}{2}-\frac{4}{3} \sin ^{2} \theta_{w}\right)\left(\bar{u}(x)-u(x)+\left(\bar{C}\left(f_{c}\right)-C\left(g_{c}\right)\right) \theta\left(1-f_{c}\right)\right) \\
&+\left(\frac{1}{2}-\frac{2}{3} \sin ^{2} \theta_{w}\right)(\bar{S}(x)-S(x)+d(x)-\bar{d}(x)) .
\end{aligned}
\end{aligned}
$$

3. The charmed-particle production in the charged current interactions.

Summing in (2.6) over the charm-changing-quark transitions only, which corresponds to the charm changing part of the charged current
$J_{\mu}^{c}(|\Delta c|=1)=\bar{C} \gamma_{\mu}\left(1+\gamma_{5}\right)\left(\cos \theta_{c} \cdot s-\sin \theta_{c} \cdot d\right)$
we obtain structure functions for this case:
$F_{1(\Delta c= \pm 1)}^{ \pm}=F^{ \pm(1)}+F^{ \pm(2)} ; F_{2(\Delta c= \pm 1)}^{ \pm}=\rho_{c} F^{ \pm(1)}+x F^{ \pm(2)}$

$$
\left.\begin{array}{c}
F_{3(\Delta c= \pm 1)}^{ \pm}=\mp\left(F^{ \pm(1)}-F^{ \pm(2)}\right) \\
F^{ \pm(1)}=2\left\{\sin ^{2} \theta_{c}\binom{d\left(f_{c}\right)}{\bar{d}\left(f_{c}\right)}+\cos ^{2} \theta_{c}\binom{S\left(f_{c}\right)}{\bar{S}\left(f_{c}\right)}\right\} \theta_{1}\left(f_{c}\right) \\
F^{ \pm(2)}= \tag{2.13}\\
\hline \bar{C}(x) \\
C(x)
\end{array}\right) .
$$

Houtron etructure functions can be obtained from (2.9), (2.11), (2.12) by the chengen $U \sim d, \vec{U} \leftrightarrow \bar{d}$. In the case of a composite terget containing S neutrons by one proton the atructure functions are defined as followe.

$$
F_{i T}^{ \pm}=\left(F_{i p}^{ \pm}+S F_{i n}^{ \pm}\right) /(S+1)
$$

Subetituting in the above equations the expreseiona for the quark dietribution sunctions (1.5)-(1.6), we find the crose sections $\sigma^{ \pm}, d \sigma^{ \pm} / d y, \sigma^{ \pm}(\Delta C= \pm 1) \quad$ and the average values of kinematical variables $\langle x y\rangle^{ \pm},\langle y\rangle^{ \pm}$.

3. Pe Analyais of the Experimental Data

There oriate a conaiderable sot of the experimental date on doep inolantic $V(\bar{V}) N$-interaction at the neutrino bean onergien up to $200 \mathrm{GeF} / 7-9 /$. To test the predictions of our model in more dotall we have carried out a joint analyaie of the neutrino and

deep inelastic ep-, ed-scattering data $/ 7-10 /$, using the unique set. of free parameters of the model. The best agreament of theoretical curves with experimental points (see Figs. I,2) is obtained at the values of free parameterg, given in Table 1.

Beaides parameters of the model, Table 1 shows the eatimations of the C-quark and W-boson masses, defined as values of additional parametera from the beat fit to the data. The obtained estimations are in good agreement with the conventional ones. Large errors in their definition are due to the insuificient accuracy of the existing experimental results. From Table 1 one may ses to what extent the finiteness of masses of C-quark and W-boson influences the goodness of the description of data.

Figure 3 shows the dependence of the charm production crose section on the neutrino beam energy in the deep inelaaic inter actions with the obtained values of free perameters. Its relative contribution to the total cross section of the reaction $18-8-10 \%$.

Table 1. Values of parameters in three ceses:
a) $m_{c}=0, M_{W}=0$ are fixed parameters;
b) $M_{W}=0$ is a fixed parameter, m_{c} is the free one;
c) M_{W} and m_{c} are free parameters.

para- me- ters	α	b	C
α	5.22 ± 0.02	5.21 ± 0.02	5.30 ± 0.02
β	-2.50 ± 0.09	-2.31 ± 0.09	-2.40 ± 0.09
d_{c}	0.25 ± 0.02	0.25 ± 0.02	0.23 ± 0.02
m_{c}		$3.0 \pm 1.2(6 \mathrm{eV})$	$3.1 \pm I .2(\mathrm{GeV})$
Ω_{w}		$50.0 \pm I 0(\mathrm{GeV})$	
γ^{2} / \bar{x}^{2}	$330 / 259$	$290 / 259$	$285 / 259$

The reaults of $V(\bar{U}) N$-experiments are often repreaented in the form of the parametrizations
$\sigma^{ \pm}=a^{ \pm} E$.
$\frac{d \sigma^{ \pm}}{d y}=\frac{G^{2} \Omega}{\pi} E \cdot A^{ \pm}\left(\frac{(1-y)^{2}}{2} \cdot\left(1 \mp B^{ \pm}\right)+\frac{1}{2}\left(1 \pm B^{ \pm}\right)\right)$,
where $A^{ \pm}, B^{ \pm}, Q^{ \pm}$are parametera obtained from the comparison with the experimental data. In our model because of scaling violation these parapeters depend on. E and y . Por a clear presentation of the model predictions in the form (3.1) we shall define averaged values $A^{ \pm}(E, y), B^{ \pm}(E, y)$ and $a^{ \pm}(E)$ in different kinematical ranges. Let us write down then the functional
$y^{2}[f]=\int_{E_{1}}^{E_{2}} d E \int_{0}^{1} d y(f(y, E)-\bar{f})^{2}$,
where \bar{f} corresponds to $\overline{a^{ \pm}}, \overline{A^{ \pm}}, \overline{B^{ \pm}}$.
Minimizing it

$$
\begin{equation*}
\frac{\partial x^{2}[f]}{\partial \bar{f}}=0 \tag{3.3}
\end{equation*}
$$

we aball define the needed parameters by the formulae

$$
\begin{equation*}
\bar{f}=\left(\int_{E_{1}}^{E_{2}} d E \int_{0}^{1} d y f(E, y)\right) /\left(E_{2}-E_{1}\right) \tag{3.4}
\end{equation*}
$$

The numerical values of $\overline{a^{ \pm}}, \overline{A^{ \pm}}, \overrightarrow{B^{ \pm}}$predicted by our model versus experimental ones $/ 8 /$ are given in Table 2.

Mow we proceed to the analysis of the neutrino neutral ourrent interaction data. It is well known that the experimental study of this type of interaction is connected with the very complex problems which are more difficult than in the case of charged current ones.

Table 2.

$E(\mathrm{GeV})$		2-10	20-60	60-100	100-150	150-200
σ^{\prime} / E	model	$0.72^{+0.04}$ 0.72 ± 0.05	0.66 ± 0.04 0.67 ± 0.05	$0.57 \geq 0.04$ 0.56 ± 0.05	0.56 ± 0.04 $0.6 I \pm 0.05$	$0.53 \not 0.04$ $0.51^{\ddagger} 0.05$
	exp.					
σ^{T} / E	model	0.29 ± 0.04 $0.29+0.02$	0.30 ± 0.04 0.26 ± 0.03	0.3 ² ± 0.04 0.25 ± 0.03	0.32 ± 0.04 0.32 ± 0.04	$0.33 \not 0.04$ $0.32+0.04$
	exp.					
A	model	0.49 ± 0.03 $0.48 \pm 0,04$	0.46 ± 0.03 0.45 ± 0.04	$0.44^{+0.03}$ $0.39 \div 0.04$	$0.43+0.03$ $0.43^{ \pm} 0.04$	$\begin{aligned} & 0.4 \pm 0.03 \\ & 0.43 \pm 0.04 \end{aligned}$
	exp.					
$\int_{0} d x \cdot x F_{3}$	model	0.12 ± 0.03 0.41 ± 0.06	0.36 ± 0.03 0.39 ± 0.08	$0.3 I \pm 0.03$ $.0 .30 \pm 0.08$	$0.26 \pm 0,03$ 0.24 ± 0.08	0.25 ± 0.03 0.24 ± 0.08
	exp.					
\bar{B}	model	0.86 ± 0.04 0.86*0.05	$0.65{ }^{+0} 0.05$ 0.86 ± 0.04	0.76 ± 0.05 	$\begin{aligned} & 0.56 \pm 0.05 \\ & 0.56 \pm 0.12 \end{aligned}$	$\begin{aligned} & 0.50 \pm 0.05 \\ & 0.56 \pm 0.12 \end{aligned}$
	exp.					

There are considerable experimental errors because of difficulties in the registration of neutrinom in finsl etates, in producing
of monocbromatic neutrino beams; the complexity of background, and so on. However, the present data allow one to obtain real estimations of the very important parameter, Weinberg angle θ_{W}. For this purpose, the data are analysed ususily with the help of the parametrizations for quark distribution functions with exact ecaling behaviour. In our opinion, the eatimation of the Weinberg angle taking into account scaling violation is a matter of topical intereat. To obtain this we shall use quark distributions of our model (1.5)-(1.6). The parameters α, β are defined in Table 1. Inserting (1.5)-(1.6) into (2.11) we get quantities to be measured

$$
R^{\text {obs }}=\frac{\int d E_{v} \Phi\left(E_{v}\right)_{y_{y}}^{1} d y\left(d \sigma^{+(N)} / d y\right)}{\int d E_{v} \phi\left(E_{v}\right) \int_{y_{m}}^{1} d y\left(d \sigma^{+(c)} / d y\right)}
$$

$\bar{R}^{o b s}=\frac{\int d E_{V} \phi\left(E_{v}\right) \int_{y_{m}}^{1} d y\left(d \sigma^{-(N)} / d y\right)}{\int d E_{v} \phi\left(E_{v}\right) \int_{y_{m}}^{1} d y\left(d \sigma^{-(c)} / d y\right)}$,
where $\phi\left(E_{V}\right)$ is the energy spectrum of the neutrino beam, $y_{m}=E_{h}^{c} / E_{h}, E_{h} \geqslant E_{h}^{c} ; \quad E_{h} \quad$ is the onergy of final hadronic state. Considering $\theta_{W} \quad$ in (2.11) as a fitting parameter from the beat agreement with the experimental data/11/ we obtain the estimation $\sin ^{2} \theta_{w}=0.26 \pm 0.04$.

Conclusion

So, one may conclude that the proposed model with two free parametere makes it posaible to describe succeasfully the exiating experimental data on ap-, ed-,and $/(J) N$-deep inelastic ecattering.

We have discuseed the effects with charm in a nucleon "sea" and in a Inal hadronic state. The charm auppression in a mucleon has been taken into account. In the kinematical region of the analysed data we have found it to be weak.

Whth the help of the quark distribotion functione predicted by our model we have calculated the cross section of a charm production in the deep inelastic $V(\bar{V}) N$-interactions. According to the calculation it is equal to $\sim 8 \div 10 \%$ of the total cross section.

We have analyzed the noutral current data to estimate the value of the weinberg angle, with the scaling violation, observed in deep inelatic olectromagnetic and weak charged current interactions, taken into account.

The obtained estimations of the charmed quark masa $m_{c}=3.0 \pm 1.2 \mathrm{GeV}, W$-boson mass $\mathcal{M}_{W}=50 \pm 10 \mathrm{Gov}$, and the Weinberg angle $\sin ^{2} \theta_{w}=0.26 \pm 0.04$ are within errors in agreement vitb the genorally accepted ones.

The authors thank S.M.Bilenky and A.V.Sidorov for useful discuesions.

References

1. Isaev P.S., Kovalenko S.G. Proceeding of V International Symposium on High Energy Physics. Dubna, 1978, p. 229; Kovalenko S. G., Malyshkin V. G. JINR, P2-11674, Dubna, 1978. Kovalenko S. G. JINR, P2-11805, Dubna, 1978
2. Kovalenko S. G., Malyshkin V.G. Yadern. Piz., 1979, 12, p. 1647
3. Glashow S. L↔. Iliopoulos J., Maiani L。 Phys.Rev.. 1970, D2, p. 1285. Weinberg S. Phys.Reve, 1972, D5, p. 1412.

Salam A. Ln: Elementary Particle Theory; Proc.8th Nobel Symposium, Aspeneisgarden, 1968. ed. N.Svartholm. Almquist and Wirsell, Stockholm, 1968, p.367.
4. Belokurov V. V. et al. Yadern. Fiz., 1977, 11, p. 1073.
5. Georgi H., Politzer H. D. Phys.Rev. Lett., 1976, 36, p. 1281. Georgi H., Politzer H.D. Phyg.Rev., 1976, D14, p. 1829. Nachtmann O. Nucl. Phys., 1973, B63, p. 237.
6. Altarelli G. Instituto di Fiaica G.Marconi Univeraita di Roma. INFN-Sezione di Roma (n. 519).
7. Barish J. P. et al. Phys.Rev.Lett., 1975, 35, p. 1316.
8. Bodek A. (CITF), Turlay R. (CDHS), Cundy D. (BEBC). In: "Neutrino" 77". Proceeding of the International Conference on Neutrino Phys. and Astrophys. Elbrus, USSR, 1977.
9. Eichten T. et al. Phys. Lett., 1973, 46B, p. 274.
10. Atwood W. B. Electron Scattering of Hydrogen and Deuterium at 50° and 60°. SLAC-185, 1975. SLAC-PUB-1758, 1976.
11. Holder M. et al. (CDHS). Phys.Lett., 1977, 72B, p. 254. Blietschau J. et al. (GGM) Nucl. Phy8., 1977, B118, p. 218. Benvenuti A. et al. (HPWF). Phys.Rev. Lett., 1976, 37, p. 1939. Wanderer P. et al. (HPWP). Phys.Rev., 1978, D17, p. 1979. Marritt F.S. et al. (CF). Phys.Rev., 1978, D17, p. 2199. Bosetti P.C. et al. (BEBC). Phys. Letto, 1978, 76B, p. 505.

