

объвдиненный Институт пдерных

 исследоваиий дубнаA.V.Sidorov, N.B.Skachkov

POTENTIAL
WITH A DIMENSIONAL PARAMETER IN THE MODEL OF "HARD COLLISION"

A.V.Sidorov, N.B.Skachkov

POTENTIAL

WITH A DIMENSIONAL PARAMETER
 IN THE MODEL OF "HARD COLLISION"

Submitted to "Писвма в ЖЭТФ"
модели шестких соударений

Рассмотрено рассеяние кварков на эффектияном потенциале, содертащем размерный параметр. Показано, что полученное с использованием предположения о факторизуемости кварковых амппитуд сечение рассеяния кварка на кварке хорошо описывает данные по реакции $\mathrm{pp} \rightarrow \boldsymbol{\pi}^{\circ} \mathbb{Z}$.

Работа выполнена в Лаборатории теоретической физики, ОИяи.

Препринт Объединенмого ипститута пдерных исследованй. Дубна 1979
Sidorov A.V., Skachkov N.B.
E2-12863
Potential with a Dimensional Parameter
in the Model of "Hard Collision"
The quark scattering on effective potential containing the dimensional parameter is considered. It is shown that the data on reaction $\mathrm{pp} \rightarrow 0^{\circ} \mathrm{X}$ are well described within the assumption of factorizability of the quark amplitudes.

The investigation has been performed at the Laboratory of Theoretical Physics, JINR.

Preprint of the Joint Institute for Nuclear Research. Dubna 1979

Recently the cross section of inclusive reaction $p p \rightarrow \boldsymbol{T}^{\circ} X$ ($\theta_{c . m}=90^{\circ}$) bas been measured in the region of "very large" meson momenta: $P_{\perp} \leqslant 15 \mathrm{GeV} / \mathrm{c} / 1 /$. It was eatablished that the crose section decreases as $P_{\perp}{ }^{-8} / 2 /$ for $P_{1} \sim 2.4+6.0 \mathrm{GeV} / \mathrm{c}$ while for $p_{\perp} \sim 10+15 \mathrm{GeV} / \mathrm{c}, \rho_{\perp}^{-6,6 / 3 /}$.

In this article the quark ecattering in the aubprocese of Whard colligion is a purpose of such a potential, that allowa us to deacribe the cross eection of reaction $\rho \rho \rightarrow \pi^{\circ} X$ in a wide region of pion momenta: $\rho_{\perp} \sim 2,46$ - $15 \mathrm{GeV} / \mathrm{C}$.

Within the dynamical model of factorizing quarks (DMPQ) the potential is setting on the relativiatic configurational representation (RCR). The transition from the monentum representation to the RCR is realized through the expansion over the functions/5/ ($\hbar=c=1$) :

$$
\begin{equation*}
\xi(\vec{p}, \vec{q})=\left(\frac{p_{0}-\vec{p} \vec{n}}{m}\right)^{-1-i r m} \tag{1}
\end{equation*}
$$

(M is the quark mass). These functions (1) raalize the unitary infinite-dimensional irredusible repreaentatinns of the Lorents group. The amplitude of scattering of a quark in the Born approximation is given as follows /6/:

$$
\begin{equation*}
g_{i}(\theta)=4 \pi \int_{0}^{\infty} \frac{\sin r m y_{i}}{r m y_{i}} V_{e f f}(r) r^{2} d r \tag{2}
\end{equation*}
$$

where $y_{i}=A_{i} \operatorname{ch}\left(1-t_{i} / 2 \mathrm{~m} 2\right), t_{i}$ is the momentum transferred to one quark. Barlier the potential was taken in the form: $V_{\text {eff }}(r)=\delta(r) / 4 \pi r^{2}$ brought to
$g_{i}(\theta)=y_{i} / \operatorname{sh} y_{i}$. However, such an amplitude allowed us to describe the experimental data over the region $p_{\perp} \sim 2.4+7 \mathrm{GeV} / \mathrm{c}$ /7/ only. To take into account the previourly mentioned change of regime $P_{\perp}^{-8} \rightarrow P_{\perp}^{-}$ $-6,6$, , we sh roduce into the po tential the length of a dimensional parameter ρ :

$$
\begin{equation*}
V_{e f f}(r)=S(r+i \rho) / 4 \pi r^{2} \tag{3}
\end{equation*}
$$

Inserting (3) into (2) we obtain:

$$
\begin{equation*}
g_{i}(\theta)=-\frac{s h \rho m y_{i}}{\rho m y_{i}} \tag{4}
\end{equation*}
$$

In the framework of DMPQ we found the following expression for the quark-quark orose sections

$$
\begin{equation*}
\frac{d \sigma}{d t} \sim \frac{A}{s^{2}}\left(\frac{\operatorname{sh} \rho m y_{i}}{\rho m y_{i}}\right)_{-t \rightarrow \infty}^{4} \frac{A}{s^{2}}\left(\frac{|t|}{m^{2}}\right)^{-N_{p f f}} \tag{5}
\end{equation*}
$$

where $N_{\text {eff }}=4(1-\rho m)$.
Pormula in the limit ρm
Pormula ${ }^{4}$ in the limit $\rho m y_{i} \ll 1$ reduces to the one obtained in $/ 4 /$. When ρ is equal to the compton wave length $\left(\rho=m^{-1}\right)$ of quark (CWL), then $d \sigma / d t \sim S^{-2}$ according to the quark counting rule predictiona /8/.

Farther we use expression(5) for the quark-quark scattering cross section to calculate the cross section of reaction $p p \rightarrow \pi^{\circ} X$ by the formula of the model of "hard collisiona" /9/:
$E \frac{d^{3} \sigma}{d p^{3}}(A B \rightarrow h X)=\int d x_{a} d x_{e} \sum_{a, b} G_{A}^{a}\left(x_{a}\right) G_{B}^{b}\left(x_{c}\right) D_{e}^{h}\left(z_{c}\right)_{z_{c}} \frac{1}{d} \frac{d \sigma}{d t}$,
where $G_{A}^{a}(x)$ is the distribution function for quarks in hadron A and $D_{c}^{h}(z)$ is the function of fragnentation of quark C into hadron h. We choose the Q^{2}-independent functions $G_{A}^{a}(x)$ and $D_{c}^{h}(z)^{/ 10 /}$. Por quark masses we take typical value $m_{u}=m_{d}=$ $=0.33 \mathrm{GeV}$, and the contribution from other quarks, like in /10/ was not taken into account.

The results of fitting the experimental data by formulee (5) and (6) are given in the Table and in the Figure and display a gooddescription. We obtain the value of ρ, which is three times as large as the CWL of quark and approximately equal to the CWL of proton $\rho \approx m^{-1}$.

The existence of peculiarity in the potential of $N \bar{N}$-interaction at such distances was pointed out in /11/.

Thus, the presence in the potential of quark-quark scattering of two dimensional paremeters m and ρ allow us to make a good description of data on reaction $p p \rightarrow \pi^{\circ} X\left(\theta_{c . m}=90^{\circ}\right)$ in the region of an intermediate value of a scaling variable

$$
x=2 p_{\perp} / \sqrt{5} \leqslant 0.5
$$

The authors express their sincere gratitude to S.P.Kuleshov for useful discuasions.

Table

$\sqrt{S}(G) V)$	$10^{3} \times A\left[\mu b \operatorname{cev}^{2}\right]$	$\rho\left[\operatorname{cov}^{-1}\right] x^{2} d . f$.	
62.5	4.9 ± 0.7	0.97 ± 0.02	$130 / 44-2$
52.7	7.0 ± 0.7	0.82 ± 0.01	$67 / 47-2$

Pig. 1. Comparison of the DKPQ predictions with experimental data on $p p \rightarrow \pi^{\circ} X ; p_{1} \sim 2.4-6.5 \mathrm{GeV} / \mathrm{c}^{/ 2 /} ;$ $\ddot{p}_{+} \sim 6.5+15 \mathrm{GeV} / \mathrm{c} / 1 /$

References

1. Kourkoumelis C. et al. CERN-EP/79-29, 1979.
2. Busser F.W. et al. Wucl. Phys., 1976, B106, p.1.
3. Clark A.G. et al. Phys.Lett., 1978, 74B, p. 267.
4. Pashkov A.P., Skachkov N. B. , Solovtrov I.L. JINR, E2-10462. P2-10490, Dubna, 1977; P2-11211, Dubna, 1978.
5. Shapiro I.S. Sov. Fí. doklady, 1956, 1, p. 91.
6. Kadyshevsky V. G., Mir-Kasimov R.M., Skachkov N. B. Nuovo Cim., 1968, 55A, p. 238.
7. Kapahay V.N., Sidorov A.V., Skachkov N.B. JINR, E2-11932, Dubna, 1978.
8. Matveev V.A., Muradyan R.N., Tavkhelidze A. N. Lett. Nuovo Cim., 1973, 7, p. 719.
9. Sivers D, Brodsky S.J, B.Blankenbecler. Phys.Rev., 1976, 23, p. 1.
10. Field R.P., Feymman R.P. CALT-69-565, 1976.
11. Kerbikov B.O., Shapiro I.S. ITEP-159, Moscow, 1979.

Received by Publishing Department on ootober 121979.

