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Wightman Functions in the Thirring Model

Some properties of the solution of the Thirring
model, proposed by Hadjiivanov, Mikhov, Stoyanov /1/,
and its vacuum expectation values are studied, the
Thirring field acting in the Fock space of a free scalar
field. The explicit form of the Wightman functions is found]
It is shown that in the limit -0 the two gauge symmet-
ries which are spontaneously broken for w#0 are restored
and the field acquires fixed spin and scale dimension. The
correspondence with the 2n ~-point functions for Klaiber’s
solution is exhibited. I't is shown that for integer or
half-integer spin the common relation between spin and
statistics arises,

The investigation has been performed at the
Laboratory of Theoretical Physics, JINR.
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1. INTRODUCTION

Here we study some properties of the solution of the
massless Thirring model constructed by Hadjiivanov, Stoya-
nov 2/ and Hadjiivanov et al.”l’. It is well known that
on the Thirring model which serves as an example for exactly
solvable guantum field theory many hypotheses reflecting
the development of the theory have been tested. There exist
several different approaches to the model (see refs.38/ 3,
Its most important features which make it pliable to inves-
tigation (besides the peculiarities of the two-dimensional
space-time) are, first, the conformal invariance, and se-
cond, the existence of two gauge symmetries of first kind.

In 1977 Nakanishi insisting on the asymptotic complete-
ness, proposed a solution of the model in terms of free
massless scalar fields only. Actually, the posSibility of
constructing spin 1/2-fields from scalar omes has already
been pointed out by Skyrme B/ (see also the rigorous papers
by Streater and wilde #/ and Streater /19/), Unfortunately,
there are some contradictions in Nakanishi’s papers (see
in this connection ref, )

The right conformal transformation properties of the sca-
lar fields (gradients of which are the conserved currents)
and of the solution of the model have been found by Hadjii-
vanov et al.”l’. It has been shown (Aneva et al.”}2/} that
there exists in fact a one-parameter family of solutions
and that the gauge symmetry is spontaneously broken.

2. THE THIRRING MODEL AND ITS OPERATOR SOLUTION

The classical Thirring model is based on the equation
of motion

19,7 v M =-gT, WY@, I =0y, (2.1)

which is invariant with respect to two groups of global
gauge transformations:



g e’ g (2.2)
and

b~ eB g (2.3)
(we choose a standard basis for the y-matrices with y5

diagonal:

yo =0y Vlﬁiﬁ“zs }’55‘,\/0}'1:—03’
where o; (1=1,23) are the Pauli matrices). It follows
from {yu,yyl 2%ﬂﬂ Boo~"By1=1 and the definition of y

that ¥ hl““&u Y. where fup ==€up r €91 =1. As a result, we
cbtain that the conserved currents are connected by ’

,Js(X)w-fF TV (%) , (2.4)

what implies that there exist real scalar fields <, ¢
and a real number A such that

Ju (X)=)\8qu5(x) Ju (x)=f\6#¢(x) . (2.5
Because of the current conservation

D=0 = 0¥ , (2.6)
and because of Eg. (2.4)

v o~

0, 0B ==¢,, ¢ &(X. _ - (2.7

In the quantum Thirring model the usual commutation rela-
tions between the components of [ are in accordance with
the canonical commutation relations of ¢ and ¢ It is shown

by Hadjiivanov et al. " and Aneva et al.'% that

i3y % “(x)~iagp " (x) 1By 56t (m—iaw T(x
sm=e’’ ¢ (x)~ag ) By Te (mad T (n) (2.8)

is a one-parameter family of soluticns of the Equatioh
1, y Py =gy 17 : (2.9
id, y e =—gy" 13, 0y | (.
where u; (i=1,2) are arbitrary constants and

3, e =G & wemema,e T 2.0



x o -
¢ and ¢ are the frequency parts of ¢ and ¢. They satisfy
the folleowing commutaticn relations:

6 0.6 =D x-9=[6"®. ¢ ¥ (2.11)
6" (0, & (] = D (x-y)=l¢ "0, ¢ ] (2.12)
where

D" (x)=- —41;1:1(—#2::2 +igx°),
(2.13)

- L1
D (x):-l-m—" x1-i0
4 x°+%1-10

the parameter p> 0 (connected with the infrared regulari-
zation) has the dimension of mass. In the theory there are
two charges proporticnal to

q= [9,b(%dx -3_ [I, mdx =gt q”, (2.14)

i- ra,max’ =L 132 maxtatea” . (2.15)
ot
where q  ,q correspond to the separation of ¢, respectively
¢, into positive and negative frequency parts. From Egs.
{(2.11), (2.12) we obtain

a5 o ml=-5=1* & ol (2.16)

(5, 6T (®l=0=[a", & (0. (2.17)

+
The operators 47, 91 commute with each other.

3. WIGHTMAN FUNCTICNS

Now we shall compute the Wightman functions corresponding
to the operator solution (2.8). We shall restrict ourselves
to the (n+m)-point functions of the form

g Bt 0 (3:1)

<‘#”j1 (X 1)¢j2("2)---§’1j n(xn)¢jn+ l(xn+ 1 ) "‘ll"

since the consideration of the most general Wightman func-
tions causes unnecessary complications.

To com ute th functlon (3.1}, we use the operator for-
mula e e [&,B which is wvalid when the commutator

5



(A, B] is proportional to the unit operator. The result is:

(n,m)

w-il""-jn~l~m (xl""’xn+m )=
= b e - = (3.2)
,"<'1bj1(xi)"'¢jn(xn)¢Jn+1(xn+ 1 )"'w1n+m(xn+m)>0
n n+m _ ‘ .
- kg.‘[ ujk E=E+1 ujfepr(xl weeEnemil g e Tngm)

where  F(XpnXy 0l qaeendpem ) is a sum of three types of
addends, namely

SACPRETE ST PRI Ny g

1
1

n—
=2

r

t it i Jg =~
e=Fo 1 lEHBTED T PID T rapleen T reny 10w, i

0 nim Jp+i i Jg_ ~
3 2 a8 s 4 2B (= LT L R .
2 sfﬂﬂi[a B 1 IDT(x raBl--1) (-1 °ID (X, =

n+m-1 n+m +j

j
£33 et gy

S]D+
X -
r=p+1 s=r+] (% rs)

Bl T+ 1D .y (3.3)

{here the identity In?)hk =(~Dk8m and the notation X =X ~x
are used).

The functions (3.2) are distributions over Sﬁig(n+nn ). The
parameter p¢ >0 is completely arbitrary. In order to study
this arbitrariness we shall fix a unit and count g with
respect to it. The quantities in which # is replaced by 2z,
2>0 will be denoted by a lower index {2) in brackets. Bear-
ing in mind that

Dy, (9 =D (m - 2,
(2) 2w
) (3.4)
~ 4+ —t
Dizy (®=D ()
and defining 4, as in ref. 1/

2 2
, 1 @®8%/am
fuy | “"“"5::# B » k=12 . (3.5)

v



one finds from the explicit form of the (n+m)-point func-
tions (3.2), (3.3} that

N (n,m)
=z W, .
n+m! S PETTIS

w((:)'m) (% porerX = (Xipees Bpp g e (3.6)

Jpreedn4m
where

2 2 n—1 n 2 2. Itls

SRR I +BIen

tr

r=1 s=r+1 2

itig 3.7

ip*i
n n+m 2 _g%( ' n+m—1ntm 2 2
~B%(~1 +B7 (-1
.z s 2ZBTD y 3 20PFD b
=1 s=n+1 27 =1+ 1 s=r+1 27
Let us calculate the sum in the braces. It equals to
2 -1 n+m-1 2p~1 i ; i
-~ .I 1.
2 43 (0~D-mn+ X (n+m—r)l+£-—i (-1 1'[(—1)jr Ll J“] +
2 r=1 r=np+1 2ror=1
n jip ntm js nYm iy It41 igem
AL S TR R WP [(_1)_ +etlol) K= (3.8
2 9 _(32 n+m Ty 9
a
= ——[({n~ - e A -(n+ .
Gl a-m) - —(nem)i ¢ o “k=1( 1 - @+ m
If we denote the number of indices },, k=12..., n+m,

which are equal to 1, by ty1,and of those which are equal to
2- by B, we finally obtain
2 2
B . _a~ 2 B 2 .
NuN(n,m,ni.nz)—.% (n-m)~ + o (n,-n,)" 2 0. (3.9
It is clear that in the limit 2-0 only those Wightman
functions survive which do not depend on u. The necessary

and sufficient condition for that isn=m and n,=N, When
T n+m

: . . . ]’l .
both these conditions are fulfilled the product kI=11qu ‘PanuJ[,

from (3.2) is equal to iulln quln.The condition (3.5) is
imposed by Hadjiivanov et al. /i/ in order to express the
current Jp conversely in terms of the fields ¢, ¥. It is
clear, in any case, that the Wightman functions for n=m

and =N, have the homogeneity degree in p which depends

on the total number (n+m) of the fields ¢, ¥ only. So,

by a suitable renormalization of the form ty~u " one can
make the gauge invariant functions independent of @ whereas
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the homogeneity degree of all cther functions will become
positive. Thus, in the limit g - 0 the symmetry of the
Wightman functions both under the ordinary global gauge
transformations (2.2) and the }/ —gauge transformaticns
(2.3) is restored. The spontanecus breaklng of these gauge
symmetries was pointed out by Aneva et al.

4. EXPLICIT FORM OF THE GAUGE INVARIANT WIGHTMAN FUNCTIONS
AND COMPARISON WITH THOSE FOR KLAIBER'S SOLUTION

Let us consider the gauge-invariant functions of the
form

f n mf_ 2n
W X e X e, X =<y, (x.) Il x )1l ) 0 o (2>
( n n+ 1 2n) Iljll J)f+1¢2( J)n+1¢2( ‘])n+[7+-1w1( J) G
According to (3.2)
.1
a2+ﬁ2 (4.1)
i ‘
WE (#2) S CPERTIL ML WIS TRE P
n (xi""' xn,xn+1,....x En)ﬂ ———Eé;—)—n—~~~e , (4.2}

f.
where the functions Fy (X%, X 00X 50) are sums of lo-
garithms. Using the decomposition

1
D+(x)=-—4——{ir:+1n(.ux__ —i0) +1n (ux _ —i0)}
i
(4.3)
b* (X)=741~%1n(ax__ —i0) ~In(ux , -i0)!
T
x,=x°tx!

cne can get the functions (4.1) as products of powers of

Uy ’Mxm+—i0 and Vig =#Xr&_—i0. In particular, when {=n
n n 2n -~
W n(xl,...,xn.xnﬂ,.,.,xgn) = <111 ¢1(Xi)nq1 v, (xj)>0 -
n—%@-z «+p® (4.4)
I SRR UM
(2m)" r=1 s=r+1

n 2n -8, -& 2v~1 2n 2
« T I u_lv % n 0 o010 5 . la+B) 5 Jla—g)

I=1s=n+3 ° r=n+] s=r+1 o 87 1 47 2 47



The functions

2n ..
W‘n(xi,....xn,xn* greer Xgp) = <.lIu,'; (x ) ll ¢; (x) 0 (4.5)
follow from Eq. (4.4) by the change u, « V
For the mixed functiong we get

¢
WIl{xlp.”x?.xp; RTINS P TINS Y JIE TN JUPIR 2n) =

{ b ! 2n _ n n+f n+f 2n 5 8
=1 1 UE\VB I 11 u 8 -5 n o u Sv 0 I N u_ v o«
r=15=?+1 5 IS r=1 =;__.nr_[74.1 rs l' l'-?{"[ s=n+1 IS IS r=n+1 S=n+g+1 IS TS

[1 O
W e R X X JW (R e X X g X )
‘82

§=-
4

One can compare Egs. (4.4)-{(4.6) with the corresponding
formulae of Klaiber /4/ (p.162-165). (The signs before
@ and B are coordinated). These formulae prove to celncide
in essence. Certain different signs are due to the conven-—
tional character of the spinors in the two-dimensicnal space.

5. LORENTZ TRANSFORMATIONS AND DILATATIONS

It is interesting to investigate the covariance proper-
ties of the functions (3.2) (they are obviously translatio-—
nally invariant) under Lorentz and dilatatiqn transforma-

tions, for as it is shown by Aneva et at.® one cannot
attribute definite "spin" and scale dimension to the field
. One essentially makes use of the results of Hadjiivanov
et al. "7

Ax L G —L b
by Wi (=X (J)u&j(/\.xx)e XL, (5.1)
where
+ -0 a4 ~aq c¢hy shy
L ()= _é___)______a____ ., A =
2 X ShX Ch}(
and



W o Q (j)lnr

+ .
v @200 M@ e

¥ Ame

(5.2)

Supposing that the vacuum state |0> is Lorentz- and di-
latation-invariant the Wightman functions can be shown to
have the following covariance laws under the Lorentz trans-
formations. af () )

X{(F, m’
_(n,m} 4z nm® (n,m}
¥ et o 0 ) = “’j1.....jn+m(Axf---'“mm)’(s‘3>
where
) k n+m n+m
P = 1)2 (—1) - m Z (—1) +n 2 (—1) —(m—) E (-1)
n ix nkmo i () {5.4)
=m-m-1) £ (- ~m+) X (= =P
(n-m 1)k=1( 1) +(n~m 1)k$n+1( £}
and under the scale transformations
(n,m} =
Wiy 1 ¥ aem)
{(5.5)
2,82  4%mmis
(g e, .
=g (AX_ .. AX 3.
J1 fham n+m

The functions (3.2) satisfy the last two equations iden-
tically. Therefore, there is no spontaneous breaking of the
Lorentz and scale symmetries.

The covariance properties of the (n+m)~point functions
are obtained in accordance with the fact that the field ¢
has no fixed spin and dimension.

The gauge-invariant functions however do have the usual
properties:

(R e (B )Y (Rpg g dere (B > =

n o
- arr_XkE}’ k)

2n
( - ﬁ
AR ). plAR gl AR

- B Xp 2 V(?)(5 )
n+1)""""'mx2n ):-Oe i
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YR e B (R 1) el (B )2

o (5.7)
on@-tE._ =
=A A GO )y Ax DAk ne g e PAX >0

Equalities (5.6) and (5.7) show us that if we consider
the theory we get in the limit =0  in the Wightman func-
ticns, besides the disappearance of the spontaneous breaking
of the gauge symmetries,ancther remarkable feature is ob-
tained: the field ¢ acquires the fixed spin

iapf
- 5.8
] P ( )
and scale dimension
2 2
d--2 *B" (5.9)
4 .

Canonical dimension is the lowest possible dimension, the
spin being kept fixed (see Kupsch et al./13/). Cbhviously d>s
s0 that

d,., =5 (5.10}

Note that d=d _, =s is equivalent to g=0. (Evidently

a=-f3 leads to trivial sclution, since then e=f=0In gene-
ral, if we restrict |gi<2 . thena and f have the same signs).

&. LOCAL COMMUTATIVITY

- From the explicit form of the solution (2.8) and the
commutation relations (2.11) and (2.12) it follows that

A, L (% ~%y)
igfdgt™ 1 "2
¢31(x1)¢j2(32)= e 112 ¢j2(x2)¢j1(x1), 6.1)

—iAJ‘ 1j2(x1—x2)

l/}ji (xl)lj"j*g(xg) = & ‘!’j*z(xg)':[’jl(xl)' (6.2)
where
iyt iy Iy~
Ajlj 2(x)=_[a2+ B2 -1 1% +eB-1) ~+(=1) " 1D(x) (6.3)

(i.e., expressions which depend on g do not appear).
Further, for (X;-X9)2<0 (when D(x1~%2) =0 ) one obtains:

i



[¢j1(x1)'wj2(x2)}?Ozlel(xﬂvFb}:g(xg)]’ jl‘?‘jg-- - {(6.4)

For =N, N=0,%1,+2, ....

[ (X5 (X)) =0 =1 (X ) 7 (x ] (6.5)

and for s=N:= —]2'-
l¢j(x1), ¥, (32)§=0=§¢j(x1), wj*(xz)%. (6.6)

The commutation relations cbtained do not fulfill the
requirements of the relation between spin and statistics.
However, as it was pointed out by Stovanov 11/, the correct
spin-statistics relation can be achieved by a simple field
renormalization. The fields &kx} used in this paper up to
this point have to be replaced by new fields

593 @ VECE @ SO, 6.7)

+
where a (0) are related to the operators qt in Eq. {2.14)
as follows:

e .

Q7 =% ingua"(ﬂ) (6.8)
(Unfortunately, there was a misprint in the first of for-
mulae 11 the correct formula is Eq. (6.7)).0wing to this
field redefinition the Thirring fields change by a constant
phase factor

+Bur- 1
Vx=-e ¥ (%) (6.9)

with g=gq'+q .Then, using Fgs. (2.16), (2.17) and (6.4)-(6.6)
one can easily find that for (XI-K2)2*~0 '

- _ *
%leI (%, 'sz(xe)i- o-wj 1(x1), ‘sz (x,)} (6.10)
if the spin s of the fields is half-integer
=88 N, 1
8 S N~+2
and
= == * hd
[le(xly ng(xzﬂ 0 [le(xl),WjE(xz)] (6.11)

if 8 is integer
s=28 _y,
12 *F



So, we have the correct relation between spin and statis-
tics for the fields (6.9).
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