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Yang-Mills Theory in Sigma-Model Representation 

The suggested earlier by V.l .Ogievetsky and the author 
interpretation of the Yang-Mills theory as the theory of 
spontaneous breakdown is shown to naturally lead to the 
new representation of this theory in terms of bilocal non­
linear a-model. The possibilities arising are discussed. 

The investigation has been performed at the Laboratory 
of Theoretical Physics, JINR. 
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1. Recently, it has been suggested / 1. 2/ that the Yang­
Mills theory is completely integrable (both on classical 
and on quantum levels) and this property could become ma­
nifest upon passing to suitable unconventiona.l variables 
(some considerations along a similar line are contained 
in ref. /3,3a/ ) . The search for new convenient variables 
for this theory is important also in connection with the 
problem of adequate description of its symmetric,gauge­
invariant phase which is expected to realize the colour 
confinement 14 •5 1 • 

Here we present a new formulation of gauge theories 
which explicitly demonstrates their common nature with 
nonlinear a -models and seems promising from both points 

of view mentioned above. 

2. The formulation we are going to describe is based 
upon the observation made earlier by V.I.Ogievetsky and 
the author. We have shown in ref.~ 1 that any gauge theory 
is the nonlinear realization of certain infinite-parameter 

group K= a~ p with a 0 
X p as the vacuum stability subgroup 

(see also 1 ). Here G 0 is the relevant global symmetry sub­
group, a is isomorphic to the connected component of the 
corresponding local group spanned by all gauge functions 
decomposable in the Taylor series around x

11 
= 0 and P 

is usual Poincar~ group. 

As a starting point, we introduce an extra coordinate­
Lorentz 4-vector Y

11 
and represent the generators of K 

as follows: 

P -a' L -·< aY_ aY) 11 - 11 ' 111/- 1 yl1 v Yv 11 ' 
(1) 

Qi i i i 
11 = y ll Q ' "' ' Q 11t• "11 n = y 11 1 "' y 11 n Q 
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Here P p. , Lp.v,Qi are,resp. ,the 4-translation generator, 

the generators of the Lorentz group L , and those of 
0 i i i 

G • The tensor generators QP. , Qp.
1

p.
2 

, ... Qf..L
1 
... f..L n ···· toge-

ther with Qi form the algebra of the infinite-parameter 
group G 16,?1. 

The representation (1) allows one to convert the infinite 

I 0 i i 
s~t of parameters of the coset space K G x L ( b p. (x), b p.1 p. 2 (x) •..• 

1 

bp. 1···P.n (x) ••• ) into the single object: the bilocal Goldstone 

i i ~ 1 i P. i P.n Q i field b(x,y)=b (x,y)Q = k ---b (x)y •.• y • 
n..? 1 n! P.1"'J.ln 

It is completely specified by the requirement of decompo­
sability in powers of YP. around Yp. =0 and by the condi-

tion 

b(x,O)=O. (2) 

In the basis (1) an element of coset K/ G 
0 

x L takes the 
form: 

G(x, b)=expli~P" lexp{i 5. -~-bi (x)Qip.1·"P.nl 
r n~l n! P.("P.n 

expl-x!l a~ lexp{ib(x,y )!. 

When the group K acts on G(x, b) from the left, the bile­
cal field b(x, y) undergoes the following transformations: 

P: b'(x,y)= b(A- 1 (x-a), A- 1y) (3) 

G: exp lib '(x ,y )l = ex.p H>.(x + y) l exp lib(x, y)l exp [- i>. (x) l. (4) 

where >.(y) = .\(0) + >~ -n\->.p. 1 ... P.n (O)yP. 1 .•• yP.n is the generating 
n_ l · 

function for constant parameters of G • 

The covariant derivatives of Goldstonions 'Vp. b p(x), •..• 
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V bp p (x), ... defined in 16 1 combine now into the bilocal 
P. 1'" n 

Gartan form 

W
11 

(x,y) =-b
11

(X) + ~ _!__V b (x)yPtyP2 ...• yPn 
r r n_? tll! P. Pt"•Pn 

(5) 

It is introduced by the relation 

ex.p I- ib(x, y)l<ap.x -aJ) exp lib(x, y )l = i w P. (x, y) (6) 

and as a consequence satisfies the generalized Maurer-Car­
tan equation: 

( 
X y X y) . 

ap. - af.l leu p (x,y)- <ap - a p wp. (x,y) + 1 [wp. (x,y), wp (x,y)] = 0. (7) 

(which is equivalent to the statement that the generalized 
Yang-Mills connection defined by wp (x,y) is trivial on the 

certain subspace of 8-dimensional space (x, y)). It follows 
from the definition (6) that under transformations (4) 
w P (x, y) behaves like the Yang-Mills field: 

w; (x,y) = exp li>. (x)l[wp. (X, Y) - i ap.xl exp I- i>. (X) l. (8) 

The infinite sequence of differential conditions of the 
inverse .Higgs phenomenon IS/ by which unessential Goldsto­
nions b ~ 

1 
···P..n (x) (n.?2) have been eliminated in ref. 161 at the 

expense of b~ (x) and its derivatives is represented, in 

the bilocal notation, by the one manifestly covariant 
equation: 

yp. [w p. (x,y) + b p. (x)] = 0 (9) 

or, with making use of the definition (6): 

Yp. (a:- a;) exp{-ib(X,y)l = iyp.bp.(X) ex.p{-ib(X, y)}. (10) 
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The solution of eq. (10) is given by 

- 1 ~ 
expl - ib(x,y)!=Texpl-i fy b [x+(1-A)y]dA!. 

0 ~ 
(11) 

where the symbol T means the ordering in matrices Qi with­
in the interval O..S A ~ 1. That is easily recognized as 
the path integral of the Yang-Mills field along the straight 
line going from the point x + .Y to x. The corresponding 

Cartan form w p (x, Y) in its power expansion in Yp. reads as 

- 1 
wp (x,y) =- bp (x) + 2ap~ (x)f + 

1 
+ I --v v 
n2: 2 (n + 1)! P1 P2 

···· V G (x) y P 1 Pn 
Pn - 1 PPn ••• Y 

(12) 

where G~P = a~bp - apb~ - i[b~ ,bplis the standard Yang-Mills 

s trength, Vp = ap -'-i"[bp, is the Yang-Mills covariant deriva­
tive. 

Thus, the "string functional" of gauge fields which is 
now under intensive study / 1.2,9·1 11 naturally arises in 
our approach as the most economical representation for 
co sets G/ G 0 · In refs !1.2•9 ' 111 such functionals are 
introduced "by hand", as a certain ansatz, while in the 
present scheme their appearance is the result of consis­
tent application of methods of the general theory of non­
linear realizations. Just this theory prescribes the de­
finition of covariants according to the formula (6), i.e., 
through ordinary differentiation of the end points of the 
path (which can be conceived as an infinitesimal rotation 
of the path as a whole around the point (x + Y)). In the 
standard approach to the path integrals, covariants are 
defined in the essentially nonlocal fashion, through infi­
nitesimal deformations of separate sections of the path. 

We would like also to stress the following. As is seen 
from the above consideration, the inverse Higgs phenomenon 
in its usual,minimal formulation~•81 picks out the 
straight line in a lot of paths between x + Y and x • 
However, without contradiction with the transformation 
laws (3), (4) it is equally possible to take as a repre­
sentative of cosets G / 0° the string functional along 
any other path (this path should of course be such that 
the related b . (x, Y) admit the power expansion about 
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Y ~ = 0). The choice of curvelinear path corresponds to 
a certain modification of differential constraints of the 
inverse Higgs phenomenon. Namely, in this case the "straight 
line" condition (9) is replaced by the more general one 

y ~ [w ~ (x, y) + b ~ (x)] = ~ (x, y) , (13) 

2 A p 4 where ~(x, y) = a y y V G pA + 0 (y ) is a covariant func-

tional of the strength GpA(~ and degrees of covariant de­

rivatives of GPA (x) (a can be an arbitrary number). Know­
ing its structure completely specifies the configurati~n 
of path in the corresponding string functional. Indeed, 
the latter can always be represented by the formula (11) 

in which lbp (x) is changed to ypbp(x)- -{-~(X,Ay).Note that 

any such string functional can be decomposed as 

explib(x, y)! = explib(x, y)! explih(x, y)! 

(h' = eiA(X) he-iA(X) ), 
(14) 

where a nonminimal factor exp I i h(x, y)! describes a deviation 

from the straight path and is expressed, in its Y -expan­
sion, through powers of covariant derivatives of GpA(~ . 
The functionals ~(x, Y) and h(x,y) are related as 

~(x,y) = + expl-ih(x,y)!y ~ (V;- a:) explih(x,y)!. 

To conclude this Section we emphasize that the simple 
group meaning indicated above can be attributed only to 
the "open string" functionals of gauge fields. It is as 
yet not clear how to accomodate within the present scheme 
the closed contours which are of primary interest in 
papers / 1.2,9·11 / • 

3. The basic relation (6) has the form typica l f or de­
compositions by which the covariant derivat ives a r e de­
fined in nonlinear a -models for principal chiral field s. 
Therefore, t he Yang-Mills t heory can be interpreted as a 
sector of the nonlinear a -model for the bilocal pri n cipa l 
chiral f ield b (x, Y) on the g r o up G 0 • Thi s sector is ext -
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racted by the conditions (9) or (13) with b" (x) = a"Yb(x, Y)l , ,.. ,.. y=o 
b(x, 0) == 0 by definition*. 

In a-models of the above type the equations of motion 
(with no sources) can be written as the condition of vanish­
ing the divergence of the corresponding Cartan form. It is 
natural to ask whether it is possible to represent the 
standard sourceless Yang-Mills equations 

'V p G p>.. (X) = 0 (15) 

as an analogous closed differential condition on the bilocal 
Cartan form w /.l (x, Y) (supplementary with respect to the 
"kinematical" conditions (7), (9) or (7), ( 13)). From the 
point of view of the hypothesis of complete integrability 
of the Yang-Mills theory it is desirable that this condi­
tion be of the first order in derivatives. 

In the trivial, Abelian case the equation (15) (i.e., 
the free Maxwell equation) is equivalent to the manifestly 
covariant condition that the "straight-line" Cartan form 

w /.l (x, y) (12) be divergenceless with respect to y -diffe­
rentiation: 

Y-/.l a /.l w (X, y) = 0. 

In the non-Abelian case such an equivalency (for the 
straight path) holds only up to the third order in Y/.l 

(16) 

and it cannot be restored without adding to the l.h.s. of 
(16) terms with higher derivatives of w/.l (x,y) * ~ It can be 

1 >..v 
shown, however, that for self-dual fields (G/.LP= ±2 f/.LPAIIG ) 

and for light-like paths (y 2=0) in (11) (the Minkowski space-

*More analogy with nonlinear a -models for principal 
fields can be achieved by giving up the condition (2). In 
this case the law (4) is modified so that the last factor 
·is absent and the g:i::oup G 0 turns out to be completely 
broken, b(x,O) being the Goldstone field by which the 
breakdown of G0 is accompanied. The resulting theory is 
the massive Yang-Mills theory with the mass generated in 
the invariant manner (through the Higgs mechanism) /121. We 
shall consider this interesting extension of the present 
scheme elsewhere. 
**Note a possible parallel at this point with recent 

results of Witten 13 / and Isenberg et al.l3a/ • 

8 

• 

time is considered) the equation (16) is satisfied to each 
order in Y/.l. It is not clear if the inverse statement is 
valid, i.e., whether the self-duality follows from the 
condition ( 16) with Y 2 = 0 . 

Perhaps, more important is the following observation. 
Even in the general case there exists a string functional 

-o o 
exp lib (x, y)! such that the associated Cartan form w /.l (x, Y) 

is divergenceless with respect to 

a: c:; 0
/.l (x. y) = o 

Y -differentiation 

(17) 

on solutions of the Yang-Mills equation (15). Conversely, 
the necessary condition for (17) to be fulfilled is that 
b/.l (~ obey (15). The corresponding functional h0 (x, Y) (by 

-o 
which b (x,y) is completely specified in virtue of (14)) is 
determined from the equation: 

alltexpl-ih0 (x,y)!<aX - aY +iW )explih 0(x,y)!! l 11 =0 (18) 
y /.l /.l . /.l vra =o 

/.LP 

uniquely, up to possible terms vanishing on solutions 
-o 

of eq: (15). The path in explib (x,y)!is essentially curve-
linear (it becomes straight for an arbitrary Y/.l only in 
the Abelian case) and is presumably formed by the Yang­
Mills field b/.l(~ itself. In other words, one may expect 
one-to-one correspondence between different classes of 
solutions of the Yang-Mills equation and permissib~e con­
figurations of paths in the string functional explib 0(x,y)! 
We hope to explore this interesting possibility in further 
publications. 

For the time being, we do not know to what extent the 
above considerations may be useful in proving the hypothe­
tical complete integrability of the Yang-Mills theory. But 
the fact that the Yang-Mills equations can be represented 
as local first-order differential conditions on the cer­
tain (path-dependent) vector form in the extended space 
(the condition of trivial connection (7) and the conser­
vation condition (17))seems highly nontrivial and deserves 
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further examination*· In particular, it would be inte­
resting to learn whether this property implies the exis­
tence of infinite series of the conservation laws for the 
Yang-Mills theory which is the standard signal of complete 
integrability. 

4. We have shown that the Yang-Mills theory in its stan­
dard, non-symmetric phase, treated as the theory of spon­
taneous breakdown~/ , admits the natural embedding into 
the bilocal nonlinear a -model on the group G 0 • Based 
on this, and exploiting the analogy with usual a -models 
it seems reasonable to assume that the symmetric phase of 
the Yang-Mills theory associated with the gauge-invariant 
vacuum should be described within the corresponding bile­
cal linear a -model. In the simplest case G 0 

= SU(2). the 
minimal way to linearize the basic transformation law (4) 

is to consider a bilocal matrix U(x,y)=U0( x,y) + -}irkUk(x.y) 

which transforms according to (4) but does not satisfy the 
exponentization condition UU+ =I. The infinite set of 
ordinary fields in the decomposition of U(x, Y) in powers 
of Y~ transforms under the action of the group K linearly 
and homogeneously. More detailed treatment of this possi­
bility and also of the questions discussed in the previous 
Sections will be given elsewhere. 

It is a pleasure for me to thank I.Ya.Aref'eva, L.D.Fad­
deev, Ju.I.Hanin, A.M.Polyakov, V.N.Pervushin, A.A.Slavnov, 
B.M.Zupnik and especially V.I.Ogievetsky for interest in 
the work and valuable discussions. 
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