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§1. INTRODUCTION 

In the present paper we consider the nonlinear evolution 
equations (NLEE) , related to the one-parameter family of 
Dirac operators (see refs .fl. 2/ and the review paper 131 ) : 

1[w]p [C: ~).~- •( ~' : )J(:J · i(y(x, (,t), w {•} (1. t) 

where q(x,t) and r(x,t) are the functions of Schwartz type with 
respect to x for all values of the parameter t. It is 
well known, that the NLEE, solvable through the inverse 
scattering method (ISM) for the operatorP[wl are generated 
by the integra-differential operator L 1 (or L_) 121 : 

1 ) + t i ' 1 0 d q(X, t) _ oo 

L± = 2- (o -1 -dx + 2(-r(x, t)) ! dy(r(y,t), q(y,t)) ' ( 1. 2) 

i.e., each NLEE is constructed with the help of a certain 
function of the operator L+(L_ ). 

In ref. 141 we investigated the properties of the eigen­
functions, and in ref.~ / we constructed the spectral theo­
ry of the operators A+, which are natural generalizations 
of the operators L+ . In the present paper, starting from 
the results of ref : ,' 4. 5/ , we derive in uniform manner the 
main results of the NLEE theory, namely: 

1. The description of the class of NLEE related to f[w] 
and their conservation laws /2,3 / (§3). 

2. The description of the hierarchy of Hamiltonian 
structures ~land the proof of complete integrability of the 
NLEE (explicit calculation of the action-angle variab-
les) 17 ·8 ·91 (§4) • 

3. The description of the class of Backlund transfor­
mations /10/ for these NLEE (§5). 
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Besides technical simplifications in the proofs of the 
theorems and in the calculations, the spectral theory of 
the operators L + has led us to some complementary results. 
For example, th; symplectic expansion introduced in ref. 4 ' 
enabled us to describe the Lagrangian manifold of the NLEE 
(§4). We also write down the conserved quantities of these 
equations in a compact form (§3), which enabled us to 
write down any of the above-mentioned NLEE in the explicit­
ly Hamiltonian form; we briefly discuss the properties of 
the NLEE, generated by singular functions of the operators 
L+ (§4). 

-The general formulae are illustrated by two important 
examples: i) the nonlinear Schrodinger equation / 1.11.12/ and 
ii) the sine-Gordon equation / 13,14/ 0 

The authors have the pleasure to thank sincerely 
Dr. P.P.Kulish for his constant attention and fruitful 
discussions. 

§2.PRELIMINARIES 

Consider the pair of operators 

1(
·· 1 

rnLwnlYn = o : )t-•( ~" ~")!(; :J • i<Y, (X(}, w, ·{~:), 
n 1. 2 o 

( 2 . 1) 
where the coefficients qn (x), r n(x) are complex0 valued 
functions of Schwartz type. We call the set T 11 T ~ 'J T;:; 

+ + 
T - = {p- (,), '-c R; 

n n + 
± b~(') ± 

p (') -- ------, c 
n ± ( ) nok 

an ( 

+ + ,- ,c-k. k = l. .. o.N I, 
n,k n, n 

b~k ± ± ± 
= ---'-'--- ?' a ( _,. ) = 0 0 ± ' s n,k n s n,k ' 

a n,k + 
0 + da-

the scattering data for the problems (2. 1), a- = ----1 + 
n,k d( ' =C n,k 

Here, for simplicity, we suppose, that the discrete spect­
rum of the operators fn an = a~ u a~ 

+ + + ., +I 
a- = { (- k , Im' - k < 0, k = l, ... ,N-n n, n, n 

consists of a finite number+of eigenvalues, and N: ~ N~ = Nn. The functions a;:;(() are analytic for 
respectively and are uniquely recovered from Tn 
the dispersion relation 12/ 
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(2. 2) 

that 
Im' ~ 0, 

by using 

• 

oo N ?' _,.+ 
( 

J'\ 1 d t' + - ( )) s - S n k A .,, = - ---:-- { --~-- ln ( 1 + p (~)p ~ + l ln -------'--- , 
n 2171 -oo ~ - ' n n k = 1 ' -- ' -

(2. 3) 

n,k 

where An(') = ±ln a;(,), Im' ~ 0 and An(') = {-In a~/ ~(() !'or Im,= O. 

When 'ER the integral in (2.3) should be understood in 
the sense of principal value. 

Without discussing the solution of the inverse scat­
tering problem for the systems (2.1), ~see 11 " 3 1 ), we ~o 
to the expansions over the products 'I'- (x, 0 = rjJ ±1 o rjJ -

2 + + ' 

(
r/Jl,2 rP2,1) ± 

' + + (x,,) of the Jost solutions of (2. 1); rjJ (x,,lare 
rP1.2 rjJ 2.2 'll 

uniquely determined by their asymptotics at x .., oo (for more 
details, see refs. /4,5 / ) . 

Lemma 1. For the vector-functions w = w +W , and w 
+ 1 2 -

= r 
3 

(w 
2

- w 
1 

), r 
3 

= ( ~ _0
1
) the following expansion formulae 

1 -- + + + - . - -
W (X)=--- { d'[(p

2 
+p

1
)'1' (x,(}+(p f.p )'I' (x,()]+ 

+ rr -oo 2 1 

N 
(2. 4) 

+2i l [C+k'l' +k(x)-C-k'l'-k(x)], k=1 n, n, n, n, 
n= 1.2 

1 00 ( + + ) + ) ( - - ) - ) w_(X)=;- { d'[p
2
-p 1 'I' (X,,- p

2
-p

1 
'I' (x,(]- (2.5) 

-ooN' + + - -
- 2i k~ 1 [Cn,k'l'n,k (x) + Cn,k'l'n,k (x)], 

n = 1.2 

+ + + ± 
hold, where 'I' -k (x) = 'I' -(x, ( n-k), and the coefficients 

+ n, ' p n ' 

c-
n,k enter into the sets Tn (2. 2) of scattering data. 

Proof. Lemma 1 follows directly from theorem 1 in 111, 

from the relations <<ii =(<l>
2

,-<l> 1)) 

[w+,ct>] = { dxll>(x,()w+(X)=(¢ cf> ±¢ cf> )(X,(}I
00 

(2.6) 
- - 1.2 2,1 1,1 2,2 x=-oo 

-oo 

and from the known asymptotics of the Jost solutions for 
x .., ±oo (see /1·3/ ) . The lemma is proved. 
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In the particular case * for 

q
1 

"' q
2 

~ q(x,t), r
1 

: r
2 

=r(x,t) (2 . 7) 

+ + + we obtain the expansions over the "squares" IJI- : if;- o if; - (x,(), 

~ ± : ¢ ± o¢ ± (x,() of Jost solutions if;±,¢± of the system 
+ 

( 1. 1) ( ¢- are defined by their asymptotics for x -•- "") 

Lemma 2. For the vector- functions w ~ (-;) and r 3 w t - ( ~:) 
r = ( 

1 0 ) the following expansion formulae: 
3 0-1 

oo • N 1 ++ -- _,__,_ __ 
w(x,t)=--- { d((p IJI + p IJI )(x,(,t) + 2i ~(CkiJik-Ck'l\)(x,t),(2.8a) 

TT -oo k = 1 

l oo '+ -- _N -rl --
= - -- f d((a ~ 1 a~ )(x,(,t) + 2i ~(Mk~k-Mk<l>k)(x.t). (2.8b) 

"-oo k=l 

1 ~ ++ -- N + -
-- { d((p t 'V -p 1 IJI )(x,(,t)-2i ~(X k t Xk)(x,t) 
TT -oo k ~ 1 (2.9a) 

T 3 W t 

1"" '+ -- ~ ~ -
~ - -- r d((at· ~ -at~ )(x,(,t) ~ 2i ~(yk , yk )(x,t), 

"-oo k = l 

+ + + + + ·+ 
X - ~ (Ck- IJI -k + Ck-( ~ t IJI ~ ) (x, t) , 

k 't ' 
(2.9b) 

+ + + + + ' + 
Y~ = (M;,t ~; t M~(~,t~~ )(x,t) 

hold, where by s = s-+ u s-
+ + b+ (() + 

S-= I a - - --r--- , ( E R, ( ~ , 
a-(() 

± ± ± -1 
Mk = (ak bk) , k = l, ... ,Nl 

we have denoted an equivalent to T set of scattering data 
N + 
~ xk 

k = 1 
we of the operator E[w] . In what follows by 

N 
~ -

mean k ~ 
1 

(X k + X k ) . 

Proof. The expansion (2. 8a) follows directly from the 
condition (2.7) and the expansion (2 . 4): (2 . 8b) is derived 

* Since from the context it will be clear whether the 
condition (2.7) holds or not, we will denote the "products" 

lJl ± and ~±by the same symbols as the "squares". The set 
of scattering data of the system (1.1) will be denoted by 
T . omitting everywhere in (2.2) the index n. 
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from (2.7) and an analogic to (2.4) expansion for w+ over 
the system l~l (see theorem 1 in ref. ~/ ) . 

The expansion (2.9) follows directly from theorem 
in~/ , from the condition (2.7) and the relations 

+ + 
[r W , U- ] (() = - p - ((, t ), 

3 t t 

+ + 
[r 

3 
W , V - ] (() ~ - a - ((, t) , 

t t 

[r w u(l)±] =- c±r ± 
. ( 1 )± ± ± ( 2 • 10) 

[r 3 w t' V k ] = -M k ( k t ' 
3 t ' k k"' k,t' 

. (2)± ± 
[r3wt' Uk ]=-Ck,t' 

(2)± ± 
[r 3 w t ' V k ] = - M k 't 

where the skew-scalar product· [,] is defined in (2.6), 
and the systems of functions lUI and lVl are introduced 
in~/. A detailed derivation of the relations (2.10) is 
given in 1151. 

At the end let us give the expansions of wand r 3 wt 
over the symplectic basis l P,Q l introduced in 14

•
5 1

. 

Lemma 3. For the vector-functions w and r3 wt the fol­
lmving expansion formulae 

oo N 
w(x, t) =- f d(P(x, (, t)- l (P+ + P- )(x, t), 

_.;., k = 1 k k 
(2. 11) 

T 3 W t j d([pt ((,t){;;(x,(,t)- qt((, t)P(x, (, t)] + 

N -+ + -+ + 
+ k:\ [p;,t Q~(x, t)- q;,t P ~ (x, t)] 

(2.12l 

hold, where 

- 1 + p((,t) = - -- ln(l + p p-), 
TT 

-+ + 
pk =±2i(k' 

(2. 13) 
- ( 1 + q (, t) = - - 2 ln b I b - , 

_+ + 
q k = + lnbk 

Proof. The expansion (2.11) is obtained from (2.8a) or 
(2.8b) using the definition of the system lP,Q} (see for­
mulae (6.1)-(6.3) in ref.~/ ) . The expansion (2.12) fol­
lows from theorem 4 in~/ , from the relations (2.10) and 
from the definition of the systems lP,QI and lUI, !VI 
(see~1 ) . The lemma is proved. 
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§3. DESCRIPTION OF THE CLASS OF NLEE RELATED TO THE DIRAC 
SYSTEM AND THEIR CONSERVATION LA~'lS 

It is well known, that the main idea of the ISM consists 
in the change of variables w • T (or S ) , i.e. , in the 
transition from w to its expansion coefficients over the 
system Ill'! (or 1!1>1 ) (see formulae (2.8)); at the same 
time the expansion coefficients of w t over I 'PI (or let> I ) 
are determined by the t-derivatives of the scattering 
data 'I' (or S ). The uniqueness and invertibility of this 
change of variables follows directly from the uniqueness 
and invertibility of the expansions over 1'1'1 (or 1!1>1 ) 
(see M / ) .This allows one to consider the ISM as a genera­
lized Fourier transform 12 / , in which as a generalization 
of the exponents e i(x there enter 'I'± (x, (l (or !I>± (x, (l ) 
and instead of the operator j_ _dq_ naturally appears the 

. l 1 X ) integro-different~a operators L +(or L_ . 
Let us go now to the derivation in somewhat more 

general form of the main result in ·'21 and prove 

Theorem 1. In order that the functions q(x, t) and r(x,t) 
be the solutions of the NLEE: 

r 3 w 1 ~ n (L") w ex. t) ~ o. o < t < ""• ( 3. 1) 

where the rational function n (L ~ ) of the operator L 
1 

is defined according to theorem 3 in ~~ . it is necessary 
and sufficient that the scattering data T (2.2) of the ope­
rator f[w] (1.1) satisfy the linear equations: 

+ + 
p- ::;:U(()p- ((,t) = 0. 

t 

+ + + + 
c- ::;:U((k->ck-ct)=O. (k- = O. (3.2l 

k, t • t 

Furthermore, if q and r satisfy ( 3. 1) , then they satisfy 
also the NLEE 

r
3

w
1 

~ U(L_)w(x, t) = O (3.3) 

and the scattering data S - the linear equations 

+ + + + + + 
a~ ±O(()a-((,t) = O, Mk,t±U((~)H~(t)=O, (~.t = 0. (3.4) 

Proof. Let us insert the expansions (2.8a) and (2.9a) 
into the 1. h. s. of ( 3. 1) and use the theorem 3 in /S/ • This 
gives us 
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1._ j d([(p~- O(()p ~ )'I' +- (p - + O(()p -- )'1' - ](x,(, t)-
1T - oo t 

N + + + + + + . + (3.5) 
- 2i l [(C- + 0(( - )Ck)'l'k- + Ck(k-t 'I' k](x, t) = r 3wt + O(L+)w. 

k= 1 k,t k . 

From the uniqueness and invertibility of the expansions 
over the system I'PI it follows, that (3.1) holds if and 
only if (3.2) holds. 

From the expansion (2.11) and from lemma 5 in ref.~/ 
(i.e., from L±P(x,(l=if(x,()) we see,that O(L+ )w = O(L _) w; 
from here the equivalence of the NLEE (3.1) and (3.3) fol­
lows directly. 

Quite analogously, using the expansions (2.8b) and 
(2.9b) we can prove, that the NLEE (3.3) hold if and only 
if (3.4) holds. The theorem is proved • 

From (3.2) and (3.4) there follows directly the rela­
tions: 

-~g!._t;l_ = o. -~.9iC!.~L = - n <(>. 
dt 

( E- Ru a, (3.6) 
dt 

where p and q are introduced in ( 2. 13) . The answer ( 3. 6) 
is obtained also by inserting the expansions (2.11) and 
(2.12) into (3.1) or (3.3). 

It is well known, that the NLEE (3.1) have an infinite 
number of conservation laws. This is related to the fact, 
that the regularized functional determinant of the opera­
tor f[ w] ( 1. 1) 

-1 ·-1 A(() 
Det(f -(}<£ 0 -() = exp Trln( £ -(}( £0-() = e , (3.7) 

where £0 =fl q=r=oand A((} is given by (2.3), is indepen­
dent of t. Really, from (2.3) and (3.6) it follows imme­
diately, that dA((, t)/dt= 0. As conserved quantities we may 

choose, for example, the expansion coefficients of A(() 
over the powers of 1/( or (: 

"" em "" m 
A(()= l - = l C ( (3.8) 

m=l (m m= 0 -m 

The dependence of C m on the scattering data is easily 
obtained by comparing (3.8) and (2.3): 

oo N 
C =-=isignm_:_ f d((m-lln(l+p+p-(())-..1_ l [((:)m-((~),,(3.9) 

m 2tr - -oo jmj k=l 

where m = ±1,±2, ..• Besides, recurrent relations are known, 
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which a llow one to calculate em as functionals of q 
and r. In the appendix we will obtain also a compact expres­
sion for A(() through L + in the form: 

dA oo oo - -1 
--- = { dx { dy w(y)(L + -(} w(y) 
d( -oo X 

(3. 10) 

which immediately gives: 

1oo oo- m 
em =--- r dx I dy w(y)Lf- w(y). (3 . 11) 

lml-oo X 

The relations (3 . 9) and (3.11) , and also (see ~ 1 - and the 
appendix) 

i signm oo ,........_, m -1 oe =----- { dxr 8w(x)L w(x) 
m 2 _;,., 3 + ( 3. 12) 

will be used in the next paragraph in obtaining the Hamil­
tonian structure of the NLEE (3.1); in (3 .1 2) by r

3
8w we 

have denoted the variations <ffq) of the coefficients of 
the linear problem (1.1). r 

§4. HAMILTONIAN STRUCTURE OF THE NLEE 
AND ACTION-ANGLE VARIABLES 

The Hamiltonian structures of a number of concrete NLEE, 
related to the problem (1.1) are well known (see 
refs. n,9,

11
•12 •141 ) • It is also known, that with each 

NLEE we can relate a whole hierarchy of Hamiltonian struc­
tures ~ 1 . In this paragraph, using the expressions (3.11) 
and (3.12) for em and oem we will explicitly write down 
the Hamiltonian structure (i.e., the 2-form and the Hamil­
tonian) corresponding to the NLEE: 

f(L)wt +g(L+)w = 0, (4. 1) 

where f and g are rational functions. Obviously eq. (4.1) 
is more general than (3.1) since it contains also the 
cases,when the functions 0(() have poles on the spectrum 
of the operator e [w]; .we will comment on that below. Besides 
the record (4.1) is not unique, and this naturally leads 
to the notion of hierarchy of Hamiltonian structures. 

Quite analogously to theorem 1 we prove 

Theorem 2. Let f and g be rational functions with no 
poles in a certain neighbourhood of the spectrum of the 
operatorf [w].Then, in order that q(x, t)and r(x,t) satisfy 
the NLEE (4.1) it is necessary and sufficient for the 
scattering data T to satisfy the linear system: 
10 

• 

f ((> p t± + g ((} p ± ((, t ) = o. + + + 
e"k rc(;>( k,t = 0 • 

+ + + + + ++ 
f((~)ek~t + g((k)e~(t) + e ~ f '((~)(~.t = 0. 

(4 . 2) 

Let us show that the NLEE (4.1) is a Hamiltonian one. 
Let us introduce on the manifold of vector-functions lq, rl 
the Hamiltonian functional: 

Hg = ~ hme m [q, r] = - { dx J dy w(y)g 1 (L+)w(y), (4.3) 
-oo X 

~ signm m-1 g ( z) = -..<.h -- z , 
m 2 

z 
g 1 ( z) = 2 r dz ' g ( z ') where 

and the symplectic form: 

i OQ ,........_/ 

w = -- r dx T ow (Y) 1\ f (L ) T 8 w (y) = r 2 _;,., 3 + 3 
(4.4) 

= -_i-[,
3

8 1 w, f(L+) r
3

8
2

w] +-i- [,
3

8
2

w, f(L+)r
3
o

1
w]. 

2 2 ' 

Here the skew-scalar product [ ,] is introduced in (2.6), 
and 8 1 w, 82 w are two independent variations of the ope­
rator f[w] coefficients. 

The proof of the Jacobi 
compatibility of the forms 
recalculating wr in terms 
tions. 

identity of the closure and the 
we can be done as in ~~. 
of the scattering data varia-

Using the standard 
the relation (3.11) 
equations of motion, 

method of classical mechanics / 16/ and 
we can verify that the Hamiltonian 
generated by H g and w r 

( dw ) -w r ---,. = oH 
r 3dt g (4. 5) 

coincide with the NLEE (4.1). 
Let us illustrate the way of recalculation of wr in 

terms of the scattering data variations by the simplest 
example with f(z) .,.t; let us denote wr I r.a 1 = w • Let us 
insert into w0 the expansion of r3 8 w. ana logic to ( 2. 12) ; 
it_ is obtained from (2.12) by changing pt and q t by op and 
oQ respectively. This gives us: 

11 



cu
0 

= -- { d({[r
3

8w. Q](()A 8p(()- [r
3

8w, P](() " 8q(()l + 
2 -oo 

i N + .. + + - + 
+ -- :k l[r

3
oY., Q-k] /\ oPk - [r3 8w, Pk l ~' aq; I. 

2 k= 1 

(4.6) 

The coefficients [r 38 w, Q l and [r3 ow. 0 l can be calculated 
using the definition of the system IP,Q I (see 15 1 ) and the 
relations, analogous to (2.10). Thus, we obtain cu

0 
directly 

in the canonical form: 

N 
- - ' - + -+ -- --

cuo =i 1 d(oP 1\ o q + i
11
:;

1
[opkA8qk +o Pk A oqk], (4. 7) 

where Iii. ii~ . q. crt I are given in (2.13). 
The calculation of cur in the general f((l -/E 1 case is 

analogous. Since Qex. (l, entering into (2.12) are not eigen­
functions of the operator L t (see lemma 5 in ref. 15 / ), 

technically it is somewhat simpler instead of (2.12) to use 
the expansion analogous to (2.9a) for r 3 8W.The answer can 
be c~st_~gain in the canonical form (4.7), where instead 
of l P . P k I there will enter 

- - + + 
P((, t) = f(()p((, t), Pj- = ± 2if 

1
(( i- ), (4.8) 

where r
1
ez) = fzdz'fez'). 

The Hamiltonian Hg may be expressed through the scat­
tering data by inserting (3.8) into (4.3). This immediately 
gives 

- N + - -
Hg •· - i r d(g<(>P<t::'> + k [g 1 <t::' k l- g 1e' k >J. 

- oo k = 1 
(4.9) 

O~vi<:_~sly Hg depends only on the action-type variables 
IP. Pjl. Thus, we have shown, that the Hamiltonian sy~te~, 
related to the NLEE ·(4 .1) is completely integrable. 

Suppose, that the ratio g/ f satisfies the conditions of 
theorem 1; then it is easy to verify, that the equations of 
motion generated by Hg and cur in the scatteril'}g data 
space coincide with (3.6) with il = g/ f.Let us now ma)ce a few 
comments in the cases, when this supposition does not hold. 
In that case either equations (4 . 2), or the natural requi­
rement that the integrals 

00 + 00 + , 
fd(f(()p~((,t), fd(g((}p-((,t) (4.10) 

-oo -oo 

12 

• I~ 

should be absolutely convergent for all t may impose addi­
tional restrictions on the scattering data. 

1. Let in some interval 8 1 C R , f(() • g((} 0 . Then from 
(4.8) and (4.9) we see, that cur and Hg do not depend 
on the values, the scattering data coefficients take on 
this interval. 

2. If in the interval o 2 C R , f(() 0, g (() ~0 then from 
(4.2) it follows, that p± ((,t) = O for all ( E- 8

2
. In this 

case it is clear, that the class of initial conditions 
for the NLEE should be constructed so, that to ensure 
p ±((.0) , 0 for all ( ~..,. 8 2 . 

3. If in the in~erval oa C R I f((l7 0, g((} =0 it follows 
from (4.2) thatp(((,t) O,for all (E-8

3
. 

4. If f((l and (or) g(() have singularities at some 
point ( =pER,thfn from the con1ergence condition (4.10) it 
follows that p(((,t) and (or) p- ((,t) should have at ( = p 

zero of sufficiently high order. This js also anunexplicit 
restriction on the initial conditions of the corresponding 
nonlinear Cauchy problem. 

t t 
5. If f( ( 

1
) 0 for some (j ( a , then from (4. 2) we get 

f'((;) ';,t = g(( /l. 
i.e., if f'((j)g((jl;~<O, then ( J depends on t. These are 
quite exotic NLEE, for which the functions f and g in the 
general case depend explicitly ont. 

Before we go over to the concrete examples, let us make 
one more remark. Let us, by analogy with 15/, introduce in 
the space of vector-functions lqex. t), rex, t) I the manifoldmet): 

m(t) = luex. t): [uex. t), Pex. (, t)] = 0 V t > 0, V ( E R al. 

It is easy to verify, that the restriction of the 2-forms 
cu f on met) vanish. Really I from theorem 4 in /5/ and from 
the definition of met) it follows, . that the restriction of 
T 3 f W On met) iS eqUiValent tO . the requirementS op = Q '1 

opk=O, which together with (4.7) and (4.8) lead to the 
desired result. Thus, according to the general definitio~ 
(see, e.g. I ref. 117 1 ) I met) is the Lagrangian manifold 
of the NLEE (4.1). 

Quit~ analogousry as in 151 • we can formulate and prove 
for met) all the properties and' results concerning m. 
In particular wex, t)E- met) and consequently il(L+)w =ileL_)wE-met) 
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(see theorem 7 in ref. / f> l ) • Using this and formula ( 3. 11) 
it is not difficult to verify that the vector field, cor­
responding to the Hamiltonian Hn(() is tangent to :lll(t), 
i.e., r 3 wt E :lll(t). The conservation of all the quantities 

Cm . ~~tl!!- = O,m = ±1. ± 2, ... leads to the same condition. 

Let us now consider two examples of NLEE. 

1. The sine-Gordon equation 113 · 141 uxt + sinu = 0 
tained from (4.1) for 

2 i 1 f(() ~ --{, g(() = -,r· r=-q=2-ux 

is ob-

where u(x, t) is real valued function satisfying the boundary 
conditions lim u (x, t) = o (mod 2rr) . The involution relations 

X -too 

a- (() = a~ (-() = a+ *(("), b- (() = b + (-() = b + *((*) 

lead to the following structure of the scattering data on 
the discrete spectrum of the operator f[w]: i) complex 

· 1 ,.± ,.±* c± c±* 1 · · ·) 1 e1.genva ues "'a , -"'a , a , , a= , ••• , n1, 1.1. pure y 

imaginary eigenvalues '~n1 ~ i = ±ipf, c;n1 +j ~ -c2~~+j, ,j= 1, •.. ,n 

N = 2n 1 ~ n 2 . Using all these relations we get 

w =(dxou A ou, H =2fdx(1-cosu), 
sO · X sO 

-~ -~ 

oo 1 ~ n 1 sin f3a n 2 1 
H = f d ( ---- P (() + 8 I ------- + 4 I ---

so 0 2( a=1 1(+1 j=1p 
a 

where the action-angle variables equa1 113•141: 

~ 8 + 
P(()=----lnla (()1, 

"' 
~ + 
Q(() =- argb ((), 0 ~ ' ~ oo, 

+ ~ + l P1a = 4ln I' I, Q1a = 4ln ba , 
a= 1, ..• , n1 

~ + ~ + 
P2a = arg(a=f3a, Q2a =-16argba 

~ ~ + 
P j = In pi , Q i = 8ln I b j I , j'"' 1 .•... • n2 . 

i 
No-te, that although the choice f = 1, g((} = -

2
, in (4.1) 

with -q=r= _! u 2 X leads also to the sine-Gordon equation, 
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the correspo nding <u r a nd Hg are degenerated, i.e., 
I - o H 1 , = o w f f 1 , q - r = ' g g i r 2 z , q = - r · 

2 . The nonlinear Sc hrodinger equatio n 11. 11 •12 ' iv t t vxx 
+2lv2 1v = O is obtained from (4.1) with 

f (() ~ 1, g (() - 4i ( 2
, q ~ - r *= v (x, t). 

The invo lutio n r e l a tions have the f o rm a- (( ) - a 1 *((*) , 

b- (() - b
1

*((* ), (i- - .;:-;• , Cj = C ;*, j - l...,N which lead s to the 
fo llowing a nswers fo r HNLS and w NL S: 

w NLS ~ - i ( dx oq*. oq , HNLS - _[ctxl ·-l qx l2 t lq4 11 , 

HNLS {" ct .;:- 4.;:- 2 r< .;:-l 
1 N - ., "' 

I - - - I p . (3P 2 - p 2 ) 
12 j = 1 2J 1J 2J 

where the action-a ng le variables have the form / 11.12 / 

P( ( ) 
2 t-
-- ln[a (( )[, 

= t 
Q (() = argb (( ), 

TT 

t 

. ' ~ P1j -- 4 Re(j' ~ 1i = - ln I b i I , 
I - ~ 

P 2j =- 4lm ( , Q2j = arg b j , 

§5. DESCRIPTI ON OF THE CLASS OF BACKLUND 
TRANSFORMATIONS OF THE NLEE 

- oo · ( oo, 

i = l, .. . ,N . 

In this paragraph we limit o u rse l ves only to s uch 
Backl u nd t r ansformat i ons (BT ) , wh ich map the sol ution mani­
fold of some NLEE (4 . 1 ) o n to i t self (for general definition 
see , e . g . , ref . / 18/ ) • The most simple BT are g1. ven , for 
example, in the review / 19/. We will write down o n ly the BT 
for t he sine-Gordon equation 

. U1+ U2 
BT : (u - u ) =- 4p sm --------

x 2 1 X 1 2 
( 5 . 1) 

BT : (u 1 . Uz - u 1 
t 1 + U2 ) t = --- sm 

p1 

It is not difficult to verify, that if u1(x, t) is a solution 
of the equation u xt +sin u = 0, then u 2 (x, t) also satis­
fies it. 

15 



n 

The natural question of describing the action of the BT 
in the scattering data space BT x : T 1 __, T 2 has been solved 
in /10 / . There it has been shown, that the equations deter­
mining BT are determined only by the corresponding opera­
torsP1[w1land Y

2
[w

2
] in (2.1) and coincide for all NLEE 

of a given class*. Let us go to the explicit description 
of this relation on the basis of the expansions (2.4) and 
(2.5). Note, that the vector-func tions 'V ±( x, ( } are eigen­
functions of the integra-differential operator A, 

A, 2J ( 1 0 ) - ~- I 

2 ~ 0 -- 1 dx 
l n { dy(rn(y),q

3 
__ n(Y)) (5.2) 2 ( q (x) ) "" t 

n ~ 1 -· r 
3

_ n ( x) x • 

From the uniqueness and invertibility of the expansions 
(2.4) and (2.5) there follows (see ~0 1 ): 

Theorem 3 . Let us be given the operators fn[wnl.n = 1.2 
(2.1), whose coefficients qn, rn ~ are functions of 
Schwartz type, and let f( ( l and g((l be rational functions 
having no poles on the spectrum of the operator A, . Then, 
in order that qn and rn satisfy the nonlinear relation (BT 1 ) : 

f(A
1

)w 1 1 g(A 1 lw. ~ o (5. 3) 

it is necessary and sufficient that the scattering data Tn 
(2.2) satisfy the linear equations: 

~ + + ~ + + 
f((}(pi 1 Pt) + g((} (p2 - pl) ' 0• ( E- R 

~+++A+++ + + + 
f((j)(C1.j+C2.i):;: g((i- )(C2,j-Cl,j )=0, (i- E- al n a2 (5. 4) 

f((~) ±g((~,k) = 0, 
+ + + + 

( l,k "" a l~al n a 2 ) · 

~ + ~ + 
f((2,k):;: g((2} = 0 • 

+ + ~ + + 
(2.kEa2 (a} n a2)· 

A Let us consider the simplest case of BT 1 (5. 3) when 
f (() = f 

0 
+ f 

1 
(, and g ((} = g0+g 1( are linear functions; f 0 , f 1 , 

g 
0

, , g 1 are complex numbers satisfying f ~ I g ~ and 

4 We can distibguish subclasses in the class of NLEE, 
imposing involution relations on the operator f[w] (see 
ref. /lO/). The general problem of reduction of a given 
class of NLEE has been considered in 120/. 
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Im(f 0- g 0 ) / (g 1- f1) · 0. In that case (5.3) gives: 

i d ig1 
-- T -··- (f W l g W ) I W (f ~ ---- Z ( X)) 
2 3 dx 1 • 1 - 1 o 4 

jfl 
1 w (g - --- Z(x)) 0 , 

- 0 4 

(5. 5) 

where Z(x) { dyw , (y)w_(y) ~ 2 fdy(q
2

r
2

-q
1
r

1
).Let.us show 

X X 

that Z(x) can be expressed locally through qn and rn . r-tul ti-
-~ ____, 

ply (5. 5) from the left by f1 w+(x) ~ g 1 w_ (x) and integrate 
both sides of (5.5) with respect to dx. Thus, we obtain 
for ~~ a quadratic equation, giving the following solu­
tion: 

;:------ - ------
a2 i 2 Z(x) ·=- i --- , ____ a - 4a V(x) , 
a1 al 2 1 

V(x) 

a1 

2~ ~ 2~ 
g w r w (x) ~ 2 f g w r w (x) - f w r w (x) . 
1-1 - 11 - 1 + 1 + 1 ~ 

f 2 2 
1 I g 1 ' a ·. 

2 
4< f 1 g 0- g 1 f 0 ), 

0 1 
( 1 0 ) . '1 ~ 

(5.6) 

With (5.6) the BTx (5.5) becomes local. From the equat~?~s 
(5.4) we see, that BTx (5.5) adds two ~~w eigenvalues (2 
to the spectrum 9f the oper_ftor f 1[w 1J, ( 2-~-(f 0 +g0 )/(f 1 +g 1 ) 
and multiplies p l ((} and C l ,k by a fraction-linear functions: 

+ + + + ++ + 
P 2 ((} = K- ((} P -1 ((}, c;,k ~ K - (( ~ ) C ;,k 

± f((}Tg((} 
K (() ,,- ----------. (5. 7) 

f<(> ± g((l 

In the particular cases the BTx (5.5) goes into the well­
known BTx 110 · 191. Here we note two such cases. 

1. BTx for the nonlinear Schrodinger equation is ob­
tained for-K 

f((} = - ic , g((} = (- c • q =-r * = v (x. t), 
1 0 n n n 

(5. 8) 

-K 
See the footnote on p.18. 
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where c
0

, c 
1 

' 0. In that case Z(x) = 4ct - 2/4~_}_1_v_2---~~~2:- and 

(5.5) goes into the well-known BT/
19 

-~- (v
2

- v 
1

) =- 2i c
0
(v

2 
- v 

1
) ~ (v2 1 v 1 )j;;~~-~~~-~~~-~-2~ 

dx 
It adds _.tp the _spectrum of the operatof fJ[w 11 two eigen-
values (2=~0 ±1c 1 .and the function K-(Q i n (5 . 7 ) equal s 

+ ' -(2+ K- ((j = ------::+--· 
{. - ;- -- ., 2 

2 . B1x for the sine-Gordon equat ion is obtained for* 

~ 1 
f(()cip l ' g(() " (, qn =- rn =- 2 un,x • (5 . 9 ) 

with p -0. This gives Z(x) " - 4 p
1 
+ /ffi-;f=-<~-2-:~~-;:)2- and ( 5. 5) 

transfer s to 
ct 1 c --2-------------2- _ 

-dJZ(u 2x ·-ll1x) +-2 (u 2x + ll1xh/16p1 - (u2x- u1x ) - O. 

Le t us multiply both sides of this equation by 

dx / [lli~T:(~~~---;~;:)2- and integrate. This immedi;?tely gives 
the first of the equations (5.1). In this case( ±= ±ip 1 

± ( "f i p1 2 
and K (() = -------- --- • 

( ± i P1 

APPENDIX 

Let us give here a short derivation of the relations 
(3. 7), (3.10) and (3.12). 

The relation (3.7) is obtained from the explicit expres­
sion for the reso_tvent · R(x,y,() of the operator f : (f-()R(x,y,(l= 
=o(x-y), where R - R-(x,y, ( ), lm( ~ 0 , R = R+-R-, lm( = O. 

+ i ± ±T ± ±T 
R- (x,y,() = --r- ltjJ (x, ( )¢ (y, ( )8(x-y) +¢ (x,()tjf (y ,()8(y-x)lr 1 .(A.1) 

a - ((') 

Let us insert (A.1) into the relation 

*The involutio~ relations impose additional restrictions 
on the functions f and g (see 1101 ). For example, if qn= ±r ~ 
the compatibility condition for the system (5.4) requires 
that f((*) g(() = .J f(( ) g*(.;:-*) . Thus, the choice of the functions 
f(( ) and g((') in (5.8) and (5.9) is the most general one, 
compatible with the given involur ion. 
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<!__ Tr ln (f -()(P
0
-()--

1 
= Tr [(f ·-()-

1
- (f -d- 11= f dx t r [R(x,x,()-R ( x,x,()], 

d( 0 -oo 0 

where R 0 is the resolvent of t he operator eo r I q ~ r=o . 
For lm( '> 0 

1- + 1- t-
d - 1 - (¢1if;2-¢2ifl t )( x,() 

--- Tr ln [(P -()( P - (l 1 ~ - i ( dx [ --------+----------- ·- 11 
d ( 0 -oo a (() 

"' d I --~~~-~·{_~~~-~,() __ i x I ~ -}z ln a t- (() 

(A.2) 

- { dX dX- a I ((l 

we get t he relation (3 . 7) wit h A(() defined by (2 . 3) ; for 
lm ( < 0 everything goes a nalogous l y . I n the derivation of 
(A . 2i we have used the identity (W[ ¢. if;l = ¢

1 
.P2 - ¢ 2 .P1 

): 

d . ) 
---W[¢. if;l (x, (l i (¢1 if;2 t- ¢2if;l )(x, ( 
dx 

and the well-known asymptotics of the Jost solutions for 
x , ±"' ; at the end we take i nto account the remark at the 
end of §2 in ref. ,'.J/ . We shal l do the derivation of (3.9) 
in two stages. First we shal l s how that 

dA(() . oo "" '""' 
------- = - 21 { dx ( dy w(y) B(y, (), (A. 3) 

d( -oo+ +X 
¢- o .p-(x,() > 

where B(x, (l ~± ----,.-;;.---- , lm ( < 0. 
a-., 

, B(x, (l = :P_~o_t!/j_x_,l) _ :P_-_o__if!_-(x,() 
al(() a - cZ) __ _ 

for lm ( " 0, and then we shall obtain that 

. - 1 
B(x,(l = -}(L+ -() w(x) . (A.4) 

We shall prove (A. 3) only for lm ( > 0. Let us insert in the 
first line of (A.2) the relation 

( + + + +) ) 00 t + 
¢1t/12+¢2t/11 (x,( . ¢ oif; (x,() 

------------------------ 1 =- 21 r dy w (y) -----------,-. 
a+ (() -x a+ (() 

which is obtained from (1.1) and the definitions of the 
Jost solutions (see~~ ) . This immediately gives (A . 3). 

The relation (A . 7) is derived by the contour integration 
method applied to the integral 

1 d~ ¢ + ot/J +(x, g) 
J (x, ()=---- I ~ - ----- ------- - ~ 

N 2rri + ~ - ( a+(~) -
YN YN 

d~ ¢- oif; -(x.fJ 
------ -----------1, 
~- ( a-(~) 
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+ 
where the contours YN are given in the 
Equating the answers for JN(x,() obtai ned 
theorem and by direct integration along 
the limit N --. oo we get (Im( > 0): 

figure in ref . 
151

. 

by the Causchy 
the contours in 

1 ' ) "" tf__~cj: __ <!.:.~--- --~- r --~§__ (/IJI ' ' p- IJI - ) (x.~)-
at (() 2rrl -oo ~ - ( 

N + + - -
l ( -~_!<_!_!-.~'9 __ - -~.!<_!.!<_i~~ ) 

k = 1 (: ·-( (~-( 

. - 1 -k (L
1 

- (} w(x). 

Here we have used the known expansion (2.8a) for w(~ over 
the system IIJI! and theorem 3 in ~1 .Thus (A.4), and conse­
quently (3.10), are proved. 

The relation (3.12) follows from the known formula: 

OA(() ~- - L f dx ~(x) B(x, () 
2 - oo 3 

and from (A. 4) (see /9 / ) . 

After the completion of this manuscript the authors came 
across the paper 121/, in which close results are obtained. 
The authors are grateful to Dr. P.P.Kulish for calling their 
attention to reference 12 1/. 
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