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0 cBA3K Mexay ABYMEPHBIMM CNEKTpamu HecTabunbHbiX
YacTWL U NPOAYKTOB MX pacnapa

Hatigehe AAPO W fpaHMUb WHTErpuposaHnA ANA MHTErpansHoro
YPaBHEeHWA, YCTAHABNUBAKWErO CBA3b MEKMAY WHBAPHUEHTHHMW CTPYK-
TYPHBIMKM OYHKUMAMKW HecCTabuneHLIX YacTHUY M OAHOMG M3 NPOAYKTOB
MX M3OTPONHOre pacnaga Ha OBe MAaccMBHBE uwacTuuu. Pacnag
7% 2y  ABNAETCA 4aCTHbIM CRAYUYSEM MONYYEHHBX COOTHOWEHWNA,

PaGoTa sunonHeHa B JlaBopaTtopuu ApgepHelx npobnem OWAU.

fMpenpusar O6reORHeHHOTO HHCTHTYTE SAepHEIX ncchaepopasnft, [lyGra 1978

Antos J., Budagov Yu.A., Rumyantsev V.S.
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Relation between Two-Dimensional Spectra of

Unstable Particles and Their Decay Products

The integral equation which connects invariant struc-
ture functions of unstable particles and one of the products
of their isotropic two-particle decay is considered. The ex-
plicit form of kernel and integration limits are derived.
The decay 7°»2y is a special case of obtained relations.

The investigation has been performed at the Laboratory
of Nuclear Problems, JINR,
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The task of reconstruction of the unstable-particle spect-
rum from the spectrum of their decay products reduces to
finding the explicit form of kernel of an integral equation

n(q) = f G{q,Q)N@Q)4Q, (1)

the integration limits and solving this equation. Here n(q)
and M(Q) are densities of the q and Q@ distributions of se-
condary and primary particles, respectively. The kernel
G{q,Q) determines the probability of finding decay product
with kinematical characteristic q if a decaying particle
has kinematical characteristic Q . When each of symbols g
and Q represents a couple of kinematical variables, e.g.,
E.E or PL,P (PL'P are the longitudinal and the trans-
versal components of the momentum, E is the energy/, then
eq. (1) establishes a connection between two-dimensional
spectra.

For the case of one-dimensional spectra as a function of
enerqgy,longitudinal and transversal momentum the eguation (1)
was analyzed by several authors/1—3/, Results obtained by
these authors are widely used for many yvears in reconstruc-
tion of #° -meson spectra/4“1°/ produced in inclusive reac-
tien

a+ bsn® + X

S VY (2}
under conditions of the ‘poor y —detection efficiency. In
paper/llf dedicated to the study of bremsstrahlung contri-
bution to the photon distribution from the decay »°»2y the
integral equation connecting two-dimensional »°-~ and y -
spectra was obtained. However, this equation is valid only
in the c.m. system of reaction (2) and under the condition
when masses of incident particles are equal.

In this paper we present an explicit form of kernel G(q.Q)
and integration limits for an integral egquation of kind (1},
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which connects two-dimensional spectra of unstable particles
and one of the products of their isotropic decay into two
massive particles. Relations were cbtained for invariant
structure functions and are valid in an arbitrary reference
frame. Decay 7°+2y is a special case of obtained relations.

Consider an isotropic decay 0~ 1 + 2. The primary par-
ticle O has mass M , energy E and momentum P in the lab.sys-
tem. The same quantities for the secondary particle 1 are
m , o and g, respectively.

To describe the two-dimensional spectra, we take as in-
dependent variables energy and projection of momentum on an
arbitrary axis. Let this axis be directed along the unit vec-
tor i . The density of theE, P, dlstrlbutlon N(E P, )is con-
nected with invariant structure function E d%/d%p by the

simple relation
d*N

2 d'o
E P = =21 .
N¢ )= N dEdP T (E d3P)

This relation shows the invariance of the distribution N(E.P;).
According to eq. (1) we can write an expression for the den-
sity of the w , q; distribution

E, P, \
1(w,g;)= f 4E [dP G(o.q, ,E,B INE,P ). 3
.

To find an explicit form of function G and integration limits
in the eq.{3), we consider the decay of particle O in its
rest system. In this reference frame the energy and momentum
of particle 1 are constant and equal to

w* = _l‘fz +m2—m22 G* = v (ME—nf —m5 ) —4mzmg
2M ' em '

where my is the mass of particle 2. Let the particle ! be
emitted along the direction determined by the solid and azi-
muthal angles 6* and ¢* . Then the density of the ¢* and

cos 9% distribution has the form .

2
~JliL-___Eg(¢*,mm9*)=3—”
d¢*d(cos6*) ix

where ¢* and cosf* vary within 0<¢p*< 27 and —1<cosf*c1 limits.
Now we can write



G, q, E,P.)= d(cos d* cosd*) dp* g (b%*,cosf*), (4)
d(w,q,) d(cosd®

where d(cos¢*,cos56*)/d(w,q,) is the Jaccbian of the transfor-
mation from variables cos¢* and cosf* to w and q; . Let us
establish the relations connecting angles &% and ¢* with
characteristics of particles O and 1 in the lab. system.
From the relation connecting @* with @ we find

oM—- w*E
q*P

cos@*=

(5)

In order to obtain the similar expression for cos¢* it is
convenient to introduce the system of orthogonal unit vec-
tors €; , €2 and €3 . We direct the vector €7 along the vec-
tor P .Then vectors €, and €3 will lie in the plane perpen-
dicular to the vector P . In this plane all possible direc-
tions of vector g3 are equivalent. Therefore without loss

of generality we can fix a direction of ¢4 by the reguirement
for e 3 to be perpendicular to the { , P plane. According teo
these conditions we can write -7

E)(_i_ P(Baxi)
e m .
"3 |Pxi| Psind

P .
="ET(e i) and e, =e5 e,

where @ is the solid angle of particle O in the lab. system,

\/PE-P and PayEE ~M® .1t follows from this that

. P P
S .1:0059:—-1—-, e _ - l:sinezwl, 93.i= 0. . (6)
P
In the orthogonal base of vectorse,, g, , and 25 the momen-
tum of particle 1 can be expressed in the form

—q’e . . g
q qL__1+qT(gzcos¢ +g 8ind ), (7)
where
, E .« P whk— w*M
= =~ g*cosf*y Lofte—m o T
=y MY P :

q:rz q* 'sin9*=\/q2—-q’L2 and q=ve® -m?,



From (6) and (7) we have

egei=i(g’ . *
9, =49 i=-5 (qLPi +qTPT cos b* ),
then
qP-q P
cosch¥= 1 L

- . (8)
4 g .

With the help of the formulas (5) and (8) one can calculate
the transformation Jaccbian in the formula {(4). Then we ob-
tain for the function G the following expression

G(w,q,,E,P, )= M
2rq*V{q P )?-(qP-qP)?

The integration limits in the relation (3) are derived from
the equation of the second order for E and Pi obtained from
(5) and {8) under the conditions that |cos#*|<1 and |cos¢ *[<l.
As a solution, we have

M
E i—=_r;-2(ww*iqq*)9 for mqéo,

P
P, =— _— .
S (a,9] *aq.90),
where qT=\/q2—-q2. .

In the case of m= O the equation for E reduces to the
linear equation and we obtain

% ;
E_-Me oYy g _ for m=0,
- 2 o* + ' )
In the remaining formulas it is sufficient to take m= O
and
M2_m2
wF= g% = 2
2M

FPor m= 0 and mpg= O ofie has p*=q*<M/2 and a new expression
for the integration limits

2
E-=CLJ+M /4(0, E+=Do, for m=0, m2=0.

The case of m==u%=0can be used for the description of 7°+2y
decay.

Let us show that integral equations for one-dimensional
spectra obtained in papers 23/ are special cases of our re-
sults. For example, the density of the o distribution of
particle 1 is determined by the integral

6



n(w) = f dq nlw,q )
—-q

Substitute here n(m,qi)from the expression (3) and change
the order of integration. As a result we obtain

E. P
n(w) = defdPN(EP)qu G(w.q ,E,P),
E_ -P

where the integration limits q _ are as follows

P
= P +q F .
q, P(qL (Ea P

It is easy to check that the integral of G over q, within
limits q equals to M/2q*P. Using the definition

N(E)= j 4P N(E, P 3,
-P
we have

. dE N(E
n(w) 2 g‘ - (E).

This expression coincides fully with the integral equaticn
from paper

Using the similar arguments it is easy to show that the
integral of n{w.,q;)over @ leads to a well-known equation con-
necting the one-dimensicnal ¢; and P; distributions 3

In order tc find the spectfum’NalP)from eq.{3) it is pos-
sible to employ numerical methods used earlier for reconst-
ruction of 7°-spectra’4=1%.12/ Among them note a statisti-
cal regularization method/IS/ and a method based on the pa-
rametrization of spectrum N(E,Pi)by a function dependent on
free parameters.
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