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rMHTpO M., 0B4HHHHKOBa A.A. E2 · 12639 

Pa,q1-1a4~-tOHHbl~ 11- -aaxeaT a no.Qxo,qe 11.AAPO KaK aneMeHTapHaR 
4acn14a''. 1. MeTOA 

pa60Te H311araeTCA MeTOA nocTpOeHHR aMnllHTYA~ pa,qHa41o10HHOro 
11 -aaxaaTa A,qpaMH c pa31llo14HbiM cnHHOM. R,qpo paccMaTpHaaeTCR KaK ane­

MeHTapHaA 4aCTH4a H MO*eT 6b1Tb nO/lHOCTb~ oxapaKTepH30BaHO 3/leKTPH4e­
CKHM 3apA,qOM e. MarHlo1THbiM MOMeHTOM JJ.• CnHHOM J H 4eTHOCTbiO " · AMn~~­
TYAY paAHa4HOHHoro I' -aaxeaTa MOlt<HO paa6HTb Ha ABe 4aCTH : nepeaR T 
COOTBeTCTByeT Clly4a~, KOrAa y -KaaHT HCnycKaeTCR MOOHOM, BTOpaR 4aCTb 

T(h ) Y4HTblaaeT ace ocTanbHble B03MO*HOCT~-t. fHnoTeabl coxpaHeH~A aneKTPO 
MarH~THOrO, cna6oro BeKTOPHOro TOKOB, a Tak*e r~nOTe3a 4aCT~4HOrO CO­
xpaHeHHA aKC~arbHOrO TOKa n03BOnA~T CBA3aTb paA~a4HOHH~e $QpM$aKTOp~, 
BXOAR~He e T(h c HepaAHa4HOHH~MH ~opM~aKTopaMH, xapaKTepH3Y~HMH co­
OTeeTcTey~~~ o6~4H~~ ~-3axeaT. AnA OAH03Ha4HOH CBA3~ paAHa4~0HH~X 
H HepaAHa4HOHH~X ~OpM~aKTOPOB npHXOAHTCR BBOAHTb AOnOnHHTenbHY~ rHno­
Te3y o AHHaMH4ecKOH CTPYKType ~OPM~aKTopoa. PaccMoTpeH~ HeAOCTaTKH 
MeTOAa, npeAnO~eHHOro XyaHrOM H np~MaKOB~M H npeAflO~eHa CB060AHaA OT 
3THX HeAOCTaTKOB KOHCTPYK4HA aMnnHTYA~ paAHa4HOHHOrO ~-aaxeaTa. 

Pa6oTa B~nonHeHa B na6opaTOPHH TeopeTH4eCKOH ~H3HKH OHHH. 
Coo6weHHe 06beLIKHeHHoro KHCruryTa MepHbJX HCcnellOBaHKA. Lly6Ha 1979 

Gmitro M., Ovchinnikova A.A. 

Elementary Particle Treatment of the Radiative 
Muon Capture. 1. Method 

E2 · 12639 

We outline the construction of the radiative-muon-capture ampli­
tude on arbitrary-spin targets using the assumptions about conserva­
tion of the electromagnetic and weak hadronic currents and a simpli­
fying dynamical hypothesis. 

The investigation has been performed at the Laboratory of 
Theoretical Physics, JlNR. 
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The reaction of radiative muon capture (RMC) is already 
for more than two decades studied as a prospective source of 
information about the weak interaction features which are poorly 
known from other reactions. In earlier experiments the true sig­
nal of hard ( ~ 100 MeV) ~ -quanta was always accompanied 
by a background of high-energy neutrons due to the much more 
frequent (factor of ~ 104) nonradiative muon capture. These data 
indeed fell down in comparison with any calculation. A new gene­
ration. of the experimental data is being collected 111 on the 
modern meson facilities, partly with the use of pair spectrome­
ters: the y -quanta are converted into e+e- pair which can be 
safely detected. Such a development requires indeed to polish the 
theoretical understandin' of RKC as well. 

The usual treatment 21 is based on the simple "diagrammatic" 
description: it considers radiation due to the electric charges 
and anomalous magnetic momenta of the initial and final particles. 
To restore the gauge invariance, one should indeed add the terms 
corresponding to the minimal electromagnetic coupling which are 
connected with the "vertex radiation". Such an amplitude derived 
for the RIC on a free ~roton may be via impulse approximation 
used in the calculations for higher-Z targets: since RKC is a 
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rare process, the experiments are presently feasible only on the 
nuclei carying charge of several units e 

The impulse approximation is connected with an assumption 
that the effects of (mesonic) exchange currents can be ignored. 
Their role is not yet assessed properly, therotore we pre-
fer an alternative, the so-called elementary-partic le treatment 
(EPT). Here the initial and final nuclear states are supposed to 
be objects fully characterized by the invariance properties cor­
responding to their spin-parities. The nuclear-structure informa­
tion is parametrised in a few form factors which should provide 
a link with the other (weak, ~lectromagnetic) reactions on the 
respective target. EPT was earlier applied to the radiative muon 
capture on 3He by Beder /3/. The attempts to derive the EPT ampli­
tude for RMe on boson-like objects within the above "perturbation 
theory + minimal electromagnetic coupling" approach fail: the 
amplitude may break not only the eve and PeAe requirements (as 
in the 12C (a+)-+ 42.8 ( 1+) transition) but even leads to the 
electromagnetic-current nonconservation ( 160(0+)- '6Nfr) ra­
diative capture). A more systematic approach is need 

Hwang and Primakoff ( HP1 / 4/, HP2/5/), again on the basis 
of EPT, suggested a physically appealing program. Starting with 
the conditions of charge conservation (CEO), vector current con­
servation (CVC) and partial conservation of axial current (PCAC), 
they constructed the RMO amplitude entirely in terms of the (non­
radiative) muon-capture form factors. As for the results, we 
should mention, however, several difficulties. 

First, the use of algebraically independent set of Lorentz 
covariants in the construction of the general form of the RMC 
amplitude inEPT is indeed highly desirable. Second, the excessive 
and partly contradictory references to the perturbation theory 
(PT) should be avoided. An example of such an inconsistent use of 
t he PT will be given in Part II of this series for RMC on the 
12c nucleus. Thi rd, the additional assumptions concerning the 
structure of the radiative f orm factors introduced in HP1 (the 
so-called linearity hypothesis • LH) stem ac t ually from the per­
turbation theory. Therefore they should not be applied in a wider 
context. In doing so (construction of the vector ~ , see below), 
Hwang and Primakoff have obtained the i-. 1 transition ampli­
tude which differs (in its axial part) considerably from the stan­
dard results/2 ,31. 
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Being inspi red by the suggestion of Hwang and Primakoff, we 
present in th i s paper another met hod for the construction of RMC 
amplitude. Though fully based on the general framework of HP1, the 
new construction solves the above-mentioned difficulties.In par­
ticular, for RMC on the free proton our result can easily be con­
nected with the earlier derivations. Wo consider this last feature 
particularly satisfying, since it provides an additional justifi­
cation for the use of the method in derivation of the RMC ampli­
tudes in the more complex cases, e.g.,in analysis of RMC on 12c 
and 16o. 

The plan of the present paper is as follows. In Sec, 2 we 
summarize the formulation of Hwang and Primakoff for derivation 
of the RMC amplitude. In Sec. J we discuss the hypothesis about 
the dynamical structure of the form factors to be determined. 
Using these assumptions the RMC amplitude for the proton-neutron 
transition is obtained in Sec. 4 • . The construction of the gene­
ral relativistically covariant form of RMe amplitudes for integer­
spin nuclei is considered in Sec. 5. Examples of the ( f'--, '{ v) 
reaction on such boson-like targets will be given in Part II of 

U:iis aeries. 

2. Pormulation 

Using our knowledge of the di"Yergencea of tbe electromagnetic 
hadronic current J,..C•) , vector current v,.. (><} and axial-vector 
current A,..t,.), IIIUIIel;y 

at' Jr.(;x.) ~ 0, 

d,.. v,. (~) ·0, 

dr' JJr' (") 0 O..n m; (- JtJr f m~r1 J JC ('<..), 

we can obtain the constraints on the RMC amplitude 

T .,. yttr + T <t.l . 

(1) 

(Z) 

(3) 

(4) 

Here f:;zCx) is the pion-source current, aJf ( ~) is the pion­
decay constant (pion mass). Actually, the contribution T~> cor­
responding to the muon radiation does not present any diffic~lty. 
In what follows we describe a method for construction of lr ) on 
the basis of constraints arising from eqs. (1)-(3). 

5 



The standard relativistic reduction technique 161 for the 
outgoing photon can be used to obtain the amplitude ~(h) in 

the form 

T(hJ=- ~ u:~((JtJ1•ys)u!(1'") ~P · ,;z [~(lc,~,Q)+Ar-~{k,1,a)]l<5> 
where · 

Vrx(k,t , G);;-~mf Jot~x -e- " h <.N~. Cr5) \ 'T(Jrl~)V~(o~\.Ndpi.)/ (6) 

~I"'>. (k,~ , Q)=- i.mr joi~Jt - e-'k:x. c. rJt<r~)\T (Jr(x_)Jt>.(o))/.N•(p ;)l {7). 

with self-explaining notation(we follow closely refs./4 ,5/) for 
initial (i,f:') and final ( t,") ·state quantities. The photon 
4-momentum ~ , and centre-ot-mass 4-momenta 

f i Q _ pf + p' (B) · 
' 9-A ... PA - ?)> . _l- ~ A ' ... 

have been intro,duce~. We ~se t~e Pauli metrics: Al .. (A,i A,). 
, ·we proceed now to apP.lY the CEC, CVC, and PCAC constraints 

{ 1 )'7{3) to the te~s~rs ,vr~ . ~~d .A~~ . •. Performing. when necea'aa;.. 

ry • the shift 

~ (x)= e-iPw ~ (0) e;p~ {9) 

using the Jr product representation 

T fJ; c,.) k)y)} ~ J~J.)k.l (y):;.~(;~-x~HK:(;), · J;·.(~)J', ' . ( 10 >. 

and the SU2"' 5V2 commutation relat~ons lik~ · 
... -:·1, 

r V,_to)) J~ (><)L .• ~ o ~ i. v, (o) t~J(~ ), 

[ v 11 (- 1<) , J r ( o) J :l. • • o = \. v,.. ( o) & <•) (-:x:) , ••• 
{ 11 ) 

etc. 

the following conditions are obtained in a straight~orward calcu-

lation: 
CEC : 

eve: 

PCAC: 

where 

k r- v ,.~ ( ~.,.9): mr < Nf(f;) I v). (o)/ N~ (r') > (12) 

~rAt<~ (k.,tJil)"' mr < tJt(f4)1 Jl>-(o)I.Ni. Cr');> <n> 

(Mth vr,(~<-,~.o) ~ rr:r< JJ5 (r~J) vr (a)/ JJi (r') > <14> 

(v-~~)".t,..).("-,t,Q) ~mr<.v';CrlJI Jr(o)jJJ,(r')> C15) 

+ mf ])/"(1<,~,~) • · 

6 

:Dr ('k,t,Q) ~ j ~\t: -e-ih ~ ..Wf(rs)IT(+(,_) .)>..A>. (o)) I,;. Cr'J > {16> 

and {again using the condition d.\ Jl (x) ..,0) 

kf"])f'"' ~<)t(pS)[ dA~.l.(o)iJJi(pi)/. {17) 

T(~) 
To complete the derivation of we should construct 

the Lorentz-covariant forms 
)1. ~ 

vr" ( k,t,Q), ~ v-~ C'~<.t.Q) . x~j,f>. Ck,t.Q), (18) 

and 

t.~ (k,t, a) ~ ~ o.-~j ( k,t, G)· ~ 0I~ ( ~·t· Q), 
,. •J.l ( 19) 

:Dr (~.,,Q)~ ~ et.(k.t.a) · z~.t(k,2,r;) (20) 

for each particular transition characterized by the spins (J,-)f) 
and parities (~,~~) of the initial and final states, respectively. 
Here the form factors v; ~ and d depend on the 4-momenta 
introduced above and )( 

1 
~ and 'l are kinematical covariants. 

The substitution of the forms (18)- (20) into eqs. (12)-{15) 
gives us a system of equations to determine the radiative form 
factors 11~ (k.~,Q) and Q~·(t,C)-,Q) in terms of the nonradiative 
ones which enter through the vector current ~ (0) and axial­
vector current Al(O) • By solving them we shall complete the 
derivation of T'C~ • 

J. A Dynamical Hypothesis 

To solve the equations for the radiative form factors vJJ Q; and d, , we should assume a particular dynamical structu­
re of these form factors. In HP1 it is the linearity hypothesis 
- LH. We refer the reader to HP1 for a detailed discussion. Our 
use of LH is less straightforward, therefore we wish to summari­
ze here in few points the way in which LH is taken in our work: 
(i) the nonradiative weak form factors Ff6tJp')~ (pf)') (index i 
stands for V,M,A,P, the vector, weak-magnetism, axial-vector or 
induced pseudo-scalar term) actually depend on 92 only: 

~ ((~+k)~ (p'-kY, (pft) ~ F;·(CJ.'), 
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the electric charge { ei, ef) and anomalous-magnetic-momentum (t',,f't) 
form factors are assumed to be constants, e.g., 

e, (k\ (p')l, (p' -IS) ~ ei, , etc. 

(ii) The radiative form factors a.~i' 11'~·,d.· 
have definite dynamical structure, namely 

(call them R 

R(1Q.k . ~c)= R•('t') + R-{f)+Rof•) (21> 
~ ) ,q. (Q.'I-)k (Q-'1-)k l'} ) 

where R+('}1
) is linear in ~· (~') an~ in ef'ff, 'R-(Cj.') is li-

near in ~· (o,•) and in e>;,f; , and 7? (f) is linear in 5·{f) 
and in e,, es ,f,.,f1 • 

(iii) The above assumptions about the form factors R seem 
to be valid for those of them (V,j· 1 Q~. ) which are contained 
in tensors v,.l 1 A,_~ since there the dependence on ~ · k and Q . 1.: 

enters mainly through the propagators of the (nucleon, nuclear) 
intermediate states. In general, however, LH is an "ad hoc" 
assumption subject to teats on some simple models at least. The 
perturbation-theory treatment for RMC on the free proton seems 
to be just an appropriate model case. The corresponding expres­
sion for 'D,._ bas, bow ever, a structure which contradicts LH. 

We argue then that these assumptions must not be. applied to the 
form factors d; • To complete the derivation of A,.l in absence 
of LH for D,. the additional reference to perturbation 
theory may be needed. 

4. Radiative Muon Capture on the Free Protons 

Using CEC, eve and PCAC constraints (12)-(15) and the 
assumptions (i)-(iii) of the preceding section we have obtained 
for the p(f--,f'ii)1'1 reaction the hadron radiating amplitude y<h) 
which is easy interpretable. In ita vector part V~ it repeats 
the result of HP1 (their eq. (26)). Derivation of the axial­
vector part A,.l is sketched in Appendix B, the final form ob­
tained being 

' * A "'P Ef" /"'l .,. 

=- uH,t>[(~C'J')t~rs • ~c~·)i 2 M~tl•lc,~) rs) .. ~ (~i + .l!i ik)E" 
~ p•-k-iM 2M 
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+ E ~ (e
1

- t'~ i.K.)~ ru-•) 11 v: •[( ·) { 21'1 (1)+~<;~.) r) 
lM r~ +K-LM , .... ~ 0~05 pI m~ 5' 

• 11- r r r•)~M 1 · 
t L Q 5 €: f' Of").. r r'/ rt'l~ 'INc ( f i.) 

The amplitude T(h) correapondin' to these Vt'l and At"~ together 
with the muon-radiating part/4 

T (tJ = G-~ < rJ+(r~)\Lv>-(o)d}(o)])tJ~(();> 

. IT' ;w v ( p v) VA ( 1 + y s) A ~ 1 . 
~ ik. I 4 0 f -I<. -emf 

" ~~~- ·uf( f') 

form radiative amplitude with the functional dependence identical 
to the one which can be derived in the "PT plus minimal coupling" 
treatment 121. The radiative form factors v;a. in Vl"'l and A,..~ are, 
however, taken at the momentum ~l rather then ('l1-k )

1 
as is the 

case in PT. In HP1 it was shown that such a shift in variable can 
be interpreted as a result of approximate inclusion of the box 
diagrams and diagrams with the complex intermediate states e.g. , 
f_P_fL-X'(-~,.nj", where X=f, !::::..\... • We stress that the 
tensor A,.~ derived in Appendix B differs from the one quoted in 

HP1, eq. OJ). 

5. Lorentz-Covariant Form of Tensors v,).) A,..~ and D,.. 
for Integer Spin 

The construction of covariants for the reaction 1+2-.a+b•c 
was shortly described by Hearn 111. Unlike Hwang and Primakoff we 
aug,est that care should be exercised to choose an independent 
set 81 of covarianta (ISC). In particular, performing the construc­
tion with ISC we keep minimal the number of radiation form factors 
1r~, .. . ,etc. ,in (18)-(20) which have to be determined. The choice 

of the complete set of independent covariants has turned out to 
be straightforward in all but one examples we have elaborated ons 
the only difficulty we come upon is connected with the antiaym­
metric rank-~ tensor E.,_prf (e.g., in the vector part of the un-

9 



natural parity transitions like o·-1· t o~- 2-,... ). In thia 
case several fully equivalent sets of independent covariant& 
may be constructed. The mutual connections of these ISe can be 

established using the relation /9/ 

Jllf Et'-"'N £,..~ f~"'N. + d.cv tt'-rf-'1 (22) 

+ JP., E,.. ... f'f + dry (f"fl~ 

In principle, any choice of ISe should suit equally well our 
purpose. In the actual construction, however, we use the above 
discussed linearity hypothesis and should also refer to the per­
turbation theory. Two requirements are then natural to make the 
ISe suitable for the further work: (i) the constraint equations 
resulting from eq8. (12)-(15) for the chosen ISe should not con­
tradict LH, and (ii) the necessary reference to the perturbation 
theory has to be minimal. 

Unfortunately, the decisive criterion which would allow one 
to make an apriori choice of the appropriate ISe is unknown. 
Nevertheless we list here the practical recommendations which 
help us to construct the tensors (18)-(20). 

First, the chosen set should not contain covariant& vanishing 
simultaneously when conditions (12) and (14) (similarly (13) and 
(15)) are considered; if so, the form factors corresponding to 
them turn out to be irrecoverable. 

Second, the set should certainly contain all covariant& 
which may appear from the "PT plus minimal coupling" treatment. 

Third, the covariants proportional to the photon momentum kt" 
(,...is the photon polarization index) should be maintained in the 
chosen Ise. In doing so we enlighten considerably our task: the 
corresponding form factors (let us call them R~ ) can be taken 
zero without loss of generality, since these co~ariants will va­
nish in the amplitude (; v,..~ (€~ A,...~) • However, care should be 
taken to come upon no contradiction with the eve condition. Actu­
ally: when we put zero the corresponding form factors: ~lc = 0 
.in v ~ t the eve expression ( 14 ) is ,.. 
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(k~··h)~~ = k,.. .v •... 
and the term V must vanish. Otherwise in order to fulfil the 
eve condition the form factors Rk should be kept in· V~~ so 

- I"' I 

as to compensate for the term V • 
The use of these three ad hoc rules will be seen in Part II 

where we treat · RMC on targets with integer spins which · bring in 
the "difficult" f:.J.flld containing covariants. We wish to stress 
that utilizing these rules we were able in the examples consi-
dered so far, to avoid ambiguities in the choice of Ise. 

In conclusion, it is worthwhile to mention that using inde­
pendent covariants for the construction of v,...~ and Ar~ t one 
avoids the superfluous reference to the perturbation theory. For 

v. 12 
example, in HP2 the tensor ,..~ for C is expanded in terms 
of an overcomplete set, 16 of the covariants may be excluded from 
this set using th' algebraic identities, eq. (22). In such a situa­
tion the authors of HP2 were forced to apply PT to fix zero values 
for 14 radiative form factors. At the same time, using the concept 
of algebraically independent covariants we have only 2 form fac­
tors to be determined through PT. 

6. Summary I 

A method was outlined to construct the eEe, eve, and POAe 
conserVing amplitude of the radiative~muon-capture reaction. 
Substantial for the successfull -' derivatlon 'wa~ a dyn~mical . assiunp­
tion about the explicit forin ~f the ' radi~tive ' forth' factors ' ~nter­
i~g . into the amplitude. The resulting amplitude is ·gauge' ·inva­
ri~t as can be tested by substituting k,.. for ~ • ~is is guaran­
teed . always when eqa. ( 12) and ( 13) hold.~ The method i_s well 
suited for the construction of RMe amplitudes on boson-like tar­
gets. Two examples of such transitions ro• -1· and o•:..._. 2-) 
will be presented in Part II of the present series. We prepare 

' also · a nUmerfcal study of RMe characteristics on several experi­

mentally feasible nuclei. 
I'. 
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Appendix A 

The constraint equations which are of inte r est i n this paper 

A . kQ + B.k1 :C, (A.1) 

can be uniquely solved using the linearity hypothesis eq. (21). 
Assuming for the form factors A,B, C the LH form we can rewrite 
eq. (A.1) as 

A- ( $1") eo( k: q + A+ ( 'l~) ~ k 0. o . . 
(Q - 'f,)k • (Q.'lr)k , . +A(~~e~ , ef) - kQ 

+ Jf('}z) f'i . k7- + E/('i>) i k. Bo . . (A.2) 
(i). e . t:t,+ (2J ~)k. Q - ~ k (0+'!.-)1, f 'J-,e,, ef . 'r 

= 
C(f) . c+ ('ll.J . 

+ C0
('( e~· ~') ~ 

(Q-'1-}~ 
1 

+ ~·J 
(G+4)" f 

I t I J , 

where e~G) ie the electromagnetic (charge or magnetic-momentum) 
form factor of initial (final) nucleus. 

Taking equal the coefficients of I.Q and k'J- gives 

A•-- s· 
' 

A-:- a-~ 

A0
-= 8°.,. C'" C- = 0 } 

• - 0 
A e, • A er -= (. · 

As ( 0 is linear in e, and 
by equating the coefficients 
of (A.5). If, in particular, 

(A.J) 

(A.4) 

(A.5) 

+ 
t-1 , A and A can be obtained 

of ~. and t'f in l.h.a. and r.h.a. 
(

0 is independent of f!-,- and e1 
using e," E'f + 1 we obtain at once 

+ - 0 A - -A=C. (A.6) 

Then 
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A : c ( (Q~~)t. ef ) 
(G+i-)k I (A.7) 

( ____.!! 
& =-( (~-q.)k + e ) • 

Appendix B 

Te.neor A/"'~(k.fj- , Q) for the f- ~ radiative transitions. 
The weak axial-vector current is taken in the usual form 

<Ns(Ji) IAl(o)/N,;(p')) = u;(pf;J~ ('}·)~fi +i ~(f)~ J u; (pl). (B. 1 > 
"".r. 

In this Appendix we wish to express the radiative form factors 
a.:1 and d.,- of eqs. (19) and (20) in terms of I=A and f::P 

using the constraint equations (13), (15) and LH for ~1 but 
refraining from the LH form for c( • We change here the notation 
to that of HP1 (a.~- G;1, d.- --fp,fo 

1 
.•. ,etc.). To deter­

mine G.;"· Hwang and Primakoff/4/ have constructed their eqs. (16a) 
J 

-(16h) from CEC cone t ion eq . ( 13). For reference we quo• e this 
system here 

G-~ kQ + 
H. 

(;. ::1. k Q I 

G~, k Q 1 

G ~'- k Q +-

~ 
G ~~ k:Q + 

G-~ kQ+ 

~ k - t G (),.. 
GH ~ - rnf •• 

G ~3 k1 " m~ FA (1'-) 

G- ~~ kf ~ m~ [ i ( ~.: t- r;,':) _ G.:} 
"'" k - . 1 Gll. l.r .ll. t - (.. m r 11, 

.I I .... Ga.. 
GB "t-:: r...mf' t.3 

CJ _ tc;C 
G- J I It ~ - - m /' oo 

c;: c. k Q + G c. kq ~ o 
.21 J 3.. v 

c;: {. k Q +- r:; c. k.q ~ i 
.23 J3 £. 

~M ;'r Ff (q'). 
m7t 

(B.2) 

To solve the system (B.2) we put according to the perturbation 
theory: 
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G-"" ~-m F (_t_;_ t/!.1) 
oo f A ). M .2.11 

G' .,_ mL Fll ( e;+f'i - et+ f't ) .... r (Q-t)~< ~+t)"-

"" t F '2~ _ ,.,.t F 3.-';_ ( fi _ .ff) G- ~.tmrll 
II (Q+-~)k f f' m,.. JM !tM 

C- (!.,.. -=- D 
11.. 

"" 2. F G ,~ ~ - m P r 
H\ 
mL 

/& 
( fi--B) 

~M .(M 

~ [ F ( _f_ . f' C-~ 1 ""- i m f A (Q-?)k 1M - - 1- ff) f f. 1M(~ _i__,l 
(Q1)k. JM f M~ (Q-'j.)k (Q+<j,lk)j 

o1 · t F ( ~ • +- 1'i .,_ ~ ~ ~mr 4 '~) .. 
oo ~._Q-t 1<. ~) 

(Q+~)k 

Applying PCAC, (eq. (15) another set of equations can be 
constructed. These are eqs. (18a)-(18j) of HP1. Since the dyna­
mical structure of the vector Dtv is arbitrary now, this second 
set does not impose any additional constraint on the form factors c; . Q,Instead. we should calculate the form factors G;.' c;l) 
and Gu via an additional reference to the perturbation theory. 
The result is 

"-' _ _ ~ F . "~ ( ~: +r; _ :J..!.Li) 
G 2.-t - m r P rnx (Q-z )k ( C¥+-tJk 

.... ~ 0 

G-.'1.1. ( € · ~ Mj 
'-.M ' L -:>. F - - -G-~~ ""- - mr p m~ (Q -,)k e f 1ff) 

(Q +J )t 

Now, using LH in the sense of Appendix A we shall get from 
(B.2) at once 
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e ~ F ( _I_ t.: + _J_ fi) 
():a,-=-- mr A (Q-~)~ .2M (<D~t)lt... ,1M 

e - ~ F ( _1 . J:_._ - _I_ . t£) 
G B - m r A (Q-1)1:. m (Qt~)k. .2.M 

G-' 2 F ( e: ~t ) 
'"' -=- - TYli' A (~k, - CCiilk. . 

m1.. F ( ~ t ~t ) 
r .4 (Q-r)k. (Q+!)k. 
. ~ F ~H ( ( M. -t..m ---;:- -- · J-!-r f m~ (Q-t)l:. ).M 

G-1: 
I~ 

G-4 
ll - I ~) - ;_f 

(QfzJ"- £M 
r ~ - · ~ ~ ( I f-1; 
l:r ?> l - t- m P Fr .,_ - 1::- +-

Mlt- (Q-1)k JM 

_J__ 
(9+(r)lz 7~) 

c:D~ -=- 0 
~'l. 

" G- ~~ = 0 

G- ol _ . ~ '-M ( I f_i _ .J- b) 
~ ~ - - l- m r Fr m~ ~)k . .rM (Q+Z)'< .2M 

,~ -:.L.I'Yl'~ F ~ ( _L- . /!J- +___[_ -b) 
?>~ f f m~ (Q-t)k. .2M (Q+<j;)k JM 

~ m - · 1_ • + - · ;_ C c " - · ~ [ F ( I ~ · I ~f) 
-'1 f A (Q-~)k fM (Q+t)k ;)M + 

~f J.M ( ~i '2f )1 
r m~ (~)1-, t (~)k. ~ 

-L.mr[F" (fl.- f.f) F ~] 
H-\ .2M t- f .,_ 

m)l; 

Gc. 
00 

G c. ~ o 
.u, 

'c "'0 ~ 
" ' ( ._, - __L ) 
c. = ~ 1M~e- Ff ~)k (Q+~)k. G-!1."!, rvl~ 

. ~M m'!> ( ~; + ef ) G~!. ~ -L- ~ Ff ~ (Q+1)t 
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We do not display here the lengthy expressions for the form 
factors }P,JE,··· entering into D,... • One may easily obtain them 
using the PCAC constraints (eqs. (18a)-(18j) of HP1) since all 
form factors G:; are already known. 
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