
K.Lewin, W.Kallies 

COOfilllBHMR 
OfihBAMHBHHOrO 

MHCTMTYT8 
RABPHbiX 

MCCIBADB8HMM 

AYfiHa 

!VI jJ,.-~J 

E2 · 12600 

ABOUT THE DAMPING OF QUARK-HADRON 

FORM FACTORS 

IN RELATIVE QUARK MOMENTUM 

1979 



E2 - 12600 

K.Lewin, W .Kallies * 

ABOUT THE DAMPING OF QUARK-HADRON 

FORM FACTORS 

IN RELATIVE QUARK MOMENTUM 

~Permanent address: Humboldt-Universitat Berlin, 
DDR, Sektion Physik, Bereich Theorie de Teilchen 
und Felder. 



neeHH K., KonnHC B. E2- 12600 
0 noAaBneHHH KBapK-aApOHHOrO ¢QpM¢aKTOpa 

noAaBneHHe aAPOHHO~ BOnHOBO~ ¢YHK~HH CB~3aHHOrO 
COCTO~HH~, He06XOAHMOe An~ HaCTyna~ero npH nepeAa4e 
HMnynbca It! ~ 2-3 r3B2 CTeneHHOrO CKe~nHHra, nony4eHO 
H3 COOTBeTCTBy~ero noBeAeHH~ 4eT~pexKeapKOB~X ¢yHK~H~ 
rpHHa B t, KOTOpOe Tpe6yeTC~ AH¢paK~HOHH~M pacce~HHeM. 

Pa6oTa e~nonHeHa B na6opaTOPHH TeopeTH4eCMO~ 
¢H3HKH OI-1~H1. 

Coo6W&HHe 06'beQHHeHHOrO HHCTHTYT8 SUlepHbiX HCCneaOB8HHA, Lly6Ka 1979 

Lewin K., Kallies W. E2 - 12600 
About the Damping of Quark-Hadron Form Factors 
in Relative Quark Momentum 

Damping of hadron bound state wave functions in 
relative quark momentum as necessary to describe the 
beginning of power scaling at momentum transfer it I~ 
~2-3 GeV 2 is obtained approximately from a corresponding 
behaviour of four-quark Green's functions in t which is 
required by diffraction scattering. 
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1. INTRODUCTION 

The understanding of power scaling 1 1 
·
2 1 as large momentum 

transfer behaviour of hadron scattering amplitudes and electro­
magnetic form factors in field theory presently requires pheno­
menological assumptions about the hadrons as bound states of 
two or three quarks, respectively. These bound states are as­
sumed to exist, for instance, as solutions of a corresponding 

' :> f Bether-Salpeter equation · · · · If they are damped sufficiently in 
relative quark momentum, power scaling is obtained by counting 
the number of far off-shell quark propagators in tree-like diag­
rams. Up to now this large relative momentum behaviour cannot 
be deduced in vector gluon theories 14 1

, so that the main "ar­
gument" for the damping is the assumed existence of the bound 
state wave function in x space at zero interquark distance 
(see, for instance, ref. / 3 1 ) . But this argument is too general to 
explain the beginning of power scaling at non-asymptotic mo­
mentum transfers of a few GeV 2 which requires a sufficiently 
strong decrease of the bound states at relative quark momenta 
in the region around 1 GeVjc. A summary of "early" scaling 
and corresponding experimental data is contained in ref. 151 . 

The aim of this work is to find arguments for a sufficient 
damping of the bound states at such non-asymptotic relative 
quark momenta. Explicit information about a corresponding 
behaviour of the kernel of the Bethe-Salpeter equation as two­
particle irreducible four-quark Green's function is not available 
because of the known difficulties in quantum chromodynamics. 
Self energy and vertex corrections become important, exponen­
tiation of expansions in perturbation theory as it seems to work 
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asymptotically 16 1 , cannot be seen. Therefore we go a more 
phenomenological way to obtain information about the behaviour 
of the four-point Green's function in momentum transfer by 
comparison with the known t behaviour of diffraction scat­
tering. As is well-known, in the diffraction region the differen­
tial cross section of elastic hadron-hadron scattering strongly 
falls off in t independently or nearly independently of the 
incident energy ys (see ref. 17 1 ). This comparison becomes 
possible if quark diagrams which describe hadron-hadron scat­
tering and contain no higher than four-quark Green 's functions 
contribute non-negligibly to diffraction scattering. Since inter­
action between quarks essentially is a matter of momentum 
transfer and not of longitudinal momentum, the transition from 
large relative longitudinal momentum in diffraction scattering 
to a small one in the bound state should not effect the t depen­
dent factor which governs the damping. After discussing the 
relation between the general four-quark Green's function and 
the irreducible kernel in an iterative procedure to solve the 
bound state equation in a restricted region, it is shown that the 
iterative solution exhibits the expected damping of the bound 
state which is needed to guarantee "early" power scaling. 

Section 2 gives a short review of the role of hadron bound 
states in connection with power scaling. Section 3 deals with 
the information from diffraction scattering and in section 4 the 
iterative procedure is described. 

2 . HADRON BOUND STATES AND POWER SCALING 

Considering, for simplicity, the meson-meson scattering 
amplitude TMM in the center-of-mass system with s ~ 2p~ · 2 i P : ~ 
beyond the resonance region and s I 1 - 0(1) , t - q~ · ·· q~ . one has 
generally 

TMM-fd4k . .. d4k41/J~(k1)1/J .:(k2)M(p,q,k1, ... ,k4)1/J. Jk3)1/J.., jk4), 
1 p -p - p-q p+q 

(2 .1) 

whe r e the convoluting bound states (4x4 s pinor matrices) 
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rp af3 ( k) = f d 
4 

X e i kx < 0 J T I rp a (0) ij}f3( X) lJ P ~ 
p (2.2) 

are introduced as solutions of the homogeneous Bethe-Salpeter 
equation 

r/J (k) = ~F(.k- k)(f d
4erp (e}K(k, e ,p)]~F(_!>_+k), 

p 2 p 2 (2.3) 

and M as a function of the four-vectors p , q, k1 , •. . , k
4 

repre­
sents the amputated full eight-quark Green's function decompo­
sable into terms of different connectivity as is illustrated in 
Fig. 1. As usual, .p P ( k) contains the two quark legs ~F" The 
condition 

f d
4

k rp (k) "' ~ (X = 0) <' "" 
p p (2.4) 

guarantees the existence of the wave function at zero inter­
quark distance. The dominant contributions to the diagrams 
of Fig. 1 come from regions of the loop variables belonging 
to small relative quark momenta at the hadron vertices. Power 
scaling at large t should be due to diagrams (a)-(c). The 
diagram (d) contains four-quark Green's functions with all 
quark legs near the mass shell and therefore should not be 
dominant because of exponentiation of infrared logarithms in 
QCD perturbation theory 16 1

. In the following we concentrate 
on the diagrams (a) - (c) since at intermediate momentum trans­
fer t between asymptotic freedom and strong binding they 
should retain or enlarge their dominance. 

3. INFORMATION FROM DIFFRACTION SCATTERING 

The beginning of power scaling at t ~ 2 GeV2 (see Fig. 2) 
requires sufficient decrease of the hadron wave functions at 
relative quark momenta of order 1 GeVj c . On the other hand, 
hadron-hadron elastic scattering at t -· o (1 GeV 2 ) with 
t « s, i.e . , diffraction scattering, shows damping of the dif­
ferential cross section over several orders of magnitude for 
growing t nearly independently of the incident energy 'v -s . 
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As is well known, experimental results are fitted in phenomeno­
logical work by exponentially decreasing factors F( t), i.e., 

. !!.~- . F ( t) . G ( s . t) • 
dt (3.1) 

where G(s, t ) only weakly depends on t compared with F(t) . 

What concerns meson-meson diffraction scattering, this damping 
should be reflected by all non-negligibly contributing diagrams 
in Fig. 1, especially diagrams (a) - (c). It should be a reaso­
nable assumption that the strong damping in t is not due to 
coherent compensation effects among such diagrams of different 
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connectivity. For our purpose graph (c) containing the four­
quark Green 's function is of special interest. Analytically this 
double loop graph has the structure 

(c) 4 4 ~ Q -1 {3y 0 q oa 
T -fd kd Er/lat'(k)L.\ (~+k)J r/ly (--- k)M.,, Jp,q,k.O : 

MM p F p: q ~ " a 

X; -:{3p ,( £ ) [ ~ -Fl ( 
2
P - f ) l t.l, , r/J -,p~q' ( _g_ 1 f ), 

a 1-'Y ya 2 

(3.2) 

oa 
where M0 , a, denotes the spinor matrix element of M 4 and the 
internal variables k , r , q /~ 0 k, q/~ . r appear as half relative 
momenta between the quark legs of corresponding hadron ver­
tices. The dependence on momentum transfer t, especially 
the behaviour of the diffraction peak, is contained in 

oa oa 
M - F

1
(t)G (p,q,k, ~) 

o'a' o'a' (3.3) 

and in the two bound states r/J(q/'G k) and r/J(q/2 ~O.The relation 
between F 1 (t) and the full damping F (t) turns out in the next 
section. 

Some remarks are in order concerning the four-quark Green 's 
function (3.3). In field theory, for example in perturbation theory 
of QCD, the treatment of (3.3) is much more complicated in the 
diffraction region than at far asymptotic momentum transfers 
where in the fixed angle regime exponentiation of leading graphs 
gives a common factor corresponding to F

1 
(t) 1 51

. These diffi­
culties essentially are due to the growing role of vertex and 
self energy insertions and generally to the growing effective 
quark ~oupling constant. But the following connection does not 
depend on the order of graphs: The function (3.3) appears in 
(3.2) at large longitudinal relative momentum and at t ~ q 2 in 
the diffraction region. Bes.ides this situation (A) we consider 
a situation (B) with the same momentum transfer t but with 
longitudinal relative quark momentum near zero . In both cases 

· an arbitrary Feynman graph of higher order has the analytical 
structure 

J 4 (1) 4 ( n) ( ( v) ) ( d ( v) ) d k ... d k r 1 a i q. k f 2 b. q ± c J. p, k p,k . 
J (3.4) 

( v = 1 , ... ,n ), 
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... 

where the constant factors a 
1 

, b
1 

, c 1 , d 
1 

0=1 , ... ,n) norma-
lized by the conditions 

n 

~a= ~b ~ ~c ~ ~d ~ 1. 
v~ t v v v v (3.5) 

describe a given distribution of the external momenta p and q 

over the internal lines. The transition (A) _, (B) only changes 
the arguments of f 2 tand thus cannot change the factor F 

1 
(t) 

in (3.3). Indeed, independently of perturbation theory this ex­
presses the fact that interaction between quarks essentially is 
a matter of momentum transfer. The factor F1 (t) becomes im­
portant in the next section where the case (B) is studied in 
detail. 

4. BETHE- SALPETER EQUATION IN THE DAMPING REGION 

Returning to the meson bound states as introduced at the 
beginning we look for an approximate iterative solution of the 
Bethe-Salpeter equation (2.3) in a restricted region which is 
damped sufficiently at relative quark momentum of 0 (1 GeVjc). 
The iterative procedure starts from a "zeroth" approximation 

rjJ (0)
1 

1 r/J (k) 
p ~k) = p 

0 

if 

if 

k ~- K 
v -

k > K 
v-

(4.1) 

representing the exact solution with a cutoff at some value K 

near 0.2 GeVjc corresponding to an interquark distance near 
1 fm. The exact solution beyond the cutoff is assumed to be 
a regular function of relative quark momentum, possible singu­
larities for k v.- K will not be relevant for our discussion. 

The first approximation 

r/1( ~ (k) = "~ F< r - -k>lf d
4
f r/lp(O)(f) K(k. y • p) HF <f t k ). (4.2) 

obtained from (2.3) and (4.1) gives nothing new if kv :S K. We 
come to the intermediate region, i.e ., relative quark momenta 
of order 1 GeVjc, by adding a given relative momentum q to 
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2 k. The substitution k . q/~ k 
eq. (4.2) leads to 

and p ·P · Q 
~ 

(( p ' q) 
~ . 

M ) m 

1/1 (1) (k ; . g ) . t\ ( . .P. 
p t q 2 F ~ 

k)\jd
4

fljJ 10 Jt PtK(k l ·g, P ,p)]t\ ,( ·P • q :k) (4.3) 
p : q ~ ~ ~ 

with kv, Y v _. " . Improved approximations may be expressed 
by equations of the type (4.2) or (4.3) with iterated kernels 

(1) (2) 4 
K - K , K jd k'K(k,k')L'l~(k',P):\F,.. . (4.4) 

(n) 

where, of course, K leads to the same solution of the exact 
integral equation as K <n. Also correspondingly normalized li­
near combinations 

K (n) 

:1
1 

... a
11 

II (I) 

2 a,K (k,P ), 
I 1 

11 

~ a ~ 1 
i ~ 1 I 

(4.5) 

of iterated kernels of different order have the same exact so­
lution. Thus for growing n · "" and special coefficients a, ·a~ 
among these sums (4.4) is the s -channel quark-antiquark re­
ducible four-point Green 's function 

1 11 1 ~ M 4 
K M M '(;'; •"-') a . .. a 

1 II 
(4 .6) 

We note that generally in the iteration procedure the replace­
ment K 0 > • K ~11{ • • • a

11 
leads to an approximate solution between 

ljJ (1) and v1<nl. In other words . An iterat~on with mixed kernels 
(4.5) converges more slowly towards the exact solution than 
the optimal iteration (4.4) . From (4.3), (4.5) and (4 .6) we obtain 

V1 ( .. <!, k) ~ i\ ~ .J!-- k) \ I ct 4 r~, to>u'. " )M <~, k. I' .p) 1 ".!-~- -- k ' q) 
p t q 2 ~ P''l 4 2 F 2 

g1vmg the original Bethe-Salpeter equation if " · ...... 

= 0.2 GeVj c and q 2 - 0 (1 GeVl), then 

q ~ 
( - - ~ k)2- q 
~ - 4. ( 

q 2' ) 
'2 I k · p ) ::: ~-

4 

and using the result of section 3 
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(4.7) 

If " ._ 

(4.8) 

M
4 

= F( ~) G ~(p,q) 
( G 

4 
.... G ~ if (A) .... (B)) 

(4.9) 

with q 2= t we have from (4.7) 

tjJ (~+k):::F1 (...ci
4

)L'l (...P..
2 

-k)[Jd 4 ftjJ(O)(f)G'
4

(q,p, P)]L'l (
2
P+k+Q), 

p+q G F p+q F 
(4.10) 

where G 4 (p,q) weakly depends on q as compared with F 1 . 

Insertion of (4.10) into the integrand of T(c) (see (3.2)) gives 
MM 

the structure 

T (c)::- F (t) F 2 (t /4) G ( p,q) . 
MM 1 1 (4.11) 

Thus the result shows that damping of meson bound states 
in relative quark momentum occurs in the expected region 
between strong binding and the beginning of approximate asymp­
totic freedom at a few GeV 2 . Since the function 

F (t) = F 
1 

(t) F: (t/4) (4 .12) 

falls off at least by two orders of magnitude if t .... 2 t, in the 
considered region, the decrease of F 

1 
(t/4) in eq. (4.10) should 

be strong enough to guarantee approximate power scaling at 
t ·.:. 2 GeV~ . The extension of this investigation to baryon wave 
functions and information from meson-baryon and baryon-ba­
ryon diffraction scattering should be straightforward, at least, 
if some simplifying assumptions are introduced about the three­
particle irreducible kernel. 
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