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Quadratic Bundle and Nonlinear Equations 

A class of nonlinear evolution equations, solvable 
through the inverse scattering method for the quadratic 
bundle 

0 
_ . 1 0 )~ + A ( 

LA 1/1 = [ 1 
( 0 -1 dx p(x) 

q (x) ) _ A 2 ] 1/1 ( x , A) = 0 
0 

is described. It is shown, that all the equations from this 
class are completely integrable Hamiltonian systems; the 
corresponding "action-angle11 variables are explicitly 
calculated. For q-£p*,£=± 1 this class contains such physi­
cally interesting equations like the modified nonlinear 
Schrodinger equation (iq +q -if (q2q*) .. o). the massive 
Thirring model and otherL xx x 

The investigation has been performed at t~e Laboratory 
of Theoretical Physics, JINR. 
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§1. INTRODUCTION 

In a number of physical papers concerning nonlinear 
optics, plasma physics (see, e.g., ref. 1 11 }, an interest 
has been displayed towards the equation 

iqt + qJtx -it(q2q*\ ~ o. q = a q (x ,t) 
X ax ( 1. 1) f = ± 1 

which resembles the nonlinear Schrodinger equation ( iqt + 
+ q - 2 l I q2 I q = 0 ) and is called the modified nonlinear 
Sch~6dinger equation. As it has been noted in ref.

12 1
, eq. 

(1.1) can be solved through the inverse scattering method 
(ISM), (see the review papers 13,4 / ) , applied to the fol­
lowing linear problem: 

LAt/, :c [i( 1 0 )-d-1A(O q(x) )-.\2 ]( 1/11 )(x,A) = O 
0 -1 dx p(x) 0 ljJ 2 

( 1. 2) 

with the additional condition* q = l p*. The scattering 
problem for the operator bundle (1.2) is directly connected 
with the one, used for the solution of the massive Thir­
ring model 15i . The operator bundle ( 1. 2) can be obtained from 
the operator bundles used in ref.151 by a transition to 
characteristic coordinates and subsequent gauge transfor~ 
mation. We will give more details at the end of this paper. 

Since the spectral parameter A enters quadratically 
into (1.2), it is natural that it should be called a quad­
ratic bundle. The aim of this paper is to give an exchaus­
tive description of the nonlinear evolution equations 
(NLEE), connected with this quadratic bundle, and their 
Hamiltonian structure. Formula (3.8) gives the compact 
form of these equations. 

* In this paper we suppose that the functions q(x), p(x) 
are smooth and vanish rapidly enough when lxl~~. 
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Our account follows the general scheme of the ISM. In 
§ 2 we give the basic formulae for the scattering problem 
(1.2). The next paragraph contains the spectral decomposi ­
tion of the integra-differential operator A, such that its 
eigenfunctions are the squared solutions of eq. (1 . 2). 
This decomposition is actively used: i) for the derivation 
in a compact farm of the NLEE, connected with L A and their 
conservation laws (§ 3) ; ii) for the construction of the 
Hamiltonian structure of these equat i ons and the calcula­
tion of the action-angle variables (see also ref. ' 6 ' ) . 

In conclusion, using the notions of Hamiltonian structu-
. ' 8 ' re hierarchy / 7 I , a nd gauge transformations' we show how 

to single out physically interesting NLEE. 
The authors are grateful to Academi cian I.T.Todorov, 

E.Kh.Khristov and V.A.Mikhailov for useful discussions . 

§ 2. THE SCATTERING PROBLEM 

In this paragraph we give the main facts ' 2 ·5 ' about the 
scattering problem (1. 2 ) with smooth potential q(x),p(x), 
vanishing fast enough when lxl~~. The Jost solutions of 
(1.2) are uniquely defined by the relations 

+ L,\1/J-(x,A) = O, 

+ 0 
lim rp ( X , A ) ~ ( 
x->oo 1 

) e 

L ,\ ¢± (X ',\) = 0 ' 

i ,\ 2 
X + 1 

lim ¢ ( x , A) = ( ) e 
0 x-+-oo 

' - 1 -iA 2x 
lim¢-( x, A ) = ( 0 ) e lim rjJ (x , A) " ( ) e 

x->oo 0 x->-oo -1 

- j,\ 2x 
( 2 . 1) 

j ,\2 
X 

Both pairs of the Jost solutions ! r/J t, 1/J- I and !¢+.¢-I form 
fundamental systems of solutions and are linearly related 
to each other: 

+ ± + - + 
rp- (x,A) =+ a (A)¢ (x,A)+b+(A)¢- (x,A). (2. 2) 

The coefficient functions in (2.2) can be expressed through 
the Wronskians of the Jost solutions 
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a±(A) ·= W[¢±,1/J±], b±(,\)= +W[¢±,rp+]. 

W[¢,r/J] = ¢1rjJ2 -¢21/Jl 

and satisfy the "unitarity" condition a+a- + b+ b- =1, ImA 2=0. 
The existence and the uniqueness of the Jost solutions are 
proved by using the corresponding integral equations; we 
write down the equation for 1/J+(x,A) only: 

rp(x,A)=( 1 )e -iAfdy . 2 rp+(y,A), (2.3) 
+ 0 iA2x . ~ (e -iA2(x-y) 0 )~0 q(y) 

x 0 e IX (x-y · p(y) 0 2 
\ ImA > 0. 

From eq. (2.3) and its analogs, we can derive also the 
analytic properties of the Jost solutions and to calculate 
their asymptotics at A~oo; the corresponding results are 
collected in the table. 

·A2 rjJ te -1 x 

¢+e iA 
2
x 

a+ 

2 
rjJ e iA x 

¢-e- iA2x 

a 

Table 

Asymptotics for(.. • "" 

q(x) 

ei(+( 2A )[1+0(.1..)] 
1 A2 

iC 1 · 1 
e (.PiX) )f1+0(Arr)] 

2A 

ei( [1+0(~)] 

e-i~( 1 1 
p(x) )[ 1 +0( ~)] 

2A 

-i(-( .!ll,~ )[1+0(1..)] -e 2,\ ,\2 
1 

-i([1 0(-1-)] e + A2 

Domain of analy­
ticity with 
respect to A 

ImA 2 > 0 

ImA 2 < 0 

+ oo - 1 X + 
( =..!. J dyqp, ( =2f dyqp. (=( + (-

2 X -<>0 
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The continuous spectrum of LA is double-valued and fills 
up the contour r (see fig. 1) ; the discrete spectrum !!. = 

=tl+U !!.- is located at the zeroes of a+(A) : 

6 

!!.± "' lA~ 
J 

+ + 
a- (A-. )=0, 

J 

+ 
lmA-j ~ 0, 

.I )'n J, 

+ 
j =1 .. .. ,N - 1. 

Fig. 1. Contur r · 

Re 1r 

-

.. 

For simplicity we suppose, that a± have a finite number 
N+=N-=N of simple zeroes, located outside of r . Note, 
that from (1.2) it follows that 

+ + + + ,, 
.;,- (x ,A)= +u3 .p - (x . -.V, ¢-(x ,A) =±u

3
(p-(x, -N, 

+ + 
a± (-A)= a± (A). 

(2. 4) 
b-(A)=-b-(-A ), 

If by Aj (Xj),j=1, .. . , n we denote the eigenvalues in the 
first (second) quadrant of the spectral parameter A plane, 

\ + + then from (2.4) we see, that "-J.+ = -A :- , and N =2n. The 
+ - n J 

set T=T UT , where 

+ + . + + . 
T -,o~r-(A), AI;; R +U1R+, cj, Aj-' J =1 , ... ,n I 

+ + b -
r- (A) =+'(A), 

+ b± 
cj- = _j_ 

+ 
·±_ da--1 ± 
aj - dA A=Aj 

+ b -
j 

a- • + a ­
j 

+ + + + + 
¢ -(x,A .- ) = b .- .p - (x,A ~ ). j =1, ... ,n, 

J J J 

is called the scattering data for the problem (1.2). The 
coefficient functions if , b± are reconstructed from T using 
(2 .4) and the dispersion relation 

( i ?" 1 f dll • J.L (1 + - ( )) ~ A A ) ~ -- ., - - --- ln + r r ll + k ln 
2 2rri r ll2_ A2 j = l 

A 2 -A+ 2 
i 

A 2_A- 2 
j 

(2. 5) 

+ > a+ 
A (A) =± ln a- (A) , lmA2 < 0 ; A(A) = .!_ 1n - , 

2 a-
lmA2

= 0. 

The eigenfunctions of the operator bundle LA satisfy the 
completeness relation 

T 1 ,,+ T+ 
8(x-y)=- fdA.A[..!. (x,A) ¢ (y,A) 

2rr r a+w--

.p-~x,A) ¢- (y,A) ]uc 

a- (A) 
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N 
-I. [iA~c:t 

j= 1 J J 

+ T + 
rpj (X) rp j (y ) 

T 
+ i A-: c-:- r/J-:- (x) rr ( y)] a

1 J J J J 

where 
+ + + 

.p-(x)=r/J-(x,A-:- ). 
j J 

For the solution of the inverse scattering problem we 
should introduce Volterra transformation operators 

t(+aa + i.;:;a3 + oo w3(~<yl + 
e .p-(x,A)=e t/I0(x,A)+JdyK(x,y)e t('0(y,A), {2.6) 

X 
+ 

where K=K t(x,y)+AK2 (x,y) and rp()(x,A) are the Jest solution 
of the operator bundle { 1. 2) with potential ~(X) = ( 0 q 0 ). 

+1"" +100 It 0 
( =2f ·dypq(y), ( =2fdyq

0
p

0
(y). Using the standard methods 

X 0 X 

of the inverse scattering problem 13 ·4 / we c an obtain the 
differential equations for K1 and K2 and the Gelfand­
Levitan-Marchenko equation as well. But since into the 
definition {2.6) there enter the phase factors (6 . (" and 
into K there enters the spectral parameter A, the correspon-
ding equations for q

0 
,p

0 
f, 0 are very complicated. Since 

our aim is to analyze the general structure of the NLEE 
connected with LA' rather than the properties of their 
solutions, we will not write down these equations. The 
solution of the inverse scattering problem in the case 
q

0
=p

0
=0 and q= cp*, is given in / 2,5 1, 

§ 3. EXPANSIONS OVER THE "SQUARED" SOLUTIONS OF {1.2) 

Using the method in
191 

we will derive the completeness 
relation for the "squared" solutions of {1.2). Let us 
introduce the systems of vector-functions: 

± + • + 
!WI =IW (x,A), Ac;..R+Ui R+, Wj(x), wj-(x), j=1, ... ,n !. 

I~ I = I~± (x, A), A E R + U i R + • ~~ ( x). <if ( x ). j =1 .... ,n!. 

where 

+ + + + + + ¢1/J w-,. .p-o .p-(x,A}, ~-=.p-o .p-(x,A), ¢or/J= ( 1 1 ). 
¢2 r/J 2 
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..... 

·~ 

.,. 

+ ± + 
1JI .,- (x) = 1JI ( x , A j ) and so on. The elements of the system 
1o/1 are the eigenfunctions and adjoint functions of the 
integrodifferential operator A : 

2 ± +2 ± +2 • ± + + 
(A-A )W (x,A)=O, (A-A-

1
. )W. (x)=O, (A-A- )W (x)=2A-: 1JI :- (x), (3 1) 

J j j J J • 

where 

. d q 00 

A = .!_ (1 + i I) a 3 - . I+= ( ) (x) f dy ( p , - q) (y) . 
2 dx P x 

{3.2) 

Analogically, the elements of l~lare the eigenfunctions + 
and adjoint functions of the integra-differential operatorA. 

(A+-A 2 )~±(x,A)=0, (A+ -A±!l }~±(x)=O, (A+ -A±~) <i>~(x}=2/~±. (x}, 
J J J J J 

. ) d A+ = .!_ (1- ii_ a3 ~ 
2 

X 

I = ( q )(x) J dy ( p,- q) (y). 
p 

The operator A+ is adjoint to the operator A with respect 

to the scalar product ( u = ( u 1) • v = ( v 1 ) ) 
u2. v2 

00 d 
(u. v) = J dxu(x)a3 - v(x) , 

-oo dx 
ii=(u

2
,-u

1 
). 

Let us introduce the analogue of the Green function for 
the operator A 19 1

: 

G ( X ,y . A ) = !.!.. I qJ ( X • A ) ~ ( y • A ) 0 ( X - y ) + 
a2 - -+ [2¢o rp(x ,A) cpa rp(y ,A}- ~(x ,A) qJ (y ,A)] 0 (y-x)!. 

where 4>=(~2·-~1)= ~T(-ia 2 ).Here and in what follows for­
mula of this type means G=G+ when ImA2 > 0 and G=G- when 
IrnA2 < 0; the corresponding expression for a+(a-) is obtained 
by adding everywhere in the expression for G the supper­
script+ {-). From {3.1) and {1.2) it follows that G 
satisfies the equation 
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(J\ - ,\ 
2 

) G± ( X , y, ,\ ) = - (1 + il + ) ~ ( X - Y ) • 

Note, that the integral operator (1 +il+) has an inverse 
(1+il+)- 1 = 1-ii+ (see (3.2)). 

The completeness relation for the system IWI is ob­
tained by applying the method of contour integration 
for the function a Let us consider the integral 

1 + 1 -J = - . f> d ,\ ,\ G ( x. y , ,\)-
2
-. ~ d ,\,\ G (x , y, ,\ ) , 

2771 u 7Tl 
Y1 Ya Y2 Uy4 

where the contours y i • i = 1 , ... , 4 are given in fig. 2. 

Im Jl 

~------ -1 r-~"' 
/ II ~1 

I II \ 
I II \ 
L_ JL J ReA 
\ - ll 7 ~ 

\ II I 
\ II I 
~' . II //~ 3'-..... __../' 

..........._ ---..J L-

Fig. 2. Countours Yj .j =1, ... ,4. 
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.. 
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On the one hand, using the Caushy theorem, J equals the 
sum of the pole residues inside the contours Yi. On the 
other hand, J =J ' ; J ", where J' is the integral along the 
contour r, and J"-along the arcs of the infinite circle. 
J"can be calculated explicitly using the Jost solutions' 
asyrnptotics at.\~~. given in the table. Equating both 
expressions for J after some rearrangements, we obtain: 

+ - -
(1+il )~(x -y) =- L f d,\ .,\[ w (x)<l>ty) - w-(x)!_hl]+ 4i l (X-i +X:-). 

+ "r (a+) 2 (a-? .i=l J J 

1 ,\.a. _ . - .:. 
X.i (x,y) = ~I (1- _J _l_) W. (x)ct>. (y) + .\. ( W. (x)ct>. (y) + W. (x)ct> (y)) I . <a. ) " a . J J J J J J J 

J J 

From here it is possible to obtain the expansions of the 
vector-functions w(x) = (% )(x) and a 3 ow(x) qver the system!W.l: 

. n 
I f (+ + - -)( ~ ( + +() - -W (x) = - d A f W H W X, A)+ 4 k C. W . X - C . W . (X)), 
1T l, j= 1 J J J J (3.3) 

. - - n + -
-(1 + i I 

1
) a 3 o w ( x ) = .!..... f d ,\ (or t W +-or 'I' )(x, ,\) + 4 ~ ( Y + Y. ) , 

1T l' j=l J J 
(3.4) 

Yj(x) = o c j'l'j (x)+Cj o.\.i W /x). 

Here by OW = (~q) we have denoted the variation of the po-
p + + + 

tential, and by 8 r - , 8 c 1 8 ,\r , the corresponding varia-
tions of the scattering data. The expansion coefficients 
in (3.3) and (3.4) can be calculated using the relations 

fdx~(x,.\)w(x) = f..-¢ 1 ¢ 2 (x,.\) f>O , 
-oo X=-~ 

(3.5) 

jdx~(x,.\)a3 ow(x) = L(o¢2 ¢ 1 -¢2 o¢1 )(x,.\) loo , 
-oo ,\ x=-oo 

which follow from (1.2) and 
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[ia 3 ~+AQ-A2 ]oi/J+AoQifJ=O, 
dx 

and inserting into the right-hand sides of (3.5) the known 
asymptotics of the Jost solutions and their variations 
at x-. ± oo (see ( 2 • 1 ) and ( 2 • 2) ) • 

The expansions (3.3) and (3.4) enable us to give a 
complete description of the class of NLEE, connected 
with the operator bundle LA (1.2). Really, if in (3.4) we 
limit ourselves to variations of the type: 

OW= w(x,t+Ot)-w(x,t)= aw (x,t)Ot+ O((ot)
2

). at 
where is an external parameter, we get 

n 
-(1 + ii ) a 3 aa ~ = j_ f d A ( r +II'+- r -t II'- ) ( x , A) + 4 ~ ( Z +J. + Z -J. ) , 

+ t rrr_ t _ j = l 

dcj dA. · 
zJ.(x,t)=-ll'.(x,t)+c . ...:.:.:.J\{1 (x,t). 

dt J J dt . 

(3.6) 

Comparing the expansions (3.3) and (3.6) and using (3.1), 
we obtain that the following statement holds: 

Let q(x, t) and p(x,t), entering in the potential of the 
operator bundle (1.2) and the meromorphic functions f(z) 
and g(z) be such, that the integrals 

+ 
J dA f(A 2 ) ar- (~ 
r at 

fdAg(A 2 )r±(A ,t) 
r 

(3. 7) 

are absolutely convergent for all t. Then, if q and p satisfy 
the NLEE: 

f(A )(1 +il+) ~ ~; + g (A)w = ~· (3. 8) 

the corresponding scattering data satisfy the linear equa-
tions*: · 

* Here we limit ourselves to the functions f(z) and 
g(z). which are not singular and do not vanish in a neigh­
bourhood of the spectrum of LA;otherwise the convergence 
of the integrals (3.7) and eqs. (3.9) may impose restric­
tions on the scattering data T (see also foot-note on 
page 20). 
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f(A2) ar±(A,t) = ±g(A2)r±(A,t), 
at 

± + 
+ d c . (t) + + ds-:- + s- +2 A- . 

j 

(3. 9) 
f(s :- ) =±g(s .-)c-:-(t), ___:_j__=Q 

J d t J J dt i 

The inverse statement also holds. Namely, let two func­
tions f(z) and g(z) and an operator-bundle (1.2) with 
the scattering data T(t) be such, that the integrals (3.7) 
are absolutely convergent for all t .Then, if the scattering 
data T(t) satisfy the linear relations (3.9), the correspon­
ding potentials q(x,t) and p(x,t) of the bundle ( 1. 2) will 
satisfy the NLEE (3.8). 

Let us now 
(3. 8 ). From 

discuss the conservation laws of the NLEE 
(3.9) and (2.5) it follows that 

Thus, the function A(A) can be considered as dA(~=o. 
dt 

a generating functional of the conservation laws of the 
NLEE (3.8). In the appendix we will prove that exp(A(A)) 
is the regularized determinant of the operator-bundle 
(1.2). As conserved quantities, we can choose, e.g., the 
expansion coefficients of A(A) over the powers of A2 (or 
over the inverse powers of A2 ): 

em oo 

A (A)= i' -2- + ~ 
m=l 
~= ~ e A2m 

m=O -m (3.10) 

Using the dispersion relation (2.5), we easily express 
em in terms of the scattering data T: 

e lml i J 2m·1 +- n 1 +m _m 
m=--l-.r- d1111 ln(l+r r (11)) + ~ --(sj -s. )!(3.11) 

ill GTT r j=l ill J • 

where m= ± 1. ± 2, ... , It is possible to obtain also the 
recurrent relations 121 . which allow us to express em as 
functionals of q and p. In particular, it is clear from 
these relations that all the densities of em with m > 0 
depend locally on q,p and their derivatives with respect 
to x. Analogically as in ref. 16 1 (see the appendix) we can 
obtain a compact expression for em of the type: 
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1 "" m q oo oo m~ 1 q 
em=---liidx(p,q)A ( )+4Idxidy(p,-q)A ( )! , 

2JmJ --oo P -oo x P (3.12) 

where the operator A is defined in (3.2). Let us write 
down the first four em for m = ±L ±2: 

1 00 3 3 
e2 = -Idx[i(qxxP+qpxx)-i(qp) +-qp(qxp -qpx )], 

8 --oo 2 

00 2 
e1 = 1._ I dx[qxp -qpx -i(qp) J. 

4 -oo 

e_r Idx(qpx -pqx), 
--oo 

e = j dx [ 4 i q p - ( q p - q P ) q ii l. 
-2 -oo X X 

where q ( x) = I d y q (y) , p ( x) = I d y p ( y) . These expres-
X X 

sions are in agreement with the answers obtained in 
ref. 1 2 •51 . Let us write down also the relation (see the 
appendix): 

. m oo m q oem =-.L- I dx(op,oq)A ( ) . 
2 Jml --oo P ( 3 . 13) 

which we will need in deriving the Hamiltonian structure 
of the NLEE (3.8). 

§ 4. HAMILTONIAN STRUCTURE AND COMPLETE 
INTEGRABILITY 

In this paragraph we show that all NLEE of the type 
(3.8) are completely integrable Hamiltonian systems and 
explicitly calculate the corresponsing "action-angle" 
variables. 

Let us choose a Hamiltonian and a 2-form of the type: 
oo oo 00 q 

H g = ~ h me m= i I dx(p,q)g l(A)( ~ )+4fdx I dy(p,-q)Agl(A) ( p). 
m ~0 -oo --oo x 

(4.1) 

14 

-i ~ 0 q 
or = 2 Idx(op,oq) /. f(A)(l+il+)(...o ). 

--oo p (4. 2) 

where 

z , 
g(z) = ~ h lE.!Lzm 

m.iO m 2m 
gt(z)= f ~ g(z'). 

z' (4. 3) 

Among the forms Or , the most simple in a certain sense 
is 121 : 

1 00 00 oq 
o 

1
o.- I dx(op,oq) 1\ I dy(

0 
) (y) 

- 2--oo X p 

with f( z) ~_!_.The form 0 
1 
is closed, non-degenerate and z -

skew-symmetric. The same properties for Or can be proved 
after writing Or in terms of the "action-angle" variables 
(see below), which allows us to claim that Or are symplec­
tic 2-forms. The construction of the manifold of symplectic 
forms Or . connected with the operator bundle LA ( 1. 2) is 
analogous to the one, described in ref. 171 

Let us consider the Hamiltonian equations of motion: 

0 r ( a3 dw • . ) = o H 
d t g 

Using (3.13), (4.1) and (4.2) we see, that these equations 
coincide with the NLEE (3.8). 

Now, let us express (l r and H g through the scattering 
data. In Or we insert the expansion (3.4) for 
(1+il+)a3 ow into (4.2). Then, using (3.1) it is easy to 
calculate the action of the operator !(A) on (1 +il+ )a3 ow, 
after which one should express integrals of the type 
j dx (op,oq) 'I' (x, A) in terms of the scattering data. This 
fS done by using relations, analogous to (3.5). After 
some algebraic transformations, we obtain 

Or=_i_ j ~f(s)oln~ , ... oln(l+rtr-) + 
217 .....,. s b-

d ~ [f(s~)olnb+ A olnA~+f(s-:- )olnb-. A olnA-:-
j=l j J J J J J 

(4.4) 
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I dsoP(A) /\ oQ(A) + I [oP-: 1\ oQ~ +oP:-1\ oQ-: l. 
j=1 l l l l 

2 + + 
where s =A , sj =A j. and p and Q we may choose, for 
example, in the form: 

P(A)= f(s) ln(l+r+r- ), 
. b+ 

Q (A)=- .L ln- , - oo < s < oo 
2 b-178 

+ 
P .-= :t4if

1
(s±), 

l i 
Q±=+ilnb± 

l l 

z dz' 
f 1(z)= I -f(z'). 

2z' 

(4.5) 

The calculations for Hg may be performed using (4.1) and 
(3.11) 

H =- 2._ t~g(s)ln(l+r+r-)-2 I[g
1
(s+) -g (s-:- )] . 

g 17 -<>0 s j=1 J 1 J 
(4.6) 

The Hamiltonian Hg depends only on the half of the canoni­
cal variables (of action-type) lP(A), P~ l. The systems 
with such Hamiltonians are completelyJintegrable; and the 
canonically conj~gated momenta and coordinates 
I P(A), Pt, Q(A)• Qj l are known as the "action-angle" 
variables. The equations of motion, corresponding to the 
2-form Or (4.4) and the Hamiltonian Hg (4.6) have the 
form 

dP (A, t) 

dt 

+ 
dPf -0 
dt 

= 0 , f ( A2) d Q (A~ = - i g (A 2 )· 
dt 

+ 
+ dQj . + 

f( s:-) -- = -Ig(s-:- ). 
l dt J 

It is not difficult to see, that this system is equivalent 
to (3.9). 

Let us consider three important examples. 
1. The modified nonlinear Schrodinger equation (MNLS): 

16 

i q ~ q - i ' ( q 2q * ) - 0 t XX X - ' ( = ± 1 
(4. 7) 

is obtained from (3.8) with: 

f ( z ) -~ ~ g ( z ) ~ 4 i ' z z q ~ lp*. (4.8) 

The last condition Q= <P* puts restrictions on the scat­
tering data, namely. 

a- (A) ~ a~*(A * ), b- (A)~ - £b t-*(A *), 

A+ = A~* b~ ~ f b +* 
(4. 9) 

J J J j . 

Inserting (4.8) into (4.1) and (4.2), we get 

0 M N L s = 0 -11 q~ ( p * ~ + [ d X [ 0 q /\ ! dy 0 q* (y ) + 0 q* /\ I dy 0 q ( y ) ] ' 

(4.10) 

H M N L s = 4 if C 1 I * = I dx [ i ( q q * - q q* ) + £ I q 4 I ] , 
q = t p -oo X X 

which generate the MNLS equation (4.7) (see 121 
). The 

expressions for 0 MNLS and H MNLS in terms of the scat­
tering data are obtained by inserting (4.8) into (4.4)­
(4.6). After some simplifications for the action-angle 
variables of (4.7), we get: 

P (A) = _ !_ £ ln I a+ 1 

17 -----;2 
- + 
Q(A)=argb, -oo < S<oo , 

+ p 1j 
4£ cos2a i 

I s-J: I 
J 

Q li = ln I b j l , (4. 11) 

-
p2j 

4£ sin2a i 

Is; I 
- + 
Q 2j= argbi 

+ where aj=argA i, O<aj < 77/2, 
nian: 

s:=A+ 2 ·· 
l J ' 

and for the Hamilto-

17 



oo 2- n 
HMNLS = 41 f ds.s P (s) +16 I 

j=1 

p2. 

-2 -2 1· 
p1j + p2j 

(4. 12) 

Thus, the complete integrability of the MNLS equation is 
evident. 

The next equation in this series 

q t = ( q XX -3i£ I q 2 1 q X - ~ I q 
4 I q] X (4.13) 

is obtained from (3.8) with f(z) = ~ • g(z)=-8£ z
2
.and Q=£p*. 

Equation (4.13) is generated by the same 2~orm, as the 
MNLS equation, and therefore, has the same action-angle 
variables (4.11). The Hamiltonian of (4.13) equals: 

f
oo I . 6 3i l 2 

H = d X q q * + q* q - I q I - -- ( q q * - q * q ) I q I I = 
-oo XX XX 2 X X 

oo 
3 

_ n 

=- 8£ I l f ds • s P ( s ) + 64 I 
jz1 

p 1. P 2" 
--~-J-1. 
(p2 p2)2 

1j + 2j 

2. The massive Thirring model (MTM). The MTM and the 
associated with it operator bundle LA in characteristic 
coordinates has the form 151 (m=2): 

- i ult + 2 u2 + 2 u 1 1 u: 1 = 0, 

-iu 2x+2u 1 +2u 2 1u~l =0, 
(4.14) 

- - 1 0 d 2 0 u~ 
LA 1{1 = ( i ( 0 1 ) dX + 2 I u 1 I + A ( ) -

- -uiO 
2 --A ]1{1 =0. ( 4. 15) 

The operator bundle LA is unitarily equivalent to the 
operator bundle LA ( 1. 2) with q = - p* = u 1 exp (2 i r dy I u f I ) . 
i.e., the classes of NLEE associated with thexoperator 

- 78 / 
bundle·s LA and LA are gauge equivalent 

18 

The MTM is obtained from (3.8) with (see foot-note* 

on page ~0) 

f(z) = 1_ g(Z)=J.... 2 . z . 

Since A -lW=2irdy a w(y) 
X 3 

q =-p*. 
(4.16) 

from (3.8) and (4.16) we get 

q t - 4 q- 4i q I <1 2 I = o. 
00 

q = f dy q(y). 
(4.17) X 

and, in particular, {d y I q2 I t = 4 1 q2 1 . Let us introduce 
now x 

Ul = .!._Q* +2icp 
2 e 

00 2 
¢=fdy l u 1 1. 

X 

2i ¢ (x) "" -2i ¢ (y) 
u 2 = 2 e f dy u t<Y ) e 

X 

(4.18) 

(4.19) 

Then, equation (4.17) goes into the first of the 
(4.14); the second equation of the MTM (4.14) is 
by differentiating (4.19) with respect 
ding 2-form and Hamiltonian equal 

equations 
obtained 

to x. The correspon-

n = + 2 i j dx o u * A o u = .!_ j J!§.. o arg b + ( y'S) A o In I a+ (yl ~ )1 + MMT -oo 1 1 TT _.., S 

n + + + + 
+4I [olnlb.I A oiniA.l-of'l. /\ oa.]. 

j=1 J J J J 

H MMT = 2 f dx ( u l u ~ + u 
2

u ~) = 
-oo 

_ 2 Joo ds + n 
---;-· ----z- In 1 a 1 + 4 ~ 

~ S I -
j=1 

sin 2a j 
~ 
l s j l 

(4. 20) 

where f3t=argbt The expressions for OMMT and HMMTin terms .. 
of u1 and u2'together with the requirement u 2 ... 0, X-+oo · genera-
te eq. ·(4.14). The action-angle variables and the depen~en-

'1'9 



ce of H on the "action" variables, which can be easily 
obtained from (4.20), are in agreement with the results 
of Kuznetzov and Mikhailov

151
. 

3. Let us note one more relativistically-invariant mo­
del, found by V.A.Mikhailov: 

h lxt -2ih 1h 2 h 1x + m2 h 1 = 0, 

(4. 21) 

h2xt + 2ih1 h 2 h 2x + m2 h 2 = 0. 

The system of equations (4.21) can be obtained from (3.8), 
if we put* 

! = - ..!!!..2 
2z ' 

Q= -iY!h 
m 1x 

g = im
4 

4z 2 ' 

2 
p =-ii_h 

m 2x 

Then the Hamiltonian and the 2-form equal: 

. 4 00 2 
HMM = - .!!!!.. C 

2 
= f dx [ i h h ( h h - h h ) + m h 

1
h 2 1 , 

4 - · _
00 

1 2 2x 1 2 1x 

n = - f dx [ a h I' a h • a h 1\ o h 1 . 
MM -oo 1x 2 2x I 

(4. 22 ) 

(4. 23) 

For m:2 and after the reduction h 1=h2= h (4.21) goes into 
(4.17), and the model becomes gauge equivalent to the MTM. 
But, as it is seen from (4. 23), the Hamiltonian HMM and 
the . 2-form nMM do not coincide with HMTM and nMTM' This 

model illustrates how a given NLEE can be represented as 
a Hamiltonian system by different choices of Hg and 
n ,17/ ; it .is characteristic that for all such choices the 
ratio g(z)/f(z) is one and the same (2/i-z in our case)~ 

if With the choice (4.16) for g(z) condition (3.7) holds 
-1-0 + . 

if for some o> 0 A r- (A.) ____, oonst . The choice ( 4. 21} 
A-> o 

-a-8 ± 
requires A r (.>..) - ---->OOilst. 

A -> 0 

H By a change of variables · t=cr in the relation (3.9) 
we always ·can go from g(z) / !(z) to cg(z) / !(z). c =Const. 

20 

The action-angle variables, obtained from nMM (4 . 21 ) 
with ht - h2 (it corresponds to q ~-p * ),ctre given by formula 
(4.12) . At last the relation 

m4 
"" ds 1 n -

H · -1-J-P(s) J -LP _ P 
MM 4 ---"" s 4 j '- 1 1J ~J 

gives the explicit dependence of the Hamiltonian H on 
the action-type variabl es (4.11) . MM 

APPENDIX 

Here we show that exp(A(A)) is the functional determi­
nant of the operator bundle LA and derive formulae (3.12) 
and ( 3. 13) . 

By definition the regularized functional determinant 
of the operator bundle LA is given by explTrln (LA Lo~. )], 
where LoA is a quadratic bundle (1.2) withq = p ~ O. Using the 
expression for the Green function of (1.2) 

R (X, y, A) - j_ ( ~' (X, A)¢ T( y , A ) 8 (X -y) 1-¢ (x, A) rp T (y, A) 6 (y- x)] a 
a 1 

(A.1) 
(LA R ~ o ( x -y)) . 

we get for Im l ' 0 

d - 1 - 1 ·- 1 -1 
dA-Tr ln LA L 0 A ,. Tr[ - 2 A ( L A - L 0 A ) t Q ( x ) L A ] ~ 

(A.2) 
00 rp~¢' t- rpt¢1- oo ¢1

0
1/Jt-· 

~ - 2 iA J dx( -L...R.-~_L (x .A)-1) + i J dx(p,q) -- (x,A) . 
• -<>0 al- - oo a+ 

Using the Wronskian relation 

i d W l ¢ . ~ ] ~) = _ 2 A ( ¢ rjJ + ¢ rp ) t- ( p, q) ¢ n 1/J (x, A), -----cilc-- 1 2 2 1 . (A. 3) 

dA 2 
we get that the r.h.s. of (A.2) equals dA for !rnA > 0. 

Analogical considerations for ImA
2< 0 and ImA2 = 0 allow us 

to show, that 
-1 

Tr 1n LA LoA =A(A). 
21 



Using once more (A.3), for the r.h.s. of (A.2), we get 

dA oo 2 oo oo 

-=i fdx(p,q)B(x,A)+ 4.\ fdxfdy(p,-q)B(y,A) 
d ,\ -oo 

with 
+ + ¢-0 t/1-

B(x ,.\) =± -+-- (x ,.\), 
a-

X 

Im A
2 < 0, 

(A.4) 

¢+o tjl+ ¢ - o t/J-
and B (x, A) = w (x,A)- (x,A), when Im .\2 = 0. In order 

a-
to get (3.12) it is enought to show, that 

B(x,A) = ~(A-.\2 )- 1 ( q ) . 
2 p (A.5) 

The relation (A.5) can be obtained by the contour integra­
tion method, applied to the integral 

1 d/l.,\ ¢+ o t/J~ 1 du . .\ ¢- 0 r/J 
J = -- ~ --- --(x,A)- -- f> .=...;..:._ ---(x,A). 1 2rr i llL,\2 a+ 2 rr i ll 2_ ,\ 2 a-

Y1 Uy3 Y2 uy4 

Equating the values of J 1 ,obtained by the Caushy theorem 
with the value of J 1 obtained by direct integra tion along 
the contour, we get for Im.\2 ;. 0 

+ 
¢ +o t/1- ( x '.\) = ~ l i.. f ~- l r t· ljl t t r- ljl- ) ( x . JL ) + 

a+ 2 77 I~ ll 2-A2 

n c+ + c~ - -1 q 
+4 I (_j__ljl _(x)- _.:.J __ Ijl (x)ll ~ ~lA-A2 ) ( )(x) . 

j=1 A +_2 _,\2 J A-: 2_A2 j 2 P 
J J 

Here we have used the expansion (3.3) forw = (~)and the 

property (3.1) of the operator A. The proof goes analogical­
ly for Im.\2 < 0 and Im.\ 2= 0. Thus, relation (A. 5) , and there­
fore (3.12), are proved. 

Relation (3.13) follows directly from the relation 

BA(A)=iA f dx(8p ,8 q)B(x ,A) 

and the formula (A.5). 
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