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tion of the momentum-loss spectra. When neglecting the 
Fermi-motion of intranuclear nucleons the main result of 
reference 1 10/ can be expressed as 

<-:.~) = l ( _j_a ( n) 
dqdE' pA •pX n=l dqdE) Nn (a,A). (1) 

The summation in eq. (1) is taken over number of collisions 
the fast particle undergoes inside the nucleus. The quantity 
N 

11 
(a , A ) is the effective number of nucleons, N 11( a , A ) = 

=-1-J db[aT(b)]
11

exp[-aT(b)l . All the notations 
an! 

correspond to those usually employed in the literature on 

the subject. The quantity (~---)(11 ) is given by the 
dqdE ' 

expression on type 

d (11) 11 11 
(-a--) = f o(q- L q.) o(E-E'- L 

d q dE ' i= 1 I i~ 1 

. i-1 2 M o2 2 
da(q. M*2 E _ ~ ~ .... -m n 

1 
• 

1 
, k ---~L-----

X G k=l 2m 
i=l adqidMf 2 

q 2 ~ M *2 2 . -m 
2m -) x 

dq dM*2 
i i 

(2) 

qi being the momentum transfer in the i-th collision, Mf 2 

being the effective mass squared of the system produced 

in the i-th collisions and dq~~Mf2 is the cross section 

of the process pN .... pX. It should be noted that the performan
ce of concrete calculations with the aim of describing 
experimental data is rather a difficult task requiring an 
account of a number of fine effects both in nuclear and 
in elementary proc~ss pN .... J X cross sections. This can be 
seen from references 19-1° where the spectra of protons 
have been analyzed in the reaction pA .... pX for small resul
ting losses of energy by fast particles ~E<<E. A quite reaso
nable agreement has been achieved between theory and expe
rimental data provided that in formulae of type (1) contri
butions of terms up to ninth-fold scattering are taken 
into account. 

As a fast particle loses its energy during multiple 
scattering and formula (1) includes the quantity 

4 

(- ~aE )(
11

) being a convolution of nucleonic cross sections, 
dqd 

in order to develop a correct approach for the treatment 
of spectra in pA .... pX, it is necessary to have strictly 
speaking, detailed information about the energy dependence 

( 
da 

of d- M * 2 ) . Due to the absence of such data one 
qd pN-+pX 

is forced to introduce some simplifying assumptions cor
responding to 'certain experimental conditions under which 
the data considered had been obtained. So, the specific 
feature of the data presented in 181 is large resulting ener
gy losses of a fast particle (~E-E).If one assumes that at 

3 
high energies (E ~) N · x' is a function of only the 

d "p p ->p 
d 1 d . bl c.m'/ c.m. h' h transverse momentum an a sea e varla e X=P Po , w lC 

at x>>m 2/ s (sis the c.m. system total energy squared) 
is equivalent to X=p 1~ /pk,.E'/E, then considerable simpli
fications can be succeeded for the case of large resulting 
energy losses. This problem has been solved in reference1111 

where the following formula is obtained for the leading 
particle spectra in pA collisions 

(x~~) 
dq dx pA->pX 

fd§ d{1 da e iqf3+ia! 11
x 

X 

X exp ( -a T (B)) X [ exp (win (a 't3 ) T (B)) - 1 ] 

where (3) 

a= a~~t _wei (ji) 

- da 
w el (~) = _1_ J d q l exp (- i <Tl.B) ( ~-) pN .... P N 

p2 ql 

wi
11

(a ~)=fdq dxexp(-iql{3-ialnx)( _da )pN->pX 
• l d ql dx 

As an input, 

( d~ )pN ->pN' 
dql 

( - ) xda 
formula (3) includes f x,q1 =(dQl.dX )pN->pXand 

Since in the case considered the energies are 
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The experimental data on inclusive spectra of protons 
in the reaction pA~p+X at 19.2 GeV/c are analysed in the 
framework of multipole scattering theory. The calculations 
schow that multipole scattering theory gives a good descrip
tion of experimental data on inclusive spectra of leading 
particles and inelasticity coefficients in hadron-nucleus 
collisions. The reasons of obtaining of 11 bare" states of 
leading particles by some authers, who have analysed the 
same data, are discussed. 
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One of the reasons stimulating investigation of deep 
inelastic hadron-nucleus scattering is the hope to obtain 
information about the corresponding processes on nucleons. 
It is considered that the utilization of nuclear targets 
provides one with an opportunity to study the space-time 
developments of stong interactions, and, in particular, 
to study the properties of hadrons immediately after an 
interaction takes place within the nucleus. There exists 
the notion that hadron undergoing an interaction looses 
its nuclear field which is then regenerated with a charac
teristic time r during which it is unable to interact 
normally. In the literature on the subject such a state 
is referred to as "bare" ("young", "cut" and so on). The 
hypothesis in itself is of obvious interest and we shall 
not discuss here theoretical elaborations related; we 
consider a series of papers 11-81 where "the proofs" of 
the existence of "bare" states are given proceeding from 
the so-called "experimental method". Such proofs for 
"bare" states were claimed to be given in references 11- 41 

from the analyses of experimental data on proton spectra in 
reactions pA ... pX available from 18 •91 and in references15- 71 

from the analyses of data on the inelasticity coefficients 
in hadron-nucleus collisions. The analysis of these expe
rimental data is of independent interest and it is perfor
med in the present paper within the framework of the 
Glauber-Sitenko diffractive multiple scattering theory. 
By the way, we clarify and discuss in detail all the 
mistakes the straight forward copsequence of which is the 
conclusion about the "bareness" of leading particles 
claimed in references I 1-7 I . 

1. INTERPRETATION OF DATA ON SPECTRA 
OF PROTONS IN THE REACTION P A ~ P X 

The theoretical basis for the analysis of experimental 
data on proton spectra in the reaction pA~pX is provided 
by the Kofoed-Hansen generalization1 101 of the Glauber 
formalizm for differential cross section of high-energy 
quasielastic scattering on nuclei to the case of descrip-

3 



tion of the momentum-loss spectra. When neglecting the 
Fermi-motion of intranuclear nucleons the main result of 
reference 1 1°1 can be expressed as 

(--:_~) = ~ (~a (n) 
dqdE' pA •pX n=1 dqdE) Nn (a ,A). ( 1) 

The summation in eq. (1) is taken over number of collisions 
the fast particle undergoes inside the nucleus . The quantity 
N 

11 
(a , A) is the effective number of nucleons, N 11(a. A) = 

= -
1-J db[aT(b)]

11
exp[- a T(b)]. All the notations 

an! 
correspond to those usually employed in the literature on 

the subject. The quantity ( ~---/n) is given by the 
dqdE ' 

expression on type 

d (n) n n 
(-a __ ) = Jo(q-!q)o(E-E'-! 

d q dE ' i= 1 I i= 1 

. i-1 2 M ,.2 2 

11 
da(q., M ~ 2 ,E _! ~..:::..L -m 

I I k=1 2m----
x n 

i=1 adq.dM '~< 2 
I I 

dqdM* 2 
i i 

(2) 

qi being the momentum transfer in the i-th collision, Mf 2 

being the effective mass squared of the system produced 

in the i-th collisions and dq~~Mf2 is the cross section 

of the process pN -+pX. It should be noted that the performan
ce of concrete calculations with the aim of describing 
experimental data is rather a difficult task requiring an 
account of a number of fine effects both in nuclear and 
in elementary process pN ... ? X cross sections. This can be 
seen from references 19-1° where the spectra of protons 
have been analyzed in the reaction pA ... pX for small resul
ting losses of energy by fast particles ~E<<E. A quite reaso
nable agreement has been achieved between theory and expe
rimental data provided that in formulae of type (1) contri
butions of terms up to ninth-fold scattering are taken 
into account. 

As a fast particle loses its energy during multiple 
scattering and formula (1) includes the quantity 

4 

( da )(n) b · 1 t' f 1 · · -dqdE e~ng a convo u ~on o nuc eon~c cross sect~ons, 

in order to develop a correct approach for the treatment 
of spectra in pA ... pX, it is necessary to have strictly 
speaking, detailed information about the energy dependence 

of ( d qdd~ * 2 ) pN-+pX . Due to the absence of such data one 

is forced to introduce some simplifying assumptions cor
responding to 'certain experimental conditions under which 
the data considered had been obtained. So, the specific 
feature of the data presented in 18 1 is large resulting ener
gy losses of a fast particle (~E-E).If one assumes that at 

high energies (E ~) N x· is a function of only the 
d "p p -+p 

d 1 d . bl c.rn'/ c.rn. h' h transverse momentum an a sea e var~a e X=P Po , w ~c 
at x >>m 2/s ( s is the c.m. system total energy squared) 
is equivalent to X=p 1~/pk,E'/E, then considerable simpli
fications can be succeeded for the case of large resulting 
energy losses. This problem has been solved in reference1111 

where the following formula is obtained for the leading 
particle spectra in pA collisions 

(x~~) 
dqdx pA-+pX 

fdSdfJda e iq/3+ialnx 
X 

x exp ( -a T (B)) x [ exp (win (a, f3) T (B)) -1 ] 

where 

-;i= a~~t _wei ([3) 

- da wei(~)= _1_f dq..J.exp(-iq..J.,B)(~) pN-+pN 
p2 q..J. 

win (a.~)= f d q..J.dx exp(- i q..J./3- ia lnx)( _da )pN-+ P x 
dq..J. dx 

(3) 

As an input, 

( d~ )pN-+pN'' 
dq ..J. 

( - ) ( xda formula ( 3) includes ! x, q.L = )pN X and d Q..J. dx -+p 
Since in the case considered the energies are 
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not asymptotic there may be some scaling violation. The 
exact form of such a violation is discussed below. 

Experimental data on proton spectra in the elementary 
process pN -+pX were fitted by the function 

- Cx1.5 2 f(x,q ) = ----Bq K (Bq )B 
~ 4 11 .L: 1 l 

(4) 

where B = B0+ B 1 x and K 1 (B q.l.) was the Hanke 1 function of the 
imaginary argument. As a result of a fit we obtained 
So= (1.56 ± 0.17) (GeV/c)-~ B 1= (5.82 ± 0.23) (GeV/c) -

1 

C =(21.5 ± 0.2) mb and LX 2 /number degree of freedom =1. The 
function f(x, q l ) was normalyzed to the total inelastic 
cross section: 

1 - dx - in f f(x,q)--dql= a 
xmin X 

(5) 

p . min p . is a minimal value of leading par
min where x min Po 

ticle momentum in 
substituting the 

P
c.m. 

the laboratory frame ( m· =0). By 10 05 
numerical values of x . =(m/2P0) · and 

m1n 

C into (5) , one obtains a in= 27 mb, that is consistent 

with the values a tot = _!_ (a tot +a tot ) =(38.4 ± 0.6) and 

1 
pN 2 p p pn 

a ;N =(9.~4 ± 0.73) mb. Bearing in mind the approximate constan
cy of a 1~ in the range ( 10-20) GeV /c we choose in the 
numeric~l calculations the following energy dependence 
(scale breaking) 

3 
d a) = 

(E d3p pN-+pX 

Jn x1. 5 (BPl /2) K 1(B.P1 

2rr[1-(m/2P )0.25 1 
0 

(6) 

By sub§.tituting into e~. (3) the quantities w
81

(fJ) and 
w 10 (a .{3 ), where w 8 \{3) is the amplitude of elastic pN 

scattering, one has 

6 

A 
~= L 
d8dP n=1 

A-1 atotp 1.5 . L __ ....:Jlx a
10 

n 
k=O ( ---) 

2rr[1-(m/2P
0

)0.25] atot 

~· 

a el k 
(- --) 

a tot 
X 

~ 

N n+k(a)(n+k)! 
X 

n! k! (n-1)! (2n-1)! 

. 1 
2 lnn- I 

(2P / m)0.25 __ o -1 
(2P / m)o~ -·-l x l. -1 

2n-1 BP 

I =f dz 
B2z2n-1(BPl/ 2) exp[---l(Z+ 1 )l. 

2 
9 ( B k 
~ z + 

2a P.l.. 

Bk 
Z+--

2aP.l. 

(7) 

The indices n and k belong to the number of inelastic and 
elastic scatterings of proton with intranuclear nucleons. 
In numerical calculations we take into account contributions 
up to the seventh-fold scatterings ( n + k =7) and the 
maximal number of inelastic collisions has been taken to 
be n =4 ( k =3) • 

In Table 1 we present the results of the calculations 
of spectra of protons in pA-+ pX for Al, Cu and Pb targets. 
The experimental data are taken from reference

181
. It is 

seen that, within experimental errors constituting -15%, 
there is quite satisfactory agreement between the calcu
lations and experimental data. 

In Table 2, as an illustration, we have listed contri-
butions of different fold scatterings for the lead (Pb) 
at two values of the momentum of scattered protons (10 and 
16 GeV/c) and at two angles (12.5 and 70 mrad). It is seen 
that the relative contribution of multiple (n+k~2) scat
terings grows with increasing the angle (when fixing the 
x = P/P0 and decreasing x (when fixing the angle 8 ) • This 
means that large momentum transfers and large energy los
ses are realized with large probability in multiple scat-

terings. 
In papers 11- 51 it has been concluded from an analysis 

of the experimental data 18·91 that the leading proton is 
unable to normally interact after the first intranuclear 
collision. In these article information about the cross 
section of the repeated interaction was obtained from the 
analysis of the A dependence of the quantity 

1 3 3 
R=---(~) ; _1_(~) 

aabs d3p pA-+pX atot d3p pN-+pX 
pA pN 

(8) 
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Table 1 
II 

Table 1 (cont.) 
l 

A e p Exp. Theor. 

Al 12,5 10 1,63E-O 1,63E-O ~ A e p Exp . Theor. 

20 10 1,40E-O 1,38E-O 
Al 

12,5 16 3, ,12E-O 3,53E-O 
30 IO 1,0IE-O 1,05E-O 20 16 1,92E-O 2,10E-O 
40 IO 7,91E-1 7,86E-1 30 16 8,92E-1 1,00E-O 

50 IO 5, 7IE-1 5,73E-1 40 16 4,IIE-I 4,64E-1 

60 10 4,03E-1 4,IIE-1 so 16 1,86E-1 2,07E-1 

70 IO 2,83E-1 2,91E-1 60 I6 8,G9E-2 9,04E-2 

70 16 3,26E-2 3,85E-2 

12,5 12 2,26E-O 2,29E-O 

20 12 1,97E-O 1,75E-O Cu 12,5 IO 2,55E-O 2,33E-O 

30 12 1,IIE-O 1,17E-0 
20 10 2,21E-O 1,99E-O 

40 12 7,12E-1 7,60E-1 
30 10 I,57E-O 1,54E-O 

50 12 4,42E-1 4,81E-1 
40 10 1,27E-O 1,16E-O 

60 12 2, 74E-1 2,99E-1 
50 IO 9,30E-1 8,61E-I 

70 12 1,67E-1 1,82E-I 
60 10 6,62E-1 6,25E-1 

70 IO 4,€6E-1 4,48E-1 

12,5 I4 2,84E-O 2,95E-O 

20 14 1,94E-O 2,00E-O 
12,5 12 3,49E-CJ 3,24E-O 

30 14 1,02E-O 1,14E-O I 20 12 2,67E-0 2,5E-O 

40 I4 5,56E-1 
I 30 !2 I, 72E-O I, 70F.-O 

6,35E-I 

50 !4 2 ,98E-I 3,4IE-1 
40 I2 I,IIE-0 1,12E-O 

60 14 I,60E-1 1,79E-1 
50 I2 6,97E-1 7,2IE-I 

'70 !4 8,16E-2 9,2GE-2 
60 I2 4,45E-1 4,55E-I 

70 12 2, 72E-1 2,C2E-1 

8 9 



Table 1 (cont . ) 
I 

Table 1 (cont.) 

1 
A () p Exp. Theor . 

12,5 14 4,26E-O 4,I3E-O 
A () p Exp. Theor . 

Cu . 
20 14 2,95E-O 2,85L-O Pb 12,5 12 4, 95E-O 5,020-0 

30 14 I, 581>-0 1, G6E-O 20 12 3,81~0 3,89E-O 

40 14 8,67E-1 9,37E-I 30 12 2,68E-O 2,65E-O 

50 14 4,'11E-I 5,14E-1 40 12 1,79E-O 1,75E-O 

60 14 2, 59E-1 2,75E-I EO 12 1,I3E-0 1,I3E-0 

70 14 I,36B-1 I,44E-1 60 I2 7,33E-1 7,22E-I 
' 

70 12 4,55E-1 4, 5IE--1 
II 

12,5 16 5,I4F..-O 4,90E-O 

20 16 2 ,89E-O 2,97E-O 

~ 
12,5 14 6,42E-O 6,39E-O 

30 16 1,360-0 1,45~0 20 14 4,63E-O 4,41E-O 

40 16 6,40E-I 6,88E-I 30 14 2,4?E-O 2,58E-0 

50 16 2,95E-I 3,I5E-I 40 14 1,38E-O 1,46E-O 

60 16 I,32E-I I I,40E-I 50 14 7,54E-1 8,C9E-1 

70 16 5,49E-2 6,I2E-2 60 14 4,20E-1 4,37E-1 

70 14 2,30E-1 2,31£:-1 

Pb 12,5 IO 4,02E-O 3,63E-O 

20 IO 3, 52E-O 3,I2E-O 12,5 16 8,21E-O ~'.58E-0 

30 10 2,44E-O 2,42E-O Pb 
20 16 4,43E-O ",60E-0 

40 10 2,06E-O 1,83E-O 30 16 2, I4E-O <:,26E-0 

50 IO I, 52E-0 1,36E-O 40 16 1,0IE-0 I,O?E-0 

60 IO I,09E-0 9,95E-1 50 16 4,79E-I ~~. 96E-1 

70 IO 7,77E-I 7,17E-I 60 16 2,20E-I 2,23E-1 

70 I6 9,G4E-2 9,83E-2 

11 
10 



Table 2 
ll 

Table 2 (cont.) 
'Ill 

A p () n k S n,k 8 n,k (%) 

Al IO 12,5 I 0 I,I6E-O 7I,I 

~ 
A p () n k s s (%) 

I I I,8IE-I II,I 
I 

n,k n,k 

I 2 3,44E-2 2,II 
4 0 5,0IB-4 O,I7 

C I 

I 3 6,I7E-3 
i' 4 I 3,65F.-4 O,I2 

0,38 I 

2 0 I,5IE-I 
. 

I6 I2,5 9,25 : I 0 2,8IE-O 79,6 

2 I 5,54l'--2 3,39 I I I 4,67E-I I3,2 

2 2 I,47E-2 0,90 I 2 8,53E-2 2,4I 
I 

2 3 3,09E-3 0,19 I I 3 I,49E-2 0,42 

3 0 I,37E-2 0,84 2 0 I,02E-I 2,89 

3 I 7,I3E-3 0,44 2 I 3,65E-2 I,03 
) 

3 2 2,22E-3 0,14 2 2 9,50E-3 0,27 

3 3 5,05E-4 0,03 2 3 I,97E-3 0,05 

4 0 7,59E-4 0,05 3 0 2,60B-3 0,07 

4 I 4,64E-4 0,03 3 I I,34E-3 0,04 

IO 70 I 0 I,44E-I 49,4 I 
3 2 4,I5E-4 O,OI 

) 

I I 4,89E-2 I6,8 
3 3 9,39E-5 0,0030 

I 2 
I 4 0 4,69E-5 0,0013 

I,34E-2 4,6 
4 I 2,90E-5 0,0008 

I 3 2,95E-3 I,OI 

2 0 3,87E-2 13,3 I6 70 I 0 I,54E-2 39,9 

2 I 2,I5E-2 7,38 I I I,OOE-2 25,9 

.2 2 7,15E-3 2,45 
r I 2 4,89E-3 I2,7 
I 

2 3 I,73E-3 0,59 i I 3 I,€0E-3 4,I5 

3 
I 

0 5,67E-3 I,95 ) 
2 0 2,55E-3 6,6I 

3 I 3, 79E-..3 1,30 2 :r 2,23E-3 5,'78 

3 2 I,3&E-3 0,47 2 2 I,06E-3 2,75 
' ~ ~-/ 2 3 3,27E-4 0,85 

3 3 3,~7E-3 O,I2 

12 t3 



Tab 1 e 2 (cont. ) Table 2 (cont.) 

A p e k 8n,k 
s (%) 

. ' 
n A p e n k s s n ,k (%) 

n,k 
n,k 

3 0 I,GUE-4 0,44 2 0 9,I5E-2 I2,? 

3 I I,54E-4 0,40 2 I 4,45E-2 6,21 

3 2 ?,O?F..--5 0,18 2 2 3,08E-2 4,29 

3 3 2,IIE-5 0,05 2 3 I,2IE-2 I,69 

4 0 5,60E-6 0,014 3 0 I,?OE-2 2,3? 

4 I 5,ICZ.-G 0,013 3 I I,48E-2 2,06 

3 2 9,60:8-3 I,34 
Pb IO I2,5 I 0 2,36E-O 64,9 3 3 4,30E-3 0,60 

I I 4,2?E-I II,? 4 0 2,20E-3 0,3I 
I 2 I,03E-I 2,83 4 I 2,50E-3 0,35 
I 3 2,66E-2 0,?3 

2 0 3,5?B-I 9,82 
I6 I2,5 I 0 5, ?3E-O ?5,6 

I I I,IOE-0 I4,5 
2 I I,66E-I 4,60 

2 2 6,53E-2 I,80 
I 2 2,56E-I 3,38 

2 3 2,I6E-2 0,60 
I 3 6,44E-2 0,85 

3 0 4,IIE-2 I,I3 
2 0 2,40E-I 3,26 

3 I 3,00B-2 0,85 
2 I I,09E-I I,44 

3 2 I,45B-2 0,40 I 
2 2 4,IOE-2 0,54 

3 3 6,80E-3 O,I9 

I 

2 3 I,38E-2 O,I8 

4 0 3,20?.-3 0,09 
3 0 ?,80E-4 o,or 

4 I 3,30E-3 0,09 
3 I 5,80E-4 0,00? 

3 2 2,90E-4 0,004 
IO ?0 I 0 2,95E-I 4I,I 3 3 I,IOB-4 o,oor 

I I I,I4E-I I5,9 

I 2 4,02E-2 5,6I ~ 
4 0 2,00E-5 0,0003 

4 I 2,00E-5 0,0003 
I 3 I,2?E-2 I,?? 

14 I 15 



k"\ n 
N~ 

0,4 

0,5 

0,6 

16 

Table 2 (cont.) 

A p () n k S n,k S n,k (%) 

I6 70 I 0 3,I5E-2 32,0 

I I 2,36E-2 24,0 

I 2 I,47E-2 I4,9 

I 3 6,90E-3 7,01 

2 0 6,00E-3 6,10 

2 I 6,70E-3 6,8I 

2 2 4,60}1;-.3 4,68 

2 3 2,30E-3 2,34 

3 0 5,00E-4 0,5I 

3 I 6,00E-4 0,6I 

3 2 5,001!:-4 0,51 

Table 3 

I 2 3 4 5 6 7 8 9 IO 

R (n) 

R (n) 

R (n) 

I,OOO 0,765 0,392 0,159 0,053 0,015 0,004 O,OOI O,COO O,COO 

I,OOO 0,556 0,202 0,057 0,013 0,003 0,000 0,000 O,COU O,COO 

1,000 0,392 0,099 0,019 0,003 0,000 0,000 O,COO 0,000 0,000 

Table 4 

A 12 27 64 108 207 

kN = 0,4 kA 0,414 0,423 0,4<!7 0,427 0,427 

kN = 0,5 kA 0,427 0,432 0,4311 0,434 0,·134 

k N = 0,6 kA 0,436 0,439 lJ,439 0,439 0,439 

at values of momentum and angle of secondary protons equal 
P=16 GeV/c and0=12.5 mrad, respectively. The authors 
claim that one of the advantages of their approache is the 
so-called model independence,the meaning of which is that 
the ratio R is made to be independent of the spectrum 
shape on nucleons. This is achived by presenting the 
spectrum on nucleus (E £~ ) in the form 

d 3p pA -+ pX 

3 3 
(E ~) = (E ~) N(a ,a' ). 

d P pA-• pX d 3p pN -+ p X 
(9) 

where 

_ -aT(b ) -a ' T(b ) 
N (a , a ' ) = f db ( e - e ) I (a ' -a ) ( 10) 

is the effective number of nucleons introduced in ref.
1121

, 
and a' is the absorptio n cross section of a "bare" proton 
defining the probability of repeated interactions. Substi
tuting eq. (9) into (8) we have 

tot 
a 

R = ~N(a,a ' )o 
a ab s 

pA 

( 11) 

If one takes into account that N(a,a') =N 1(a) for a'=a, 
then it is easy to understand that the actual meaning of 
eq. (11) is that the only first term from formula (1) is 
taken to describe the spectrum on the nucleus. One can 
see from Table 2 that the use of single-scattering ap
proximation for A =207, P =16 GeV/c and () =12. 5 mrad 
understates the ratio R to 25%. Further, when calculating 
quantity (11), the authors use for nuclear density either 
the model of uniform density distribution 12•41 or trapezium 
type distribution / 3 ,5/ . For the first case an estimate 

1 0 0 / 2,4 / / 3 5/ ' 1 
a'<- a N l.S obta1.ned for the second one • a < ..,a * 

6 P u pN 

Figure 1 shows the shape of the function under integra
tion for the effective number N1(a)o It is seen that the 

*It is curious that the authors in no way discuss this 
variation of the degree of "bareness" from the value .!La N 

2 6 p 
-a 
3 pN ' 
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Fig.1. The shape of the function under integration for 
the effective number N 1 (a, A) = J T (b) e- aT(b{j tib. 

main contribution to the integral comes from values of the 
function near the nuclear surface. It is obvious that the 
shape of the function under integration and consequently 
the numerical values of N1(a) and N (a,a') essentially 
depend on the model of nuclear density. In figure 2 taken 
from reference / 13 / the A dependence of N1 (a) is presented 
calculated for the model of the uniform sphere (curve 1) 
and for the Fermi model (curve 2). It is seen that for 
heavy nuclei, the discrepancy reaches 50-60%. It should 
be noted that even for realistic Fermi destribution the 
numerical values of N 1(a) strongly depend on the parame
ter of diffuseness. 

Thus, the neglect of contribution of multiple scattering 
and incorrect calculation of contribution of single fold 
scatterings lead to the result that the quantity defined 
by eq. (8) appears to be underestimated to 75-90%.In order 
to coordinate their calculations with experimental data 
the authors of references 11-51 decrease the value of a, 
which defines an absorption and the particle becomes "bare" 
in one case to 5/6 and in the second one to 2/3. As they 
describe not the spectra, but only one point for each 
nucleus, they are able to come to an agreement with the 
experimental data. If they had tried to describe the 
quantity R at other values of the secondary particle 
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Fig.2. The A-dependence of N1(a,A)is presen
ted calculated for the model of the uniform 
sphere (curve 1) and for the Fermi model 
(curve 2). 

angle or momentum, using the same value of a' (even tvith 
account of many-fold scatterings) as they obtained, they 
would have been forced to vary again the value of a', i.e., 
the degree of "bareness" of the leading particle would 
depend on x and 8. Of course, as is shown above, all these 
complications are entirely unnecessary, if the calculations 
are perfromed correctly. 

A few words about models of hadron-nucleus interactions, 
in which the leading particle becomes "entirely bare" and 
a'=O after the first collision / 14 / *, It is quite obvious 
from the above discussion that in such models ratio (8) 

·: d3 a d
3

a is equal to R= (--) /(-3-) = N(O, a) and does 
d :p pA->pX d p pN->pX 

not depend either on x nor on 8.0f course, this positively 
contradicts the experimental data. 

* The authors of paper / 141 consider this as a proven 
. f f / t-7 / fact on the bas1s o papers o type · 
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2. ANALYSIS OF DATA ON 
INELASTICITY COEFFICIENTS 

It is considered that one of the most convincing argu
ments supporting the existence of "bare" states is the 
weak A-dependence (or even, at some conditions, indepen
dence) of inelasticity coefficients established in hadron
nucleus interactions. It should be noted, of course, that 
the data on inelasticity coefficients are scarce and not 
always the results of different groups agree with each 
other. 

Let us discuss the data, presented in reference 151 

a 
kA"' A a= 0.06 ± 0.03 

kA= const(A)=0.44 ± 0.01. 

(12) 

(13) 

There, on the basis of (12) and (13) the unsubstantiated 
claim is made about the weakness of repeated interactions 
with internuclear nucleons. Actially, the results (12) 
and (13) are quite interpretable in the multiple scattering 
theory with normal cross section of repeated interactions. 

Let X=E' I E is an amount of energy carried away by 
fast particle, and, consequently, (1- x ) is an amount of 
lossed energy. Then, by definition we have 

k A = I (1- x) ( .i£_) dx I I ( dda ) dx , 
dx pA-+pX X pA-+ pX ( 14) 

where (dda) is given by formula (3). 
X pA-+pX 

In ref. 1 111 on the basis of eq. ( 14) the formula has 
been obtained relating the inelasticity coefficients in 
pA(k ~ and pN(kN) collisions 

where 

N(O,akN) 
k = k 

A N N(O,a) 

N(O,a) =..L I db[ 1-exp(-aT(b))]. 
a 

20 

(15) 

Formula, analogous to (15) has been used already in 
ref. 1 15 ', where it is shown that the variation of the 
quantity kN in reasonable limits allows one to describe 
all the totality of experimental data on kA. It is easy to 
obtain by using formula (15) that 

a • 0.12 at kN ~ 0.4, 

a ~ 0.09 at k N~ 0.5 (16) 

a o0.06 at kN ~ 0 .6 . 

Thus, result (12) cannot be considered as an evidence 
o f weakness of the repeated interaction. As regards result 
(13), it has been obtained by averaging of experimental 
distribution on amount of energy x, carried away by fast 
particle. Since this distribution is strongly affected 
at the ends (x ·· O, x -·1), experimentally an averaging was 
performed over the interval 0.3< x < 0.9. Let us discuss 
the result (13) with the account of this circumstance. 

By assuming that the leading particle disctribution on 
the amount of energy taken away has the form 

0 
1 ~ = x (1~o). 
-;; dx 

(1-2k ) 
where 0 = -~N 

kN-
( 17) 

it is easy to obtain that after n -fold interaction of the 
leading particle inside the nucleus, the corresponding 
distribution takes the form 

( ) 1 1 (n) 
.!_dan =-1-x 0 ln(n-l)(..l)(1to)n. !,Ix ~~ dx=l. (18) 
a dx r(n) X 0 

It is seen from (18) that particles undergoing many scat
terings are concentrated at small values of x, x-0. There
fore, the neglect of events with O < x < 0.3 is equivalent 
to depression of the mechanism of multiple sc.atterings. 
The degree of depression of n -fold scattering in comparison 
with single-fold ones can be studied through the ratio 

Xmaxd (n) I 
(n) I _!!_ dx 

R = dx 
xmin 

Xmax (1) 

I ~ dx 
xmin dx 

(19) 
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R (n) 
Table 3 presents the values of calculated for 

different values of kN and at X min =0.3 and Xmax =0.9. 
One can see that effects of many-fold scatterings leading 
to the A -dependence of inelasticity coefficients k A are 
simply depressed by an inefficiency of the experimental 
set-up. 

Results of a calculation of k A following the formula 

00 Xmax (n) oo Xmax (n) 
k = l wn f (1-x) ~ dx/ l wn f ~dx, (20) 

A n=1 x . dx n=1 x . dx min mm 

Nn(a) 
where Wn=Npa) are presented in Table 4. It is seen that 
independent y of the input value ofkN, the inelasticity 
coefficient in pA collisions appears to be practically 
independent onA and is equal kA =0.44. So, the result 
(13) also does not contradict the model of multiple scat
terings with normal cross section of the repeated interac
tion. 

Finally, it is necessary to mention the measurement of 
inelasticity coefficients in 77 Em interactions at P 17 =50-
60 GeV/c performed recentl¥ and the intepretation of these 
data by authors of refs/6 • 1• Values k(77N) =0.63 ± 0.03 and 
K(77Em) =0.81± 0.03, defined in these papers are in agre
ement with each other in the framework of multiple scat
tering model with normal cross sections. This can easily 
be established using formula (15). But the authors make 
an original attempt to estimate the value of repeated 
interaction cross section in accordance with the following 
scheme 

(1 - k ) = ( 1 - k ) 
A N 

and later 

(;:;-1)a 
a 

;:; -1 

v 
(21) 

(22) 

Here v is the average number of interactions the fast par
ticle undergoes inside the nucleus, "experimentally 
defined" from eq. (21), and v = lvWv= Aa rrN.... in the 

a17A 
average number of interactions calculated in accordance 
with the multiple scattering model with normal cross 
section. The incorrect character of the procedure of obtain
ing of the value of;:; from eq. (21) becomes obvious, if 
one takes into account that 

22 

1 - k = l W (1 - k ) n 
A n=l n N 

and not 
l VWv 

1-k = (1-k )V=1 
A N 

i7 
= (1- kr) 

Equation (23) coincides with (24) only if Wn is a 
function. Thus, the estimate of a' in accordance 
eq. (21) and (22) cannot be taken seriously. 

3. CONCLUSIONS 

(23) 

(24) 

8 -
with 

The multiple scattering theory successfully describes 
experimental data on the leading particle spectra and on 
inelasticity coefficients with the cross section of repeated 
collisions which is equal to the cross section of the 
incident hadron. 

Conclusions about the existence of bare particles drawn 
in refs. 11- 71 are, as is shown in the present paper, the 
consequences of a series of mistakes. The subjective 
wishes of the authors of refs/1-71 to observe "bare" 
particles have played here not the last part. 
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