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1 . INTRODUCTION 

... 
.• j> 
(:.) . 

One of the most actual problems in high-energy physics is the 
study of inclusive processes of hadron-hadron scattering with 
the production of large-transverse-momentum particles . In the 
parton model, the differential cross section of such processes 
is defined by the formula of "hard collision" 

1 1 A c 
E.d.lz_(AB --- CX); ~ I dx a I dxbf~(x a )r~xb).L .li£. _l_Dc(zc ).(11) 

d Pc a,b, c xm !n min rr d t z . 
a x c 

b 2p 
c~ 

When the hadron C with large transverse momentum (x....L.. = -::.::--+1) vs 
is produced at large angle ( e .. t). the lower limits in integrals 

121 x1. e e (1.1 ) (see ref. ) and of variable z c • whichequals -z-(tg]""+Ctg]""). 

a r e c lose to unity . As a result, the cross section (1.1) of the 
production of hadrons with maximum large transverse momenta 
is defined only by the cross section of a subprocess of quark
quark scattering, d;/ dt, and the behaviour of functions r; (x) 

and D ~ ( z ) in the threshold region. The same concerns the 
cross section of double inclusive process AB-.CDX and cross 
sections of production of jets in the hadron scattering (see for
mulas in1 31 ) . 

In view of this, the important problem is the definition of 
the hadron structure functions near threshold. The threshold 
behaviour of structure functions is usually defined by using the 
Drell-Yan-West relation 1 41 which from the known behaviour 
of the elastic form factor of hadron A as 

N 
G (t)- (-t) 

A 
-t .. 00 (1.2) 
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determines the behaviour of its structure functions near elas
tic threshold ( x .... 1) 

A P 
F 1 (x)- (1-x) (1.3) 

connecting the powers p and N as follows 

P -2N-1. (1.4) 

The same dependence follows as well from the Bloom-Gileman 
relation of local duality 151 . 

In ref/61 it was shown that the asymptotic behaviour of 
elastic form factors is given by the universal law 

G (t)-(-t) 
A 

-n A+ 1 

(1.5) 

where n A is the number of valence quarks of hadron A. However, 
the results of the recent experiment on inelastic ep -scat
tering1171 raise the question on compatibility of the quark coun
ting rules and Dr ell-Yan- West relation. Indeed, from formulae 
(1.4) and (1.5) it follows that Ff (x) -(1-x)3 whereas the experi
mental data are fitted by the empirical formula F{ (x 8 ) =a(l-x~ 4 

( x 
8 

is the Atwood variable) 171 • 

In paper 181 it was suggested that the presently investigated 
kinematic region can be considered as preasymptotic one. Thus, 
it is an interesting problem to test the possibility of describing 
elementary particle interaction with the use of the natural for 
the quark model scale parameter, - the quark mass M q. To 
check this presumption, in refs (8- 10 ·401 a simple dynamical model 
of factorizing quarks (DMFQ) was proposed (see Sec. 2). The 
DMFQ well described a number of experimental data on hadron
hadron 1 8- 12 ·40~nd lepton-hadron interactions 1121. In this model, 
the data on deep inelastic e p -scattering also have been descri
bed near threshold x;a0.751121. Thus, it was shown that the Drell
Yan- West relation is valid, and that in the atta ined region the 
correct choice of the "preasymptotic" behaviour of th e hadron 
form factor is important. In the present paper we apply DMFQ 
to derive analogous expressions for the structure functions of 
hadr ons with s pins 0, 1/2, 1. 

4 

The next problem we dis cuss here concerns the study of the 
connection between the structure functions of electron-hadron 
scattering F 

1
h ( x) and those of electron-positron annihilation in-
~ - - -h to hadrons , e e • h X , F 

1 
( z) . Among the most important re-

s ults on the c rossing problem, we mention the relation 

F. ( w ) = ± F ( w ) 
I I (1.6) 

found in the framework of the field-theoretical model of Drell, 
Levi, and Yan 113 / which will be shown below to hold in other 
approaches, as well 1141 . A possibility for analytical continuation 
of F1 (w) into the annihilation channel was concluded also in pa
pers / 15- 17 1. 

Anothe r important result is the Gribov-Lipatov rela
tion 116-191 which has been used in the parton model to deduce 
the quar k-hadron reciprocity rela tion1161 (for discussion see 
ref/ 20/ ) 

f
11
(x) = D

11 
(z), 

q q 
X r Z , (1. 7) 

h 
which connects the distr ibution function ! q ( x) of quarks q in 
hadron h and the fragmentation function D~ (z) of quark q in 
hadron s h 

It should be noted that the problem of the connection of cross
channels is not clear yet. Thus the further study of crossing 
proble m produces the conclusion 1211 that in the general case, 
without extra assumptions, the functions rr ( z) and ~ (x) are 
not connected by simple analytic continuation except for the 
threshold region, where the connection between cross-channels 
takes place irrespective of the possibility of analytic continua
tion of the structure functions 121·27 1. Note, however, that in 
ref.1231 it was shown, on the basis of the light cone algebra 
technique that in the threshold region singularities should also 
be taken into account when making analytic continuation. 

In the DMFQ we are dealing with the explicit expression for 
the invariant quark-scattering amplitude that allows us to easily 
establish the threshold connection of structure functions of dif
ferent hadrons . 
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The paper is organized as follows. In Sec. 2 we present main 
formulae of the DMFQ which are used in Sec. 3 to determine 
the threshold behaviour of the structure functions, and in Sec. 4 
to derive formulae for the asymptotic behaviour of form factors 
and structure functions in the annihilation channel. In Sec. 5 
the problem of the connection of cross- channels will be treated 
within the parton model, and in Sec. 6 the result will be applied 
to determine the threshold behaviour of distribution and frag
mentation function of valence quarks. 

2. DYNAMICAL MODEL OF FACTORIZING QUARKS (DMFQ) 

/ 8-10,40 / 
Our model (DMFQ) develops the model of factorizing 

quarks (MFQ) proposed earlier by Kawaguchi, Sumi and Yoko
m/241 for describing the two particle elastic and quasielastic 
processes . The MFQ assumes that the quarks, constituents of 
a hadron , produce, during the hadron-hadron collision some 
(nonspecified in the MFQ) effective field, V err , at which they 
are scattering independently. Therefore , if gq(e) is the am
plitude of scattering of an individual quark q at angle () in 
field Verr . then the scattering amplitude M AB •AB (e) of hadrons 
A and B at angle e is defined by the formula 

nA nB 
M AB .. AB (8) = TI gq(()) ·II gq (0), (2 .1) 

qA qB 
which is immediate result of the known theorem of the probabi
lity theory. The probability of several statistically-independent 
events equals the priduct of probabilities of individual events. 
In paper 18 1 the MFQ was enlarged by the dynamical assumption 
that at the large-angle scattering (- t ,s ·•"", t I s fixed) the quark 
interaction region has an effective size which is taken, for 
simplicity, to equal the quark Compton wave length M~ 1 

( Mq 
is the effective mass of an interacting quarks). Using this 
assumption in 18 1 it ·was obtained with the help of the expansions 
over the Lorentz group the following expression for the amplitude 
of quark scattering at the field V err : 

2 I 2 2_ 1 2 Xq 2Mqln(l-tq 2Mq +112 M vtq(tq - 4Mq) 
g (e)=-- = q ---=-- (2.2) 

q shx y t (t -4M2) q q q q 

6 

2 Here x q ~ Arch(l -t/2M q) 
momentum transferred 

is the rapidity corresponding to the 
to an isolated quark, t , (_p_c!>_g~ _ _ t_ 

q n A . n2 , 
A 

where n A is the number of quarks in a hadron A (for simpli-
city we assume that the total momenta transfer divides to equal 
portions of the transfer momentum per each quark). 

1 25 1 The generalized Wu- Yang formula · 

.!!2_( AB ~ AB) "' - 1- G 2(t) 0 2 (t) 
dt s2 A B 

(2.3) 

(2 .1) and (2.2) results is the following asymptotic behaviour of 
the form factor of hadron A consisting of n A valence quarks 

X 11 ln I t In- 2M- 2 
n n 

GA(t)=bAflA( --q-- )A "' ( -.-- '- b-_:_._3. __ ) A) A (2.4) 
shx lt l -2M-2 

q • II A q 

which can also be rewritten as the power dependence 

e ff 

GA(t) = ( it l n2M-2 ) - nA (t) 
A q 

2 -2) 
ln (ln I t l n-;. ~-

- ---- ~ n :rr ( t ) "" n A - n A --ln l t I n~~ M q~ 
(2.5) 

Formulae (2.1)-(2.5) contain the scale parameter quark mass 
Mq to which one compares the portion of transfer momentum 
pe r one quark v- tq and well describe the experimental data. 
In parti cular, formula (2.4) is in good agreement with the data 
on the proton elastic form factor 1 10 .12/ . The analysis of recent 
data 126 1 shows that formula (2.4) well describes also the pion 
elastic form factor (Fig. 1) (data were taken in the interval 
1 :;; Q2 :; 7 Gev2), X d .! " 1.33, M q ~ (0.180 ±0.014) GeV, b 11 

It should be noted that the obtained values of quark mass 
coincide within errors with the values of this parameter foun
ded earlier for the elastic form factor and structure function 
F' 1 of the proton near threshold 1121. The values of the quark 
mass which were founded by comparing to experiment formulae 
for the proton structure functions F 2 and pion form factor in 
the time- like region (Sec. 4) are also in agreement with each 
other and those obtained earlier in110 ·12: The results of13 91 also 
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indicate the deviation of pion and proton form factors from 
(1.5) law. 

3. THRESHOLD BEHAVIOUR OF STRUCTURE FUNCTIONS 
OF COMPOSITE HADRONIC SYSTEMS 

To obtain the structure functions in the threshold region, 
it is convenient to us e the Bloom-Gilman relation of local dua
lity in the differential form 1 51 

A A t d A 2 
F

1 
(u) ) = - - -- - [G . (t) ] . (3 1) 

s A dt I . 
1- w

8 
A 2 

where i -, 1 ,2; A ·: rr, K , p,d, .. . ,l G il are squared combinations of 
e las tic fo rm fa ctors of hadron A, or up to the 0 -function, 
structure functions of elastic scattering (see ref. 127 

•
28 

·
291

) . Note 
that (3.1) contains the scaling variable w: (Bloom-Gilman va
riable) in terms of which the ea rly s caling is observed experi
mentally 

2 2 
A M s W A 

<<J ~w- ---+ 1 ---
s t w >! t (3.2 ) 

where 

W2 _ (WA )2 M 2 -M 2 
A in ~ s A (3 .3) -

A 2 2 
(W ) o(M A1 m ) 

111 11 

is the inetastic threshold of e A -scattering, M: is a fitting 
parameter introduced for the proton by Atwood 171 (see Ap
pendix A) . 

Inserting into (3.1) the expression for the elastic form 
factor (2.4) we get the following formula for the structure func-
tion of hadron A composed of n A quarks near threshold 

A( s=<l) A A A A (chxA -1) 2 X s 2nA -1 
F 2 ( w s ) = C • K A ( X s ch X s - sh X s ) __ s __ ( ~- ) 

2 2 2 3 - 2 
KA= 4bAf1AMqnAWA , 

sh3x A shx s 
s A 

(3. 4) 
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t 
where the variable is found from x =Arch(1- ..:.!L2) according to 

q 2M w2 q 

(3.2) by the change tq::.--\- = - r1- A . In formula (3.3) the coeffi-
nA p-w~) 

cient C is introduced in order to take into account the fact 
that the Drell-Yan-West relation follows from (3.1) up to a pro
portionality coefficient of W 1 2 

, so that C =1 if the local duality 
holds e~actly. ' 

In the asymptotic region w A::.1 formula (3.3) can be repre
s 

sen ted in the form of the power law 
Neff (wA) 

A A A A . s 
F

2
( w )=(w -1) (3.5) 

s s 

with the 

eff A ) {3 ( A ) NA (w
8

)=(2nA-1 -2nA Aws, (3.6) 

A ln lln 2 M 2 -2 f3 A(ws) = ---~- q W A (w ~ -1)1 

I 
2 22 ____ _ 

ln n M W ( w A _ 1) I 
A q A s 

(3.7) 

For the nucleon with formula (2.3) for the elastic magnetic 
form factor we get from (3.1) 

N ( N ) FA (s= 0)( A) n = 3 M = M . 
F1 ws = 2 w s ' A ' A N (3 .8) 

For the proton structure function in virtue of the scaling rela
tion between elastic electric and magnetic proton form fac

is the proton total magnetic tors 128 ·301 a P (t) - GP ( t) M --P.p• E 
moment) we find 

( 1-L p 

p p. ·
2
-r p Ap.(,l: - 1) p ]2 

F. (wP )2 ~-F\ (wP)+~---··-::-rlG (wP), (3.9) 2 s 1 - ~ s 4M (1 - T ) s 
p p 

. where changing 
A 

by w
8 

according to (3.2) and (3.4), we have 

r = 
A 

10 

w2 
A--, 

;c.- A) 4 M (1-ws 

2 
C. W A 

,\ =--A2 
A (1-w s ) 

(3.10a) 

G'\w~)~ ln!M~(w~-1)W-;.2 . ln(n~M~~2 (w~-1)){A 

b17 1-L 17 "' 1. 43 . 

at nA=3 ,MA= MwFor ultrahigh momenta transfer 

5-6· {3 (w P ) 
F; P ( w P ) - ~ ( w P ) - (1- wp ) P 8 

2 . s 1 s s 

n / 28 / 
For the neutron G E(t)::.O . and 

n n rn n n An 11 11 2 
F (w ) ~~ F (w ) - ------LG (w )] . 

2 s r 11 -1 1 s 4 M2(r -1)2 8 

n 

For - t >> 4M2 

F2
11 (w~ ) - F~ ( w;)- F/ (w~ ). 

(3.10b) 

(3.11) 

(3 .12) 

(3.13) 

As was mentioned, formula (3.9) well describes the data on . 
the proton structure function F1 in the threshold region 
x ~ 0. 75 : in paper 112 / the following value was found for X 2 per 
one degree of freedom : xct.r.~1.04 at Mq =O.l!Jl.The analysis of da
ta 138 1 for x __ , 0.75 on the proton structure function F~ shows that 
formula (3.8) also agrees with experiment (Fig. 2):Xct.r. ::. 6.43 / 9-3 
at M q - (0.140±0.01) GeV (C = 3.85±0 .74, M; =(1.58±0.15) GeV) ~ 

As we see, these values of the quark mass are in agreement 
with each other and with those obtained from the comparison of 
other formulae with experiment (see Sees. 2,4). 

For hadron B with spin 1 we assume that the elastic electric 
form factor is defined by expression (2.4) : G ~(t)=bl}xq / shxqt~ 
We suppose also that for - t ; "" there take place the following 
natural relations between magnetic, quadrupole, and electric 
form factors 

B B 
GM(t),. sM.GE(t), 

B 8 Q B 
G (t)"' --- G (t), 

Q t / 4M2 E (3.14) 

where s M and s Q are some constants. Then from (3.1) we ob
tain the following formulae 

B B 4 A(s=O) A 
F1 (ws)=gsMF2 (ws)' nA=ns, MA=Ms, (3.15) 

11 
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l 
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Fig. 2 

B B 1 - 8B' 7 B B B ,\ B(1-sB ) B B 2 
F (w ) = - - - - F1 (w ) + - ----- [G (w )l , 

2 s 1 s 2 s 
-T B 4M (1-rB) 

2 8 where s = - 8 M - - 8 Q • 
B 3 9 

12 

X= 0.75 

X• 0.8 

Q2 GeV 
l 

(3.16) 

4. CROSSING- TRANSFORMATION IN DMFQ 

Cons ider now the problem of the connection of cross-channels 
in the framework of the DMFQ. While passing from the scat
te ring to annihilation channel the 4-momentum transferred to 
the quark 

2 2 
t q ' ( p 1 -- p2 ) - 2 M q(1 - ch X q ) 

changes to the squared invariant energy of the quark-antiquark 
pair 

s ,( p • P ) 2 " 2 M 2(1 r-ch x )~2 M 2 ( 1- ch x ) . 
q 12 q q q q 

To this transformation in terms of rapidity there corresponds 
the transformation 

X • X ·~ X + i rr q q q (4 .1) ' 

and the amplitude gq (0) (2.2) undergoes the following transfor-
mation 

-
- X q i rr 

g(O)~g (& ) ~ -- = g ( O)t- -- . (42) 
q q h - q sh x . 

s Xq q 

Making the change t • s . x q-<x q according to ( 4.1) in formula 
(2 .3), we obtain the formulae for the asymptotic behaviour of the 
annihilation form factor of hadron A : 

- X 11 
I GA(s) I = I C (---:..L_) A 1, 

A sh x , 
q 

ln ·2 -2 

I a is) I, < -~!:~~'1--)
11

~ 
s n- 2 M - 2 

A q 

(4.3) 

(4.4) 

The analysis of experimental data 1371 on th~ pion form factor 
in the time-like region shows a good agreement of (4.3) with 
experiment (Fig. 3) . Namely formula (4.3) describes the data 
with x~.r. " 1.27 , M q ~ (0 .165±0.004) GeV, C 77 ,..2.48. As we see, 
within error this value of the quark mass coincides with those 
obtained from the analysis of data on the proton and pion form 

13 



I G1(1 
2.0 

1.5 

1.0 

0.5 

1.2 1.5 2 2.5 3 2E ( GeV) 

Fig. 3 

factors in the space-time region and the proton structure functions 
near threshold. 

The form of 

hadron-pair AA 
applying (4.1) 

the structure functions near 

w2 
production ('wA= 1- ~ .... 1) 

s s 

the threshold of 

can be find by 

FA(s=O)._A) c K c-A -A -A (chxA-1)2 xA 2n -1 
2 ~ws = • X-ChX - shx ) s (--~-) A A s s s 3 _ A _A • 

sh x shx 
s s (4.5) 

14 

F~(wsN)=F:<s=O> (w~). nA= 3, MA=MN, (4.6) 

WA ), 
-A = Arch(1 + ~2(wA-1) 
Xs 2nA q s 

(4.7) 

and so on. Analogously, from (3.10) and (3.12), for high energies 
we get 

{3 -N 5-6. N(W 8 ) 

F' t < w : ) - F g < w ~ ) -'F ~ < w ~ ) - 'F; Cw ~ ) - (1-w ~ ) · < 4. a) 

_ 3-4{3 <w 77 > 
F 77 <w 77

)- (l-w77
) 

77 
s 

2 s s 
(4.9) 

5. CROSSING TRANSFORMATION IN THE PARTON MODEL 

The quark-parton model assumes that in multiparticle and 
deep inelastic processes the final hadrons are products of the 
quark fragmentation. This process is described by the fragmen
tation functions D~ ( z) which can be theoretically derived by 
using the quark-hadron reciprocity relation (1. 7) (see ref/ 20 1 

). 

However, the latter is based on the Gribov-Lipatov crossing re
lation, founded within the framework of a field-theoretical ap
proach. But the recent data are inconsistent with this relation1321. 

On the other hand, as it will be shown, information on the frag
mentation functions D ~ ( z) can be gained on the basis of the 
connection of cross- channels which can easily be established 
within the parton model. 

h 
So, let Mq(P,k) be an amplitude of the probability for real 

hadron h with the 4-momentum P=(P, 0,0, :i') to be found in 
a state with the parton configuration containing the quark q 

carrying the 4-momentum k =X P (see Fig. 4). In parton model 
the probability of the existence of this configuration (see1 331 

) 

X h 2 w,. --1M (P, k=xP)I 
1-x q 

(5.1) 

15 



h 
p 

}x' 
Fig. 4 

is described by the function parton momentum distribution f h(x). 
q 

So that we may write 

h X h 2 
f q(x)- k-1 M qCx) I , (5.2) 

where according to the parton model the amplitude M ~ is 
assumed to be a function of the ratio of momenta k to P only 
M ~(P, k= xP) ~M ~(x). The transition process q • h 1 X ' is obtained 
from h-+ Q+X' via the CPT and crossing (P-+-P, k · - k) transfor
mations, and its probability is defined as 

- z - h - - - '2 W, -- I M (k,P ;zk) . 
1-z q (5.3) 

The quark-hadron amplitude M~ is an amplitude of the proba
bility of transition of quark q with 4-momentum k . (K,O ,O,K)into 
hadron h transferring the 4-momentum P : z'k with undetec ted 
final state hadrons X '. 

In the parton model the probability W 
mentation function D h (z) of quarks q 

q 
we have 

h z - h 2 
D (z) - -

1 
- I M q (z) I . 

q -z 

M h Cf. P = z i{) = M \ z) . 
q q 

is given by the frag
into hadrons h . Thus, 

(5.4) 

Assuming the quark-hadron amplitude M 11 to be an analytic 
q 

function of variable x, we obtain, from (5.2) and (5.4), the fol-
lowing relation 

h 1 h 1 
D q (z) - x f q ( x) , z = x (5 .5) 

16 

Eq. (5.5) coincides up to arbitrary constant with the relation 
(A.18) found with the help of Bethe-Salpeter equation approach 
at ' 34

.' and as it is easy to see, differs from (1. 7). 

6. THRESHOLD BEHAVIOUR OF THE DISTRIBUTION 
AND FRAGMENTATION FUNCTIONS OF VALENCE QUARKS 

Here we will apply the obtained results to determine the 
threshold behaviour of the functions f ~ and D~. For this aim, 
based on the charge and isotopic symmetry 12 4 / we represent 
the hadron structure functions by sums of distribution func
tion i l!- 7 1 and take into account that near the elastic threshold 
only the contribution of valence quarks survives 121 . As a result, 
we get * 

17 
3-4{3 (w ) 

) 77 s ' 
(6.1) 17 f 17+ 17- 17- 17 

f = f - '= f- = f - (1- w 
u d u d s 

- K 
f K t- f K o - K- - Ko K- J{o K+ Ko K 3-4{3K(w s) 

u - d - f -,, - f -d = f = f = f - = f - - (1- w ) s s s s s (6.2) 
N 

= _1_ 1... d - 4 p 1 p 4 n 1 n N 5-6 f3N(w s) 
q 

9 
U + 

9 
= g-fu I gfd = -gfct + g-fu -(1-w 8 ) (6.3) 

Further by using relation (5.5) we find from the (6.1)-(6.3) 

the following law of fragmentation functions behaviour near 
threshold 

17+ 17+ 17 17 

D = D- = D- = D 
u d u d 

3 - 4 {3 17 (z) 

- (1-z) 
(6.4) 

K+ !(> K- Ko K- Ko K + Ko 3-4{3k(z) 

Du =-Dd = Dii = Dd = Ds = Ds =Ds =Ds -(1-z) (6.5) 

.i.oP .!.. DP =..!on .!__ D n- (1- ) 5-6 {3N(z) 
9u+9d + 9d + 9 u z 

(6.6) 

* Here we use the Bloom-Gilman scaling variable, a possibi
lity of its introducing into the parton model being discussed in 
Appendix. 
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For other distribution and fragmentation functions the threshold 
behaviour can be defined in a similar way. 

CONCLUSION 

The dynamical model of factorizing quarks proposed earlier 
in paper 

18 1 
for the analysis of elastic and quasielastic processes 

in the preasymptotic region provides a good description for the 
. / 8 40 / 1 11 1 recent expenmental data on processes p p ... p p · , p p ... TT 0 X , 

ep ... ep110 · 1 ~ 1e" ... e" (see 1 10 1 and Sec. 2 of the recent work) 
/ 12 / . . 

and ep ... eX for x~0.75 . An Important feature of the model Is 
the presence of the explicit scale parameter, 1 quark mass to 
which the portion of the momentum transfer per one quark is 
compared. 

In this paper, the DMFQ formula for the elastic hadron 
form factor has been used to determine the threshold behaviour 
of structure functions for various hadrons. To this end, we used 
the Bloom-Gilman relation of local duality the validity of which 
and, hence, of the Drell- Yan- West relation was shown earlier 
in paper 1121 for the proton structure function F 1 . The DMFQ 
contains the explicit expression for the quark scattering inva
riant amplitude. It enables one to easily establish the continua
tion of quark amplitude to the cross-channels. Thus we derive 
formulae for hadron form factor s and structure func tions be
haviour in the threshold region of the annihilation channel. The 
formulae for form factors well describe the experimental data 
in the time- and space-like regions with the same value (within 
error) of the effective quark mass, explicit scale parameter of 
the model. 

The relation (5.5) allows us to determine in addition to dis
tribution functions also the fragmentation functions for valence 
quarks. 

The authors thank V.G.Kadyshevsky, V.V.Burov, V.V.Ejela, 
V.N.Kapshay, V.A.Mescheryakov, A.P.Samohin and A.V.Sidorov 
for valuable discussions. 
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APPENDIX A 

On Bloom-Gilman Scaling Variable in the Parton Model 

The recent experimental results indicate that the parton 
transverse momenta k+ may be rather large in magnitude. 
Therefore, their contribution, like that of parton masses, IL , 

should be taken into account while formulating the parton model. 
This step was undertaken in paper 135 1 (see also ref. 136 1 ), and 
as a result, the nucleon structure function W 1 , was found in the 
form 

2 d 
3

k N 2 2 
2MW 

1 
(x, Q 2 ) = l Q f -- <{:l (X, z, Q ) 8 (X- XL) L (X, f3 , Q ) x 

q q ko q 

X ( 1 + ..1_ tg 2 f3 ] , 
2 

L(x ,f3 ,Q2) = [ J. +4 x~9_2 __ ] 11,2 

1+4/L 2/ Q2 + tg2f3 

(A.l) 

N 2 where <{:l q (x,z, Q ) is the function of distribution of quarks in 
a nucleon, and 

z =1-2 Pk ' 
Pq 

COS f3 ~ ~ , X = Jul 
Pq 

Below, it will be shown that from (A.l) follows the possibility 
of the parton model description in terms of the Bloom-Gilman 
variable. 

/3 5/ 
Following paper , we suppose that 

N 2 22N,. 
<l>q (x,z,Q )=4x /Q Fq~x..z). 

Then, from (A.l) we get 

1 2 
N 2 2 X 1 + 2tg f3 N 

F 1 (xL,Q ) = l Q q[ d cosf3 F (x L,z)x 
q v' 1 +4/L 2cos2f3/Q2 cos2 f3 q 

x L(xL ,f3 ,Q
2 

). 
(A.2) 
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Next, assuming the simple factorization F N(x L'z) =fN( x L). ¢ N( z) 
q q q 

we obtain 

N 2 2L N 2 
F1 (xL ,Q ) = ~ Qqf q (xL) •Tf 1q(xL ,Q ). (A.3) 

where Tf~q is a function of x L 

asymptotics and normalized to unity. 
N 2 

and Q 
2 

slowly varying in 
Analogous expression fol -

lows for F 2 ( x L, Q ). 

The variable wL= -
1
- = kp q can be expressed in terms of w: 
XL q 

2 

wL- w 
2 
~ q . In virtue of the parton-model identification in the 

system P -+ "" of variable x with the parton fraction of the 
initial-nucleon momentum, P =(P,O,O , P),we have 

2 2 
k.lfll 

q k "" x P q ; ---- q0 - k .l. q .l 
2 k II 

(A.4) 

Formulae (A.5) yield 
2 2 .. 

2w k.l +/l 
w "'w - -- ( ---- q - k.l q .l ). 

L t 2k ll 0 
(A.5) 

The quantity 
2 2 

2 k.l + P. 
M

8
: 2 w ( q 0 -k q) 

2k .l .l 
II 

(A.6) 

containing unknown parameters kJ and l can be treated as 
a phenomenological parameter itself. Inserting (A .7) into (A .6) 
we arrive at the description in terms of the Bloom-Gilman 
scaling variable. 
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