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A Description of the Mass Spectrum and Regge 

Trajectories for Mesons on the Basis of the 
Relativistic Two-Particle Quasipotential Equation 

A three-dimensional relativistic two-particle equation 
in the relativistic configurational representation (RCR) 
is applied to describe the mass spectrum and Regge tra
jectories of mesons. This quasipotential equation is solvec 
by the WKB method. A modified relativistic WKB condition 
of quantization is found which essentially simp! ifies the 
study of meson Regge trajectories. Formulae for the 
lepton widths are derived. 

The investigation has been performed at the 
Laboratory of Theoretical Physics, JINR. 
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1. INTRODUCTION 

After the discovery of J/'P mesons the interest has raised 
in describing of the meson mass spectrum according to the 
positronium scheme. First studies along this line used main
ly (and quite successfully) the nonrelativistic Schrodinger 
equation (with potential V(r) =a r ) • However, it was shown 
that after spin variables are introduced through the Breit
Fermi potential, this nonrelativistic (semi-relativistic) 
model becomes inconsistent. It turned out that the contribu
tion of relativistic corrections for higher radial excita
tions is large (vi! I c 2 .. 0.4), and for light vector p,w- mesons 
it is even comparable with the contribution of the nonrela
tivistic part of the Hamiltonian. 

In this paper we will look for the mass spectrum and 
Regge trajectories of mesons in the framework of the relati
vistic three-dimensional formalism based on the relativistic 
two-particle equations of the quasipotential type11; We shall 
use that of equations considered in ref. 12; which coincides 
with the Kadyshevsky equatiod3 1 and, after transition to 
the relativistic configurational representation 141 (and some 
redefinition of normalization of the quasipotential and 
wave function 14 •5•6 1 ) has the following form (at fixed or
bital moment e >

14
•
51

: 

[ . a A 
2 w + t) <. a < J < ) 0 ch(IA-)+ -----exp IA-) -X r) <l>f r z 

ar r(r+iA) ar 

X(r)=M_- V(r). 
2mc2 ' 

A= _h_ 
me 

( 1.1) 

Here M is the mass of a bound state of two spinless par
ticles (quarks) with equal masses ' m 1=rn 2=rn and momenta p 1 
and p 2 2 M2= p2= (pl+P2). ( 1. 2) 
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The partial expansion of the wave function 
with a given eigenvalues of mass M , 'I' (r') 
<l>e (r) has the form M 

(WF) of a system 
over radial WF 

_. 00 e <t>e(r) -· • 
'I' (r),.,4rr ~ (2£ +1)i -- P0 (cosO _,), n =r / r. 

M lho r L n 
(1. 3) 

In this paper, based on the relativistic quasipotential 
equation (1.1), we define the mass spectrum for any orbital 
momentum f * and find the Regge trajectories for mesons. 
We use here the method proposed in 191 for finding solutions 
to eq. (1.1) in the quasiclassical approximation and in the 
second part of the paper generalize the modified WKB method 
of quantum mechanics / 10 / to the relativistic case. In the 
third part we derive formulae for the lepton widths of meson 
decays for the potentials of quarks confinement of the type 

2 
V1 (r)=ar 8

, s > 0; V2(r)=- l<rL+ar 8
• In the fourth part the 

comparison is made with the experimental data on masses of 
meson resonances. 

2. RELATIVISTIC ANALOG OF THE "MODIFIED WKB METHOD" 
AND REGGE TRAJECTORIES OF MESONS 

The quasiclassical solution to eq. (1.1) is searched 
in the usual form 19/ 

<l>e(r) = exp(~g(r)) (2. 1) 

g(r)=g0 (r) + ~ g 1(r) + C.l:!-)
2 

g
2
(r)+ ... 

1 1 
(2. 2) 

With two first terms of the expansion (2.2) the solution 
is 

<l>e (r) =<l>"fCr) +<l>f"Cr) (2. 3a) 

* For f = 0 equation (1. 1) with the linear potential V(r)=ar 
has been solved by the Laplace-transform method in171. 
Another approach (based on a somewhat different variant of. 
the Kadyshevsky equation, equation in terms of rapidities 

41 

was used for describing the meson spectrum in 181. 
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<1> ± (r) 
p 

~ _ c ± v Mc ....:::::=-- r ~ X 2 - 1--=-: 2 A 2 x exp I ~ / dr 
- r 

r 2 -

ln[X ± v' X2_1 _~f2h¢1, 
(2. 3b) 

whe r e A -1' ~1 /2, c + a re no rmalization c onstants which in the 
nonrela tivistic-limit turn into their nonrelativistic analog 
by virtue o f the fac tor v Me . Reversal points r + are deter
mine d as branch points of the root in eq. (2.3b), i.e., 
fro m the equa tio n 

2 A2 A 2 
X ( r ) - 1 - - 2 -- c 0 . ( 2 • 4) 

r 

To make our further construction more clear, we consider 
in detail the solution withf= O. Because of the finiteness 
of the WF at r =0 we represent that solution as follows 

+ c +v Mc . r 
<P0 (r) = --- --exp! ~-1 dr ' X(r')l. 

v' sh x ( r) 
(2. 5) 

where 

x ( r) -~ Ar c h X ( r ) ~ ln l X ( r) ~ ,../ X 2 ( r )-1 ] (2.6) 

has the meaning of the rapidity of a particle moving in the 
field V(r). Note that from the geometrical point of view the 
transition from the nonrelativistic to relativistic theory 
consists in the change of the Euclidean geometry of three
dimensional momentum space to the Lobachevsky space 1 11 1. 
In the Lobachevsky momentum space realized on the hyperbo
loid pJ - p2 = m 2 the distance between two points is 
measured in terms of the rapidity1)11Therefore, X (r) represents 
a direct relativistic generalization of the nonrelativistic 

momentum p(r) =y' m[E-V(r)] of a particle moving in the poten
tial V (r ). This fact is supported by the maintenance of the 
geometrical meaning of the condition of quantization which 
in the relativistic case looks as follows 

r+ 1 
f dr X ( r) ""A rr ( n + - ). 

r _ 2 

The reversal points r± 

X(r) "" M-V(r) = 1 

2mc 2 

(2. 7) 

are determined by the condition 

(2.8) 
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The condition of applicability of the WKB method in the 
relativistic case is given by the inequality 

A I 2 sh x ( r) + ch X (r) • --Ad2. 1 « 1 
X ( r ) • sh x ( r ) d r (2.9) 

which in the nonrelativistic limit converts to the condition 

1-dd A 1 (r)l << 1, where A 1 (r) =tl/.,jm[E-V(r)] In the r nonre nonre · 

ultrarelativistic limit x -•oo and (2. 9) gives 

Al_!_lnlln.A.~II « 1. 
dr A (2.10) 

with 

A ( r) =h I p ( r) = h I m c. sh X ( r). 

For the potential V(r) growing with distance the relati
vistic WF, as compared to the nonrelativistic WF, has a new 
characteristic in the behaviour at larger. In region I (see 
Fig. 1) , where r < r + ( r + stands for the hight classical 
reversal point) the WF is given by (2.3), (2.5), and due to 
oscillations it becomes zero n times. Then, in region II, 
where IX(r)l <1, like in nonrelativistic quantum mechanics, 
there the exponential decrease takes place 

4>g ( r) = c · vMc exp 1 _ ! J dr 'arc cos X ( r ') 1. 
~1-X2 r+ 

(2. 11) 

'¥ ( r l 

r 
Fig. 1. The behaviour of the relativistic wave function of 
the two-particle system in the field of confinement potenti
al: I - is the classically admissible region, II - the clas
sically forbidden region, III - the region of pair production. 

6 

The difference from nonrelativistic theory occurs in re
gion III which developes from point ro defined by the condi
tion of a possible production of a pair of particles: 

V(r) lr=r =2mc2 +M=4mc
2

+Ecoupl. 
0 

(2. 12) 

In region III, where r>~ , the oscillation 

4>~II (r)=
4
c • .,jMc .exp[-{-(r-r+)].exp[L f drx( r)] 
y~1 A r+ 

(2. 13) 

is superimposed on the exponential decrease (2.11). 
For £ ~ 0 we put, like in quantum mechanics, the WF phase 

¢ =rr/4 that provides the transition of the oscillating WKB 
solution from the left of the reversal point into the expo
nentially decreasing solution in classically forbidden re
gion. The condition of quantization for Y~O in full analogy 
with nonrelativistic theory, follows from the condition of 
coincidence of the WF at a point r from the left. of the 
largest reversal point r+ and WF at a point from the right 
of the smallest reversal point 

" i r 2 A2A2 . 
expl-i-

4 
+- Idr'ln[X+../X -1- ~]!+expi-..!E...+ 

A r r'2 1 

. r ----22- . r+ ---;-r.y-
+..!.. Idr 'ln[X- .,jX 2-1- LtL]! =exp I- i~-..!.. Idr 'ln[X +VX 2-1- A: L]!+ 

Ar r'2 4 Ar r'2 

· r + 2 2 
+ expl- i-7!.-..!.. I dr'ln[X- ..;x 2-1- ~] 1. 

4 A r r ,2 
(2. 14) 

This relation for flO results in the following condition of 
quantization 

r+ 2 A22 r r A2A2 
j_ I dr ln[X(r)+ ..;x (r)-1- _!l_]+A arctg-=- + -=-ln../1+-

2
--

A r_ _r2 AA A r 

----
r+ r + A2 A2 

- A arc tg -- - - ln..; 1 + --- = rr ( n + 112 ) . 
AA A r 2 

+ 

Before applying to the potentials infinitely rising as 
r~~. let us establish, by an example of the potential given 
in the relativistic configurational representation 
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K2 
V(r) =- _s_ 

r (2. 15) 

what accuracy mat be expected from the relativistic WKB 
method. In ref. 1 1 it was shown that the exact solution of 
eq. (1.1) with potential (2.15) determines the condition 
of quantization 

M -----K;r-
_n_ =v1-~ (2 16) 
2 mc2 4 n 2 ' • 

whereas the calculation of integral (2.7) for potential (2.15) 
results in the relation 

M n K~ x n 
-- = y 1- -(1- - ) ; 
2 mc 2 4n2 rr 

Mn 
xn =arc cos--- 0 

2mc2 
(2 .17) 

Comparison of (2.16) and (2.17) shows that in the Coulomb 
potential (2.15) the accuracy of the relativistic WKB method 
increases, like in nonrelativistic quantum mechanics, for 
high lying levels, i.e., when arccos ~<<rro 

2mc 
For potentials V(r)=ar 6 , s > O the condition (2.14) 

can be simplified by taking the dependence on the centri
fugal term out of the integral sign. In the nonrelativistic 
formalism this transformation, called "modified WKB method" 
is performed by passing to the variable 

r -
Z(r)= Jdr'ym[E-V(r')] 

0 

(see ref. 1 101 
) in the Schrodinger equation. However, the 

same result can be achieved (see Appendix) by dividing in 
the nonrelativistic condition of quantization the integra
tion range into two parts (see Fig. 2). In region I the 
main contribution is due to the centrifugal term, and the 
potential is considered as a perturbation while in region 
II the main contribution comes from the potential, and 
the centrifugal term is taken as a perturbation. 

In the relativistic theory for potentials V ( r) =ar 6 
, s> 0 

the same situation holds: the left reversal point r is 
mainly defined by the centrifugal term 

All. o r = -~, 
- sh Xo 

x
0

=Arch2L 
2mc~' 

and the right one r+ , 
~=0, by the condition 

by the potential V ( r) , 

X(r+)=1o 

8 

(2.18) 

i.e., like for 

(2.19) 

"2 
Yetf( r) = V(r) + M2r2 

/\2 

/WiT 

r1 R r r 

Fig. 2. The shape of the effective potential in the radial 
quasiclassical relativistic equation. 

Therefore we make here the same splitting of the integral 
(2.14) into two parts at a point R lying in the classically 
admissible region of motion (the value of R is taken to be 
large in comparison with r _ =A A I sh x 

0 
) 

1 
A 

r + 2 2 
f dr 1n [X ( r) + v x2 ( r)- 1- LA:] = I 1 + I 2 r2 

(2.20) 

Assuming the contribution of the interaction potential to be 
small in this region, we obtain for the term I 1 by expan
ding in powers of 1 / R 2 the following expression 

R ------2~-

1. = ~- f drln[X+vX
2
-1- ~]= ..lLx t 

" r_ r A 0 

Af-..2 
+ -~-R . 

-xo 
e -----

2shxo 
Arr + 
2 

· g 



+ A [ arc sin ln ( ch X ) - 0 ]. 
shx 

0 

Fori2 expansing the logarithm in 1/ P. 2 

~ 2 2 
I 2 ; } I d r ln l X + y X 

2 
- 1 _ ~- ] 

R r2 

-xo 
r+ R AA2 • ~--t- f drx (r)- X0T- 2& 2shx

0 0 

(2. 21) 

we get 

(2. 22) 

where r+ is the classical reversal point for f=O defined 
by the condition X(r+ )=1. The condition of quantization 
(2.14) in the same approximations takes the form 

r+ 
1 I _ _2 2 2 ~;- r dr ln [ X ( r) + y x (r ) _ 1 _ ~~] + 

r2 

ln ( ch X ) · 1 A 77 1 
+A[ 0 +arcsin--]- 2 =77(n + 

2
). 

shx o chxo 

(2. 23) 

Inserting (2.20) defined by (2.21) and (2.22) in (2.23) 
leads to the condition of quantization 

1 r+ A 1 
A"Idrx(r)=77(n+2+2). (2.24) 

r_ 

whence for potentials V(r)=ar s (s > O) we derive the fol
lowing condition of quantization 

- 2mc2 lis 112+1/s 1 -112-lls 
y 77

2 ( --) • [ sh X ] • r (1 + -) P 
1 12 ( ch X ) = 

a n s - n 

=A77(n+ U 2 +3 / 4). 
(2. 25) 

v 
where P 11 ( ch X ) is the Legendre function. 
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ll 

For the oscillator interaction s = 2 we get 

X X 
2ychx n + 1 [ K(th +) -E(th T)) 

- ' a e 3 = v--A77(n+ -+ -) 
2mc2 2 4 ' 

(2.26) 

where K and E are complete elliptic integrals. 
For the linear potential V(r) =ar the condition of quanti

zation is of the simplest form 

x chx -shx =z-a-A77(n+-£.- +~). 
n n n 2 mc2 G 4 

(2. 27) 

Expressions (2.24) to (2.27) determine the explicit depen
dence of orbital momentum f on the resonance energy and, 
thus, the relativistic Regge trajectories of mesons composed 
of two ~uarks. 

In 12 it was shown that equation (1.1) is relativistic 
invariant due to the invariant nature of the modulus of the 
"relativistic relative coordinate" and the invariance _of 
eigenvalues of the square of the orbital momentum of the 

1 1 
relative motion, introduced in this representation in ref.

2 

3. CALCULATION OF THE LEPTON WIDTHS OF MESON DECAYS 

It is commonly assumed that the lepton (f) width of decays 
of mesons (!1) in state f= 0 is given, by analogy with the 
positronium, by the formula (see refs. 1 12,13/ ) 

+- 2 2 l~~'e-o(O)J 2 
r(/l .. e e )=1677•eq a. ~2--- (3.1) 

where e~ is the quark charge squared in 1he three-colour 
model. The quasiclassical wave function 'I' =0 (r) finite at 

h . . . f h f WKB t e or1g1n 1s o t e orm 

<~>o(r) covMc 1 1 1 r 
'I' (r-),.- = • -==.-.sin[- I dr'x (r')]. 

f,.o r Y sh X (r ) Y 477 r A r (3.2) 

The normalization coefficient c 0 in (3.2) can easily be 
calculated by using the fact that in the range of applica
bility of quasiclassical theory the argument of sin in (3.2) 
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is a rapidly oscillating function. Therefore, like in the 
nonrelativistic theory, the sin squared in the normalization 
integral can be replaced by its average, 1/2: 

oo 2 I co 12 r + 
4 IT I I <I> 0 ( r ) I dr = -- . 4 IT • I o t=O 2 r 

_j_r_ = 1 . 

vx2 -1 

On the other hand, differentiating (2.7) with respect to 
principal quantum number we get 

2 r+ 
leal =[21T I ~-l- 1 

r_ shx(r) 
= _1_,_1_.~ 

41T2 'he dn 
(3. 3) 

Consider first the quark confinement potentials without 
singularities at the origin: V(r)=ar 8 

, s > O. Evidently, 
in this case the solution of eq. (1.1) with large n should 
turn into solutions of the free equation 141 at small distances 

WKB free 
'P (r) I ... 'Pfree(r) =~~-

f=O r->0 f=O 

=ao 

. r v 
smA"'n 

..!:.... • sh Xn 
A 

M ~2 mc 2 -chx . 
n n 

(3 .4) 

Comparing (3.2) with (3.4) at r =0 
relation between coefficients c 0 

results in the following 
and a 0 

co ---
a0=- v' shx . A n (3.5) 

With (3.3) and (3.5) we arrive at the relativistic expression 

I 'P e = o (O) 12 = I .!. oCr)- 121 
r r=O 

2 
1211-. aol 

sh Xn 

A-2 X 2 dM - 3 d( ) 3 

= -----. __ n__ • -- = ~-- • ~. _2SL_ 
41T 2. fi c sh X n d n 4 IT 2 3 d n 

(3.6) 

For the linear potential, (3.6) and (2.27) produce the rela
tion 

I 'P rel.(O)I2 = _1_. ~-. -~ 
e = 0 h 2 4 IT sh X 

(3.7) 

n 

12 

which differs from the nonrelativistic relation 

I 'I' nonre I. (O) 12 = _1_ . ..£...!!!.. 
f=O fi2 41T 

by the relativistic factor X /shx n only*. The factor x / shx 
does not contribute in the nonrelativistic limit <x/ shx-.1 
as c ... oo ) and serves as a measure of the contribution of 
relativistic effects 1 14 1 . 

. h . h 11131 As ~s s own ~n papers on t e quark mode correct 
widths of meson decays results from using the combined ·po-
tentials 

2 
K S S V(r) = ---+ar , s > O. 
r (3.8) 

In the field of such a confinement potential (of the "funnel" 
type) there may exist the energy levels M<2mc 2 .Let us find 
for this case the decay widths. 

Let the energy value in the potential (3.8) for a given 
level be determined from the condition of quantization. Then 
for a given fixed energy M< 2 me 2 the wave function around 
the origin is known to be defined by the Coulomb part of the 
potential 1 51 : 

K2 

Mn < 2mc 2 -1 
'P ( ) -X rA - iX r -c n n 

Coulomb,P=O - Coul:e •8 .e 

s 
iXn~Xn 

2 
-1 

x 2 F 1 (1 - irA , K S • 
1- --·-- . 

2iXn 
2; 1-e ), 

2 sinxn 

Mn 
X = arccos~· 

n 2mc 

whence it follows that 
2 

M n <2m c 2 · 2 
I 'P (0) I = I c c 1 I X Coul. ou . 

K2 2' 
xi 2F1(1- s 1·2·1-e 1Xn)l2 

2 sin Xn ' ' ' 

* The ·analogous factor appeared also at the width in 
ref. 18 1 • 

(3. 9) 

(3.10) 
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The normalization constant, cCoul. will be calculated by 
comparing the exact WF (3.9) and quasiclassical solution 
at r large enough but still providing the dominant role of 
the Coulomb part (3.8). As can be easily verified, in quantum 
mechanics the correct value of the normalization constant 
for the Coulomb WF follows from comparing the exact solu
tion with energy fixed with the WKB solution taken in the 
classically forbidden region ~ 

Comparing the asymptotic of the exact solution of (1.1) 
with the Coulomb potential (2.15) 

Mn < 2m c2 cCoul. 1 1 r 
IJI ( r):: ----. -- • - • exp [-x- -

c ou!., P = 0 2 sin x r / A A 
I ' (1+ _a_) 

a 

2 sin x 

2sinx 

ln ( !.!.._ • sin x)] 
A 

(3.11) 

with the WKB solution in the classically forbidden region 

M n< 2m c2 

IJI 
WKB , P = O 

_1_. 1_. ~KB. 1 -------- X 
...;-:t; 2 -../ Mc \ 1(-x2 (r) 

r 
x exp[-A J dr ' arccos!X(r')l 

r + 

( 3. 12) 

at large r , we arrive at the relation between constants 

Z rna s 

4h3-c 2 = c 2 
Cou!. WKB (3. 13) 

which exactly coincides with the analogous relation in quan
tum mechanics 1 151 . 

* Asymptotics of both these solutions at large r have no 
oscillations and coincide in form.This approach gives the 
same result as a known method based on the comparison of the 
exact solution of the Schrodinger equation obtained neglect
ing the energy value (that provides its oscillatory nature) 
with the WKB solution in the classically admissible region : 51 

14 

As a result combining formulae (3.1), (3. 3), (3.10) and 
(3.13) we obtain for the width of the decay of meson~ 
with massM and in state with f =O into the lepton-anti
lepton. pair the following expression 

r f ( ~ .... e + e- ) = 16 77 . e ~ 2 • a • 

2 

Zm a s 

16 rr2 fl 3 
1 dM 

• M2 ·ern-· 

I ( 
K 2" 

x 2F 1 1- ~-- ' 1 ; 2 ; 1 - e ' X n ) 12 
sm xn 

Mu 
X = arccos~ 

n 2mc 
a s 

2 
K s 

be 

(3. 14) 

It is interesting to note that in the case of positro
nium, i.e., for the pure Coulomb interaction, K 8 = e , m = me 
the expression (3.14) differs from its nonrelativistic ana
log only by the hypergeometrical function which due to the 
condition of quantization (2.16)K; / 2sinxn = n is a polyno
mial and for first values of n has the form 

K2 
s 

2
- .-- .1 ·2· . iX sm X • • - 2I e n I 2F 1 (1 -

2 
s in x ) I = 

n 
n (3. 15) 

{ 

1 ' 

3 a 2 

1 + [6-. 

n = 1 

n = 2. 

From (3.15) it is clear that for n = 1 (3.14) coincides in 
form with the nonrelativistic expression, and the hypergeo
metrical function contributes to higher states n > 1 giving 
corrections of order a 2 and negligible corrections of higher 
orders in a 2n. 

CONCLUSION 

We have found the relativistic analog of the modified 
WKB method of quantum mechanics applicable for solving the 
relativistic two-particle quasipotential equation in the 
relativistic configurational representation.Simple relati
vistic formulae are derived for calculating the energy levels 
and Regge trajectories of the two-particle system of, what 
is the same, the mass spectrum of mesons considered as 
a quark-antiquark system. 
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A combination of the relativistic WKB condition of nor
malization with the known Coulomb solution of the relati
vistic quasipotential equation allowed us to obtain formula e 
for the lepton widths of meson decays. 

Experimental data on the mass spectrum and Regge trajec
tories of P , w mesons family have been analysed on the 
basis of formulae (2 .24) and (2.25) in ref. ' 1 6 ~ It was f ound 
that the Regge trajectories of p meson in the interval of 
experimentally measured masses are linear with high accuracy. 
This fact can be explained by the essentially relativistic 
nature of the system of two light quarks that is reflected 
in a considerable difference of fac tor x

9
/ shxn from unity. 

Regge trajectories of the family of J , ~ mesons are 
plotted in Fig.3 whic h displays a tendency of approaching 
the linear dependence for trajectories of higher radial exci
tations ~" and ~ '" for which the relativistic factor 

2 2 11:v I . . v / c ;:: 0.4 andx shx notlceably dlffers from zero. Results of 
the description of the family of y meson within this model 
by formula (2.25) and S = 1 were presented earlier in ref ! 1.71 

However, it should be noted that a more detailed compa
rison with experiment and discussion of the spectrum is to 
be carried out after including the dependence on quark spins. 
We intend to solve this task on the basis of the three
dimensional covariant spin approach developed in refs. 16 •181 . 

I. 'ljl"' 

3 

2 

M;(r3Bl 

9 11 13 15 17 19 21 23 25 27 29 31 33 35 37 

Fig. 3. The Regge trajectories of J / ~ mesons calculated 
by formula (2.27). 
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APPENDIX A. 

MODIFIED CONDITION OF QUANTIZATION IN NONRELATIVISTIC 
QUANTUM MECHANICS 

Following the procedure described in Sec. 2 we split 
the range in nonrelativistic integral 

r ,. -------
. A2 

I = f dr v k 2 - V ( r ) - -- = rr ( n + 112 ) 
r 2 (A.1) 

into the (first) range from 
the most contribution comes 
and the (second) range from 

2 2 

r_ 
from 
that 
V (r) 

to arbitrary (large)R, where 
the centrifugal term A2/ r2 
R to r+ , where the term 

A / r is small compared to 

R ----r 
. dr 2 A 

1 = 11 +1 2 = kJ -v·r --
2 

+ 
r r 

r ~ ,-2--- A2 
~ J dr [ v k - V (r)- =;::=:=::=--]. 

R 2 r 2y" k 2 - V ( r) 

(A.2) 

The first integral being limited to the terms of lowest orders 
in r_ / R is: 

2 

I {R 1 r rr r 
1

= k --~-r (-----)! 
2 R - 2 2 

and 12 for Rlr << 1 
+ 

r+ ----- A2 
l2= f dry'k2 -V(r)- kR- --

0 2R.k 
that results in the modified condition of quantization 

r+ 
/ dry'k

2
-V(r)=rr(n+ 4+ 1/ 2) (A.3) 

coinciding with that obtained in ref. 1101. 
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