Объвдиненный ИНСТИТУТ Ядерных
исследований
дубна

$$
5 / 11-79
$$

$0-35$
E2-12511
V.I. Ogievetsky, E.S.Sokatchev

THE GRAVITATIONAL AXIAL SUPERFIELD AND THE FORMALISM
OF DIFFERENTIAL GEOMETRY

E2-12511

V.I. Ogievetsky, E.S.Sokatchev

THE GRAVITATIONAL AXIAL SUPERFIELD AND THE FORMALISM
OF DIFFERENTIAL GEOMETRY

Submitted to ЯФ

Грапитационное аксиальное сулерполе и формалиам дифференинальной геометрии
На основе простейией гоуппы сулергравитации развивается формаммзм диференциальной геометрии. В нем все геометрические объекты сунертетрадм, свлзности и так далее - вырамаются через аксиальное гравитационное суперполе.

Работа выполнена в Лаборатории теоретинеской физики,оияи.

Ogievetsky V.I., Sokatchev E.S.

E2-12511

The Gravitational Axial Superfield and the Formalism of Differential Geometry
On the basis of the simplest supergravity group a differentialgeometry formalism is developed. There all the geometrical objects geometry formalism is developed. There all the geometrical objects axial gravitational superfield.

The investigation has been performed at the Laboratory of Theoretical Physics, JINR.

1. Earlier $/ 1,2 /$ we have described the simplest supergravity group. It is the complex supergroup of general coordinate transformations in the left-handed $\left\{\left(x_{L}^{m}, \theta_{L}^{\mu}\right)\right\}$ and right-handed $\left\{\left(x_{R}^{m}, \bar{\theta} \tilde{R}_{R}^{\dot{\mu}}\right)\right\}_{4+2-d i m e n a i o n a l}$ conjugated chiral superspaces (SS below): Le Lefot SS $x_{L}^{i m}=x_{L}^{m}+\lambda^{m}\left(x_{L}, \theta_{L}\right)$

$$
x_{R}^{\prime m}=x_{R}^{m}+\bar{\lambda}^{\text {Right }}\left(x_{R}, \bar{\theta}_{R}\right)
$$

$$
\theta_{L}^{\prime \mu}=\theta_{L}^{\mu}+\lambda^{\mu}\left(x_{L}^{*}, \theta_{L}\right)
$$

$$
\bar{\theta}_{R}^{\prime \mu}=\bar{\theta}_{R}^{\mu}+\bar{\lambda}^{\mu}\left(x_{R}, \bar{\theta}_{R}\right)
$$

$$
\text { Here } x_{R}^{m}=\left(x_{L}^{m}\right)^{*}, \bar{\theta}_{R}^{\mu}=\left(\theta_{L}^{\mu}\right)^{\dagger} \text { and } \lambda^{m}\left(x_{1}, \theta_{L}\right), \lambda^{\mu}\left(x_{L}, \theta_{L}\right)
$$ their conjugates $\bar{\lambda}^{m}\left(x_{R}, \bar{\theta}_{R}\right), \bar{\lambda}^{\mu}\left(x_{R}, \bar{\theta}_{R}\right)$ are arbitrary infinitesimal chiral superfunctions-parameters.

The complex 4+2-dimensional SS can be regarded as an $8+4-d i-$ mensional SS $\left\{\left(x_{L}^{m}, x_{R}^{m}, \theta_{L}^{\mu}, \bar{\theta}_{R}^{\mu}\right)\right\}$ with complex structure. Into this SS a real physical SS $\left\{\left(x^{m}, \theta^{\mu}, \bar{\theta}^{\dot{\mu}}\right)\right\}$ is imbedded as a $4+4$-dimensional supersurface given by four equations $x_{i}^{m}-x_{R}^{m}=2 i \mathcal{H}^{m}\left(\frac{1}{2}\left(x_{L}^{n}+x_{R}^{n}\right), \theta_{L}^{v}, \bar{\theta}_{R}^{\nu}\right)$. Ilere \mathcal{H}^{m} is an arbitrary real superfunction. The coordinates of the physical SS are

$$
\begin{equation*}
x^{m}=\frac{1}{2}\left(x_{L}^{m}+x_{R}^{m}\right), \theta^{\mu}=\theta_{L}^{\mu}, \bar{\theta}^{\mu}=\bar{\theta}_{R}^{\mu} . \tag{1.3}
\end{equation*}
$$

Under the transformations (1.1) the coordinates (1.3) as well as the superfunction \mathcal{J}^{m} change (because the supersurface equations
(1.2) must be covariant):
$x^{i m}=x^{m}+\frac{1}{2} \lambda^{m}\left[x^{n}+i \mathcal{H}^{n}(x, \theta, \bar{\theta}), \theta^{\nu}\right]+\frac{1}{2} \bar{\lambda}^{m}\left[x^{n}-i H^{n}(x, \theta, \bar{\theta}), \bar{\theta}^{\dot{\nu}}\right]$

$$
\begin{align*}
& \theta^{\prime \mu}=\theta^{\mu}+\lambda^{\mu}\left[x^{n}+i \mathcal{H}^{n}(x, \theta, \bar{\theta}), \theta^{\nu}\right] \tag{1.4b}\\
& \bar{\theta}^{\prime \mu}=\bar{\theta}^{\dot{\mu}}+\bar{\lambda}^{\mu}\left[x^{n}-i \mathcal{H}^{n}(x, \theta, \bar{\theta}), \bar{\theta}^{\dot{\nu}}\right] \tag{1.4c}\\
& \mathcal{H}^{\prime m}\left(x^{\prime}, \theta^{\prime}, \bar{\theta}^{\prime}\right)= \mathcal{H}^{m}(x, \theta, \bar{\theta})-\frac{i}{2} \lambda^{m}\left[x^{n}+i \mathcal{H}^{n}(x, \bar{\theta}, \bar{\theta}), \theta^{\nu}\right]+ \\
& \quad+\frac{i}{2} \bar{\lambda}^{m}\left[x^{n}-i \mathcal{H}^{n}(x, \theta, \bar{\theta}), \bar{\theta}^{\dot{v}}\right] . \tag{1.4d}
\end{align*}
$$

Thus the supergravity group is realized nonlinearly in the SS $\left\{\left(x^{m}, \theta^{\mu}, \bar{\theta}^{\dot{\mu}}\right)\right\}$ and on the (axial) superfield $\mathcal{H}^{m}(x, \theta, \bar{\theta})$. In the case of Einstein supergravity the parametere λ are restricted by the condition of supervolune preservation in the left- and right-handed SS:
$\frac{\partial}{\partial x_{L}^{m}} \lambda^{m i}\left(x_{L}, \theta_{L}\right)-\frac{\partial}{\partial \theta_{L}^{\mu}} \lambda^{\mu}\left(x_{L}, \theta_{L}\right)=0$.
$\frac{\partial}{\partial x_{R}^{m}} \bar{\lambda}^{m}\left(x_{R}, \bar{\theta}_{R}\right)-\frac{\partial}{\partial \bar{\theta}_{R}^{j}} \bar{\lambda}^{\dot{\mu}}\left(x_{R}, \bar{\theta}_{R}\right)=0$.
As shown in Ref. ${ }^{/ 2 /}$, after a partial gauge-fixing (in order to avoid the nonpolynomiality of the law (1.4)) the gravitational superfield (SF below) $\mathcal{l}^{m}(x, \theta, \bar{\theta})$ contains the physical fields of graviton $e^{a m}(x)$ (the vierbein field) and gravitino $4_{\alpha}^{m}(x)$ (the Rarita-Schwinger field), and the awxiliary fields $S(x), P(x), A(x)$ 。 The transformations (1.4), (1.5) in terms of these fields reduce to general transformations of the coordinates x^{m}, to local Lorentz trensformations, and to local supersymmetry ones. So, the supergroup (1.4), (1.5) describes the whole gauge freedom inherent to Einstein supergravity, and the SF \mathcal{H}^{m} contains in a minimal way all the necessary gauge fields.

Now we have to build up a dynamical theory on this minimal ground, i.e., to write down covariant equations of motion, invariant action, and counterterma in terms of our single dymamical variable \mathcal{H}^{m}. For this purpose the differential-geometry formalism is convenient*).

In our approach the concepta and objects of this formaliam (world and local Lorentz groups, supervierbeins, connections, etc.) are more specific than in the approaches of Akulov, Volkov and Soroka $/ 3 /$, Wess and Zumino $/ 4,5 /$, Brink, Cell-Mann, Ramond and Schwarz $/ 6$ \% . Bedding, Downes-Martin and Taylor $/ 7 /$, etc. Our world supergroup (1.4), (1.5) is simpler than the supergroup of general coordinate transformations in the physical SS considered in Refs. /3-7/. Further, in Refs. $3-7 /$ the local Lorentz group (acting on *) Notice that Siegel and Gates $/ 8 /$ develop a formalism of the same kind. However, they use both vector and spinor SF.
the SF indices) is independent of the world supergroup, whereas in our case it is completely induced by the world one. Finally, we shall express all the supervierbeins (which are independent variables in Hefs. ${ }^{13-1 /}$) and connections in terms of the single SF $\chi^{m}(x, \theta, \bar{\theta})$.

The contents of the paper is as follows. In Sect. 2 some brief information about differential geometry in SS is given. In Sect. 3 the general and chiral scalar SF are defined, and their derivatives are written down in left, right, and sjmmetric coordinate bases. The analysis of the transformation properties of the spinor-coordinate derivatives carried out in Sect. 4 leads to a natural definition of the local Lorentz group for SF with external indices and of the covariant derivatives of scalar Si. In Sect. 5 connections are introduced, and the vector covarient derivative is defined as the anticomutator of the spinor ones. In Sect. 6 the supervierbeins are extracted out or the expressions for the covarient derivatives of the scalar SF. The expressions obtained contain, besides H^{m}, some additional quantities. In order to find the latter, in Sect. 7 left and right supervierbeins. (connected with the covariant derivatives of the chiral scalar SF) are introduced. With their help in Sect. 8 the derivation of the supervierbeins and connections in terms of \mathcal{H}^{m} is completed. In Sect. 9 the simplest Lagrangian for pure supergravity is discussed. A summary of the main results of the paper is given in Sect. 10. Section 11 contains concluding remarks.
2. Basic concepts of differential geometry. The points of the world SS can be denoted by Z^{M} : $z^{M}=\left(x^{m}, \theta^{\mu}, \bar{\theta}^{\mu}\right)$.
Consider some (world) supergroup acting in this SS $z^{\prime M}=z^{M M}\left(z^{N}\right)$.
In Refs. ${ }^{13-7 /}$ it is the supergroup of general coordinate transformations, whereas in our case it is the supergroup (1.4), (1.5). Define scalar SF as a superfunction $C(z)$ transforming according to
$q^{\prime}\left(z^{\prime}\right)=q(z)$.
Then
$\left(\partial_{M} \phi\right)^{\prime} \equiv \frac{\partial \phi^{\prime}\left(z^{\prime}\right)}{\partial z^{\prime M}}=\frac{\partial z^{N}}{\partial z^{\prime M}} \partial_{N} \phi(z) ;$
generalizing, one can define co- and contravariant world tensor SF, e.g.
$p_{M}^{\prime}\left(z^{\prime}\right)=\frac{\partial z^{N}}{\partial z^{\prime M}} \phi_{N}(z) ; \quad p^{\prime M}\left(z^{\prime}\right)=q^{N} \frac{\partial z^{\prime M}}{\partial z^{N}}$.
Two such objects can be contracted invariantly

$$
\begin{equation*}
p^{M} \psi_{M} \equiv p^{m} \psi_{m}+p^{\mu} \psi_{\mu}+p_{\mu} \psi^{\mu} \tag{2.5}
\end{equation*}
$$

Note that the transformations (2.5) mix the world vector indices (m) of the $S F$ with the spinor ones ($\mu, \mu)$. In flat supersymmetry the external $S F$ indices transform under the Lorentz group which does not mix them. In nonflat $S S$ this can be achieved by introducing a new kind of SF indices and a local Lorentz group acting (infinitesimally) on them as follows
$q_{A}^{\prime}(z)=\left(1+i \Omega^{c d}(z) \Lambda_{c d}\right)_{A}^{B} p_{B}(z) \equiv q_{A}(z)+L_{A} B p_{B}(z)$ Here $S^{c d}(z)$ are antisymmetric tensor superfunctions-parameters, and $\left(\Lambda_{C d}\right)_{A}{ }^{B}$ are the Lorentz group generators. The new indices will be called Lorentz indices (to be distinguished from the world ones (2.5)).

Let us stress that owing to the block-diagonal structure of the Lorentz generators in Eq. (2.7) the vector (a) and spinor (α, $\dot{\alpha}$) indices are not mixed. Nevertheless, for convenience we shall usually denote the whole set $(a, \alpha, \dot{\alpha})$ by a single letter A :
$\phi_{A}=\left(\begin{array}{l}\phi_{a} \\ \phi_{\alpha} \\ \phi_{\dot{\alpha}}\end{array}\right)$.
The indices A are raised and lowered by the matrix $\eta^{A B}$
$q^{A}=\eta^{A B} q_{B}, \quad \eta^{A B}=\left(\begin{array}{cc}\eta^{\alpha 6} & 0 \\ \varepsilon^{\alpha \beta} & \\ 0 & \varepsilon_{\alpha \beta}\end{array}\right)$.
We shall deal, as a rule, with the invariant contraction $p^{A} \psi_{A}=p^{a} \psi_{a}+p^{\alpha} \psi_{\alpha}+p_{\dot{\alpha}} \psi^{\dot{\alpha}}$
although $q^{a} \psi_{a}, q^{\alpha} \psi_{\alpha}$ and $\varphi_{\alpha} \psi^{\dot{\alpha}}$ are, of course, invariant separately too.

In Refs. ${ }^{3-7 /}$ the local (in SS) Lorentz group is regarded as an independent one, i.e., its parameters $S^{c d}(z)(2.7)$ are not supposed to be connected to the world parameters (2.2). Correspondingly, the $S F^{\prime}{ }_{s} P_{A}(Z)$ behave as scalars under the world supergroup transformations (2.2):
$\phi_{A}^{\prime}\left(z^{\prime}\right)=p_{A}(z)$.
We shall see later on that in our case, on the contrary, the local (in SS) Lorentz-group-transformations will be induced by the morld ones.

The simplicity of the tensor analysis for the Lorente group is the main advantage when dealing with Lorentz-type objects. To be able to turn world indices into Lorentz ones, new objects supervierbeing $E_{A}^{M}(z), E_{M}^{A}(z)$ are introduced:
$q_{A}(z)=E_{A}^{M}(z) q_{M}(z) ; \phi^{A}(z)=E_{M}^{A}(z) q^{M}(z)$,
$E_{M}{ }^{A}(z)$ being the inverse matrix of E_{A}^{M} :
$E_{A}{ }^{M} E_{M}^{B}=\delta_{A}^{B}, E_{M}{ }^{A} E_{A}{ }^{N}=\delta_{M}^{N}$.
Comparing Eq. (2.5) with Eq. (2.7) one finds the transformation laws $E_{A}^{\prime M}\left(z^{\prime}\right)=\left(\delta_{A}^{B}+L_{A}^{B}\right) E_{B}^{N}(z) \frac{\partial Z^{\prime M}}{\partial Z^{N}}$
$E_{M}^{\prime}{ }^{A}\left(z^{i}\right)=\frac{\partial z^{N}}{\partial z^{\prime M}} E_{N}{ }^{B}(z)\left(\delta_{B}^{A}-L_{B}^{A}\right)$.
We would like to point out an interesting fact. Owing to the block-diagonal structure of the generators $\left(\Lambda_{c d}\right)_{A}^{B}$ there exist, besides $E_{M}{ }^{A} E_{A}{ }^{N}\left(=\delta_{M}{ }^{N}\right)$, three more world tensors
$\left(\Pi^{2}\right)_{M}^{N}=E_{M}^{a} E_{a}^{N},\left(\Pi^{2}\right)_{M}^{N}=E_{M}^{\alpha} E_{\alpha}^{N},\left(\Pi^{3}\right)_{M}^{N}=E_{M \dot{\alpha}} E^{\dot{\alpha} N}$.
They form a complete set of orthogonal projection operators (see Eq. (2.13)):
$\left(\Pi^{1}+\Pi^{2}+\Pi^{3}\right)_{M}{ }^{N}=E_{M}{ }^{A} E_{A}{ }^{N}=\delta_{M}{ }^{N}$
$\left(\Pi^{1}\right)_{M}^{N}\left(\Pi^{1}\right)_{N}^{P}=E_{M}^{a} E_{a}^{N} E_{N}^{b} E_{b}^{P}=E_{M}^{a} E_{a}^{P}=\left(\Pi^{1}\right)_{M}^{P}$
$\left(\Pi^{1}\right)_{M}^{N}\left(\Pi^{2}\right)_{N}^{P}=E_{M}^{a} E_{a}^{N} E_{N}^{\alpha} E_{\alpha}^{P}=0$, etc.
One can say that they decompose the space of world indices M into three independent sectors reflecting, in fact, the vector and spinor sectors in the space of Lorentr indices A.

The Lorentz-covariant derivative of a scalar SF is defined with the help of E_{A}^{M} :
$D_{A} \phi(z)=E_{A}^{M}(z) \partial_{M} \phi(z)$.
This definition can be extended to include SF with external indices
$D_{A} \phi_{B}=E_{A}^{M} \partial_{M} \phi_{B}+\omega_{A B}{ }^{c} q_{C}$.
Here
$\omega_{A B}{ }^{c}(z)=i \omega_{A}{ }^{d e}(z)\left(\Lambda_{d e}\right)_{B}{ }^{C}$
are Lorentz-algebra-valued connection coefficients. To provide teneor transformation law for $D_{A} \Phi_{B}(2.16)$ they must transform as follows:

$$
\begin{align*}
\omega_{A B}^{\prime}{ }^{c}\left(z^{\prime}\right) & =\omega_{A B}{ }^{c}(z)+L_{A}^{D} \omega_{D B}{ }^{c}+L_{B}^{D} \omega_{A D}{ }^{c}+ \\
& -\omega_{A B}{ }^{c} L_{C}{ }^{D}-E_{A}{ }^{M} \partial_{M} L_{B}{ }^{c} \tag{2.18}
\end{align*}
$$

So, the supervierbeins and connections enable us to deal with Lorentz-covariant $S F$ and their derivatives. The quantities $E_{A}{ }^{M}$, $E_{M}{ }^{A}, \omega_{A B}{ }^{C}$ themselves are not Lorentz tensors. However, the (anti) commutator of two covariant derivatives (2.16) gives tensors constructed out of E and ω^{*})

$$
\begin{equation*}
\left[D_{A}, D_{B}\right\} \phi_{C}=T_{A B} D D_{D} \phi_{C}+R_{A B C} D_{D} \tag{2.19}
\end{equation*}
$$

$T_{A B} D$ is called "torsion tensor" and
$R_{A B C}{ }^{D} \equiv R_{A B}{ }^{e_{f}}\left(\Lambda_{e_{f}}\right)_{C}^{D}-$
"curvature tensor". Combining these tensors, matter SF and their covariant derivatives according to the simple Lorentz rules, one can construct Lagrangians, counterterms, etc.

So far we have considered the supervierbeins $E_{A}{ }^{M}(z)$ and the connections $\omega_{A B}{ }^{C}(z)$ as independent quantities. In a straightforward approach to supergravity $/ 3-7 / E_{A}^{M}(z)$ are the basic potentials. However, they are too coraplicated SF, and contain a great number of superfluous fields (for instance, the $S F E_{a}^{m}(z)$ has in its decomposition spins 3,5/2, etc.). To eliminate these extra degrees of freedom, one has to fix severely the gauge and to impose a set of (happily guessed) algebraic constraints on the components of the torsion tensor T. So the atraightforward approach begins with the very general framework of differential geometry and then gradually reduces it to the essential physical content.

We are also going to utilize the formalism described above. However, in our case it will be built on a more concrete and economical ground. This means, first, that all the quantities (E_{A}^{M}. $\omega_{A B}{ }^{c}$ and afterwards $T_{A B}{ }^{c}, R_{A B C}{ }^{D}$) will be expressed in terms of the single $S F \mathcal{H}^{m}$. Thus we shall automatically get rid of the most of the superfluous components. Second, our group from the very beginning is much smaller. Instead of the general coordinate transformations in the physical $S S$ we consider the simpler transforma-

$$
\text { *) }\left[D_{A}, D_{B}\right\}=D_{A} D_{B}-(-1)^{p(A) p(B)} D_{B} D_{A} \quad(p(a)=0, p(\alpha),=p(\dot{\alpha})=1)
$$

tions in chiral SS; moreover, an independent local Lorentz group is not needed. So, we reduce essentially the initial gauge freedom in the theory.

Let us begin to realize this programe.
3. Scalar superfields and their derivatives. The general scalar SF are naturally defined in our scheme as objects tranaforming under the supergroup (1.4) as follows
$\phi^{\prime}\left(x^{\prime}, \theta^{\prime}, \bar{\theta}^{\prime}\right)=\phi(x, \theta, \bar{\theta})$.
Now recall that the initial structure of our SS and supergroup was chiral. This meant, in particular, that in the left and right SS chiral SF could be defined, i.e.,functions of x_{2}^{m} and θ_{2}^{μ} or x_{R}^{m} and $\bar{\theta} \dot{\mu}_{R}^{\prime}$ only. The concept of chiral SF remains meaningful in the real (physical) SS too. To see this it is convenient to introduce chiral coordinate bases into the physical SS. Let us call "symmetric" the basis in which the pointa of the SS are parametrized by the coordinates $x^{m}, \theta^{\mu}, \bar{\theta}^{\mu}$. The "left chiral" basis will be the one where independent variables are
$x_{L}^{m}=x^{m}+i \psi^{m}(x, \theta, \bar{\theta}), \theta^{\mu}, \bar{\theta}^{\mu}$
and in the "right"one
$x_{R}^{m}=x^{m}-i \mathcal{H}^{m}(x, \theta, \bar{\theta}), \theta^{\mu}, \bar{\theta}^{\mu}$.
Let us stress that introducing new bases we do not go into left or right SS but just change the variables in the physical SS itself.

Now one can easily define left (right) chiral SF as a SF dependeing only on x_{L}^{m} and θ^{μ} (or x_{R}^{m} and $\left.\bar{\theta}^{\mu}\right)$, and transforming according to the law
$\varphi_{L}^{\prime}\left(x_{L}^{\prime}, \theta^{\prime}\right)=\varphi_{L}\left(x_{L}, \theta\right), \bar{\varphi}_{R}^{\prime}\left(x_{R}^{\prime}, \bar{\theta}^{\prime}\right)=\bar{\varphi}_{R}\left(x_{R}, \bar{\theta}\right)$
where (see Eq. (1.4))
$x_{L}^{\prime m}=x_{L}^{m}+\lambda_{L}^{m}\left(x_{L}, \theta\right) ; \quad x_{R}^{\prime m}=x_{R}^{m}+\bar{\lambda}_{R}^{m}\left(x_{R}, \bar{\theta}\right)$
$\theta^{\prime \mu}=\theta^{\mu}+\lambda_{L}^{\mu}\left(x_{L}, \theta\right) ; \quad \bar{\theta}^{\prime \mu}=\bar{\theta}^{\mu}+\bar{\lambda}^{\mu_{\mu}}\left(x_{R}, \bar{\theta}\right)$.
The chiral SF can also be written down in the symetric basis, using Eqs. (3.2), (3.3):
$\varphi_{L}\left(x_{L}, \theta\right)=\varphi_{L}(x+i H(x, \theta, \bar{\theta}), \theta) \equiv \varphi(x, \theta, \bar{\theta})$

$$
\begin{equation*}
\bar{\varphi}_{R}\left(x_{R}, \bar{\theta}\right)=\bar{\varphi}_{R}(x-i H(x, \theta, \bar{\theta}), \bar{\theta}) \equiv \bar{\varphi}(x, \theta, \bar{\theta}) . \tag{3.6b}
\end{equation*}
$$

The labels L and R in Eqs. (3.5), (3.6) (and in what follows) show that the corresponding SF is written down in a chiral basis (but not that the SF itself is chiral). In the symmetric notation (3.6) the transformation laws of chiral SF coincide with Eq.(3.1). The chirality condition for a $\operatorname{SF} \varphi(x, \theta, \bar{\theta})$ can also be written down in differential form. In the corresponding chiral basis it has the obvious form
$\bar{\partial}_{\dot{\mu}}^{\dot{L}} \varphi_{L}\left(x_{L}, \theta, \bar{\theta}\right) \equiv \frac{\partial}{\partial \bar{\theta}^{\mu}} \varphi_{L}\left(x_{L}, \theta, \bar{\theta}\right)=0$
$\partial_{\mu}^{R} \varphi_{R}\left(x_{R}, \theta, \bar{\theta}\right) \equiv \frac{\partial}{\partial \theta^{\mu}} \varphi_{R}\left(x_{R}, \theta, \bar{\theta}\right)=0$.
In the symmetric basis it issomewhat more complicated. We shall
derive, for instance, the condition of left chirality. Regarding X, θ and $\bar{\theta}$ as independent variables, let us take the derivatives of Eq. (3.6a) with respect to $\bar{\theta}^{\dot{\mu}}$ and x^{m} :
$\frac{\partial \varphi}{\partial \bar{\theta}^{\mu}}=i \frac{\partial \mathcal{H}^{m}}{\partial \bar{\theta}^{\mu}} \frac{\partial \varphi_{L}}{\partial x_{L}^{m_{4}}}$,
$\frac{\partial \varphi}{\partial x^{m}}=(1+i \mathcal{H})_{m}^{n} \frac{\partial \varphi_{L}}{\partial x_{L}^{n}}$ or $\frac{\partial \varphi_{L}}{\partial x_{L}^{m}}=(1+i \mathcal{H})^{-1} n \frac{\partial \varphi}{\partial x^{n}}$,
$(1+i \psi)_{m}^{n} \equiv \delta_{m}^{n}+i \frac{\partial \mathcal{H}^{n}}{\partial x^{m}}$.
Substituting Eq.(3.9) into Eq. (3.8), one obtains the form of the left-chirality condition in the symmetric basis
$\bar{\Delta}_{\mu} \varphi \equiv\left[-\bar{\partial}_{\mu}+i \bar{\partial}_{\mu} \mathcal{H}^{m}(1+i \mathcal{H})_{m}^{-1}{ }^{n} \partial_{n}\right] \varphi=0$.
Analogoualy one derives the right-chirality condition as
$\Delta_{\mu} \bar{\varphi} \equiv\left[\partial_{\mu}+i \partial_{\mu} \mathcal{H}^{m}(1-i \mathcal{H})^{-1}{ }^{n} \partial_{n}\right] \vec{\varphi}=0$.
The differential operators $\Delta_{\mu}, \bar{\Delta}_{\mu}$ defined in Eqs. (3.11),
(3.12) will play an important role in what follows. It is easy to check that they can be rewritten as
$\Delta_{\mu}=\partial_{\mu}+i \Delta_{\mu} \mathcal{H}^{m} . \partial_{m}, \quad \bar{\Delta}_{\mu}=-\bar{\partial}_{\mu}-i \bar{\Delta}_{\mu} \mathcal{H}^{m} . \partial_{m}$.
Several useful identities for $\Delta_{\mu}, \bar{\Delta}_{\mu}$ are proved in Λ ppendix Λ. The operators Δ_{μ} and $\bar{\Delta}_{\mu}$ have also the meaning of spinor derivatives rewritten from the chiral bases into the symmetric one:
$\bar{\partial}_{\mu}^{L} \phi_{L}=\bar{\partial}_{\mu} \phi-i \bar{\partial}_{\mu} \mathcal{H}^{m}(1+i \mathcal{H})_{m}^{-2} \partial_{n} \phi=-\bar{\Delta}_{\mu} q p$;
$\partial_{\mu}{ }^{R} \phi_{R}=\partial_{\mu} \phi+i \partial_{\mu} \mathcal{H}^{m} \cdot(1-i \mathcal{H})^{-1}{ }^{n}{ }^{n} \partial_{n} \phi=\Delta_{\mu} \phi$.
In Appendix A formulae are given to tranafer derivatives from one basis into another.

Finally, note that the dipferential chirality conditions (Eq. (3.7)or Eqs. (3.11), (3.12))mast remain valid when the coordinates are trensformed, because the concept of chirality is invariant, see Bq. (3.4). This important property will be used in Sect. 4 to define covariant derivativea and local Lorents group.
4. Local Lorente group and spinor covariant dorivatives. In this section one of the principal ideas of our construction is explained. This is the introduction of a local (in SS) Lorentz group induced by the world supergroup.

As was pointed out in Sect. 1, the tranaformations (1.4) describe the whole neceasary gauge freedom of the field components of \mathcal{H}^{m}. In particular, they include local (in x-space) Iorentz transformations. Therefore it would be undesirable to introduce a new independent loosl group (2.7): this would lead to superfluous gauge freedom. On the other hand, the main idea of the formallam described in Sect. 2 is to use quantities that transform under a local (in SS) Iorente group. Introducing such a group one gains aignificant (technical) advantages, which we are not going to give up. However, in contrast with some other papers $/ 3-7 /$, in our case the parameters of Lorentz-group transformations (2.7) will complem tely be determined by the parameters λ of the world supergroup (1.4).

Such a possibility is suggeated by the fact that the differential chirality conditions must be covariant (see the end of Sect. 3). Analyaing the transformation properties of the corresponding operators we shall find out how to define the local Lorentr group.

Consider in the left basia the derivative $\bar{\partial}_{\dot{\mu}} q_{L}\left(x_{L}, \theta, \bar{\theta}\right)$. Under infinitesimal transformations (1.4) (see Eq. (3.1))
$\bar{\partial}_{\mu}^{\prime L} \phi_{L}^{\prime}\left(x_{L}^{\prime}, \theta^{\prime}, \bar{\theta}^{\prime}\right)=\bar{\partial}_{\dot{\mu}}^{L L} \phi_{L}\left(x_{L}, \theta, \bar{\theta}\right)=$
$=\frac{\partial x_{L}^{n}}{\partial \bar{\theta}^{\prime} \mu^{\prime}} \partial_{n}^{L} \phi_{L}+\frac{\partial \theta^{\nu}}{\partial \bar{\theta}^{\prime} \mu^{\dot{\mu}}} \partial_{\nu}^{L} \phi_{L}+\frac{\partial \bar{\theta}^{\dot{\gamma}}}{\partial \bar{\theta}^{\prime}{ }^{\dot{\mu}}} \bar{\partial}_{\dot{\nu}}^{L} \phi_{L}$.
reeping only the terms of firat order in λ one finds (see EqE. (1.4), (3.2), (3.3), (3.5))

$$
\begin{equation*}
\frac{\partial x_{L}^{n}}{\partial \bar{\theta}^{\prime \mu}}=0, \frac{\partial \theta^{v}}{\partial \bar{\theta}^{\prime} \mu}=0, \frac{\partial \bar{\sigma}^{\dot{\nu}}}{\partial \bar{\theta}^{\prime} \mu}=\delta_{\mu}^{\dot{\mu}}-\bar{\partial}_{\mu}^{L} \bar{\lambda}_{L} \dot{\nu} \tag{4.2}
\end{equation*}
$$

(In the left basis the right-chiral superfunction $\bar{\lambda}^{\dot{\nu}}\left(x_{R}, \bar{\theta}\right)$ depends on the arguments $x_{L}, \theta, \bar{\theta}$; recall Eq. (1.2)). So, the quantity $\bar{\partial}_{\mu}<Q_{L}$ transforms homogeneously
$\bar{\partial}_{\mu}^{\prime} L \ddot{p}_{L}^{\prime}=\bar{\partial}_{\mu}^{L} \phi_{L}-\left(\bar{\partial}_{\mu}^{L} \bar{\lambda}_{L}^{\dot{\nu}}\right) \bar{\partial}_{\nu}^{L} \phi_{L}$
Going into the symetric basis (see Eq. (A, 11)), one obtains
$\delta\left(\bar{\Delta}_{\mu} q\right)=-\left(\bar{\Delta}_{\dot{\mu}} \bar{\lambda}_{\dot{\gamma}}\right) \bar{\Delta}^{\dot{r}} q$.
Here and below the symbol δ means "variation of the function"

$$
\begin{align*}
& \delta\left(\bar{\Delta}_{\mu} q\right) \equiv \bar{\Delta}_{\mu}^{\prime} \phi^{\prime}\left(x^{\prime}, \theta^{\prime}, \bar{\theta}^{\prime}\right)-\bar{\Delta}_{\mu} \dot{\phi}(x, \theta, \bar{\theta}) . \tag{4.5}\\
& \delta\left(\Delta_{\mu} \phi\right)=-\left(\Delta_{\mu} \lambda^{v}\right) \Delta_{\gamma} q .
\end{align*}
$$

The transformation laws (4.4) and (4.6) differ from the Lorentz one (2.7) only in that the matrices $\Delta_{\mu} \lambda_{\nu}$ and $\bar{\Delta}_{\mu} \bar{\lambda}_{\nu}$ i have nonvanishing trace (i.e., they do not belong to the Lorentz algebra). This can easily be corrected by multiplying $\bar{\Delta}_{\mu}$ (3.11) and Δ_{μ} (3.12) by some factors \bar{F} and F, $\nabla_{\mu}=F \Delta_{\mu}, \bar{\nabla}_{\mu}=\bar{F} \Delta_{\mu}$.
To compensate for the traces of $\Delta_{\mu} \lambda_{V}$ and $\bar{\Delta}_{\mu} \bar{\lambda}_{\nu}$, these factors have to transform as follows

$$
\begin{equation*}
\delta F=-\frac{1}{2}\left(\Delta^{\mu} \lambda_{\mu}\right) F, \delta \bar{F}=-\frac{1}{2}\left(\bar{\Delta}_{\mu} \bar{\lambda}^{\mu}\right) \bar{F} . \tag{4.8}
\end{equation*}
$$

Explicit expreasions for F and \vec{F} in terme of \mathcal{H}^{m} will be given later on (see Eq. (8.4)).

So, we obtained operators (4.7) with transformation law that imitates the local-Lorente law (2.7). In order to keep the (fornal) difference between world indices and local-Lorentz ones, we shall denote the latter by letters α and $\dot{\alpha}$ (according to the convention of Sect. 2). Then
$\nabla_{\alpha}=\delta_{\alpha}^{\mu} \nabla_{\mu}=\left(F \delta_{\alpha}^{\mu}\right) \Delta_{\mu}, \bar{\nabla}_{\dot{\alpha}}=\delta_{\dot{\alpha}}{ }^{\dot{\mu}} \bar{\nabla}_{\mu}=\left(\bar{F}_{\dot{\alpha}}{ }^{\dot{\mu}}\right) \bar{\Delta}_{\dot{\mu}}$. (4.9)
mphaaize that the role of such a notation is just to remind of the (formal) Lorentz character of the corresponding indices.

The transformation laws of the new derivatives coincide in
form with the local Lorentz law (2.7)
$\delta\left(\nabla_{\alpha} \phi\right)=\frac{i}{2} \Omega^{a b}\left(\sigma_{a b}\right)_{\alpha}^{\beta} \nabla_{\beta} \phi$
(4.10a)

$$
\begin{align*}
& \delta\left(\bar{\nabla}_{\dot{\alpha}} \phi\right)=\frac{i}{2} \Omega^{a b}\left(\tilde{\sigma}_{a b}\right)_{\dot{\alpha} \beta} \bar{\nabla}^{\dot{\beta}} \phi \tag{4.10~b}\\
& \Omega^{a b}=\frac{i}{4}\left(\Delta \sigma^{a b} \lambda+\bar{\Delta} \hat{\sigma}^{a b} \bar{\lambda}\right) \tag{4.10c}
\end{align*}
$$

(Here the identities (C.1) are used). However, in Eq. (2.7) the parameters $\Omega^{\text {ab }}$ were completely arbitrary, while in Eq. (4.10) they are expressed in torms of the parameters λ^{μ} and $\bar{\lambda}^{\mu}$ of the world group (besides, $\Omega^{a b}$ depend nonlinearly on the gravitational SF H^{m} through the argumentg x_{L}, x_{R} of the parameters $\lambda^{\mu}, \bar{\lambda} \mu$ and through the operatora $\Delta_{\mu}, \bar{\Delta}_{\mu}$). So, we do not have a separate, independent local Lorentz group acting on the SF indices. Our Lorentz group is "locked" to the world one, i.e., the transformations of the former are induced by the transformations of the latter. Of course, for the field-componente of the SF there is a local (in x-space) Lorente group independent of the general ($x-$ -space) coordinate group. This x-local Lorente group rotates the component indices thet are contracted with the indices of θ and $\bar{\theta}$ in the decomposition of the SF , as well as the component indices corresponding to the external index of the SP. This can be seen inserting the decomposition of the parameters $\lambda^{\mu}, \bar{\lambda}^{\mu}$ (see Ref. ${ }^{/ 2 /}$) into Eq. (4.10). Thus, our formulation provides all the necessary transformations of the component fields without introducing an additional independent gauge Lorente group.

This situation reminds two ways of desoribing spinors in the theory of general relativity. In the standard (vierbein) approach, at the expense of introducing an independent vierbein Lorentz group and using more complicated gauge ilelds (the vierbeins $e^{\text {am }}(x)$ instead of the metric $g^{\text {ran }}(x)$), the apinors transform as a standard, linear representation of this group. In the alternative approach ${ }^{19 /}$ the vierbein degrees of freedom are fixed, and the spinors transform nonlinearly (with respect to the gravitational field). Although both approaches are ultimately quivalent, in our case, where the group is sophisticated enough, any poasible reduction of the number of the extre parameter in atrongly deairable.

The operatora Δ_{μ} and $\bar{\Delta}_{\mu}$ are direct generalizations of the apinor derivatives $D_{\alpha}{ }^{\circ}$ and $\bar{D}_{\dot{\alpha}}{ }^{0}$ in flat supersymetry. It is clear in the appropriate bases (right and left), and in the symmetric one it can eaaily be shominserting $\mathcal{H}_{0}^{m}=\theta \sigma^{m} \bar{\theta}$. Mow we have all the reasons to call ∇_{α} and $\bar{\nabla}_{\alpha}$ covariant derivatives of the acalar SF:

$$
\begin{equation*}
D_{\alpha} q \equiv \nabla_{\alpha} q, \quad \bar{D}_{\dot{\alpha}} q \equiv \bar{\nabla}_{\dot{\alpha}} q \tag{4.11}
\end{equation*}
$$

Let us briefly sumarize Sect. 4. The analyaie of the trans formation properties of the operators Δ_{μ} and Δ_{μ} (i.e., the derivatives ∂_{μ}^{R} and $\bar{\partial}_{\mu}^{K}$ in the corresponding chiral bases) auggested the definition of the local Lorents group as a group induced by the world supergroup. We also defined the simplest covariant derivatives (those of the scalar SF). In what follows the remaining geometrical objects described in Sect, 2 have to be introduced and expressed completely in terms of the gravitational SF H^{m}.
5. Local-Lorentr law for SF with external indices. Me adopt the definition (2.7)

$$
\begin{equation*}
\delta \varphi_{A}=i \Omega^{c d}\left(\Lambda_{c d}\right)_{A}^{B} \varphi_{B} \tag{5.1}
\end{equation*}
$$

with parameters $\Omega^{\text {cd }}$ from Bq. (4.10c). Purther, as in Eq. (2.16), one can introduce covariant derivatives of these SF's:

$$
\begin{align*}
& \partial_{\alpha} p_{B}=\nabla_{\alpha} \varphi_{B}+\omega_{\alpha B}^{c}{ }_{c} p_{C} \tag{5.2a}\\
& \bar{\partial}_{\dot{\alpha}} \phi_{B}=\bar{\nabla}_{\dot{\alpha}} \phi_{B}+\bar{\omega}_{\dot{\alpha} B}{ }^{c} \dot{q_{C}} \tag{5.2b}
\end{align*}
$$

where

$\omega_{\alpha B}{ }^{c}=i \omega_{\alpha}{ }^{d e}\left(\Lambda_{d e}\right)_{B}{ }^{c}, \bar{\omega}_{\alpha B B}{ }^{C}=i \bar{\omega}_{\alpha}{ }^{d e}\left(\Lambda_{d e}\right)_{B}{ }^{c}$. (5.2c)
The connections ω_{α} and $\bar{\omega}_{\alpha}$ will be expressed in terms of \mathcal{H}^{m} (Bqs. (8.6)), but for the time being we need only their tranaformation laws which can be extracted from Bq. (2.18).

In Eq. (2.16) there is the vector covariant derivative
also. We shall define it (as in the flat case) as the anticomn-

tetor of the spinor ones

$D_{a}=\frac{i}{4}\left(\tilde{\sigma}_{a}\right)^{\alpha \alpha}\left\{D_{\alpha}, \bar{D}_{\alpha}\right\}$.
Hote that Eq. (5.3)fixes automatically the vector connection

$$
\begin{align*}
& \text { present in Bq. (2.16): } \\
& \begin{array}{c}
\omega_{a}^{b c}=\frac{i}{4}\left(\tilde{\sigma}_{\alpha}\right)^{\dot{\alpha}}\left(\nabla_{\alpha} \bar{\omega}_{\alpha}^{b c}+\bar{\nabla}_{\alpha} \omega_{\alpha}^{b c}\right)- \\
\quad-\frac{1}{8}\left[\left(\sigma_{\alpha} \tilde{\sigma}_{d e}\right)^{\alpha \dot{\alpha}} \omega_{\alpha}^{d e} \bar{\omega}_{\alpha}^{b c}+\left(\tilde{\sigma}_{\alpha} \sigma_{d e}\right)^{\alpha \alpha} \bar{\omega}_{\alpha}^{d e} \omega_{\alpha}^{b c}\right]
\end{array}
\end{align*}
$$

6. Expresaions for the gupervierbeing E_{A}^{M} in terms of \mathcal{H}^{m} and the quantities $F, \bar{F}, \omega_{k}, \bar{w}_{\dot{\alpha}}$.

To find the supervierbeins $E_{\alpha}{ }^{M}$ and $E_{\dot{\alpha}}^{M}$ one hes to represent the apinor covariant derivatives of the scalar SF (4.11)in the form (2.15). Uaing Eqs. (4.7), (3.13), one obtains
$\partial_{\alpha} \varphi=F \delta_{\alpha}{ }^{\mu}\left(\partial_{\mu}+i \Delta_{\mu} H^{m} \partial_{m}\right) \phi=E_{\alpha}{ }^{M} \partial_{m} \phi$
$\bar{\partial}_{\dot{\alpha}} \Phi=\bar{F} \delta_{\dot{\alpha}}^{\mu}\left(-\bar{\partial}_{\mu}-i \bar{\Delta}_{\mu} H^{m} \cdot \partial_{m}\right) \phi=E_{\dot{\alpha}}^{M} \partial_{M} q$.

$$
E_{\alpha}^{\mu}=F \delta_{\alpha}^{\mu} ; E_{\alpha}^{\mu}=0 ; E_{\alpha}^{m}=i \nabla_{\alpha} H^{m}
$$

$E_{\dot{\alpha}}^{\mu}=0 ; E_{\dot{\alpha}}^{\mu}=-\bar{F} \delta_{\dot{\alpha}}^{\dot{\mu}} ; E_{\dot{\alpha}}^{m}=-i \bar{\nabla}_{\dot{\alpha}} \mathcal{H}^{m}$.
Purther, the vector derivative (5.3) gets the form
$D_{a}=\frac{i}{4}\left(\tilde{\sigma}_{a}\right)^{\dot{\alpha} \alpha}\left[\nabla_{\alpha} \bar{\nabla}_{\dot{\alpha}} \phi+\omega_{\alpha \dot{\alpha} \beta} \bar{\nabla}^{\beta} \varphi+\bar{\nabla}_{\dot{\alpha}} \nabla_{\alpha} \varphi+\bar{\omega}_{\dot{\alpha} \alpha}^{\beta} \nabla_{\beta} \varphi\right]=$ $=\frac{i}{4}\left(\widetilde{\sigma_{a}}\right)^{\dot{\alpha} \alpha} F \bar{F}\left\{\Delta_{\alpha}, \bar{\Delta}_{\dot{\alpha}}\right\} \phi+\frac{i}{4}\left[\left(\sigma_{a} \nabla\right)^{\dot{\beta}} \bar{F}-\bar{F}\left(\widetilde{\sigma}_{a}\right)^{i \alpha} \omega_{\alpha \dot{\alpha}} \dot{\beta}\right] \delta_{\dot{\beta}}^{\dot{\beta}} \bar{\Delta}_{\dot{\beta}} \varphi_{+}$
$+\frac{i}{4}\left[-\left(\sigma_{a} \bar{\nabla}\right)^{\beta} F+F\left(\tilde{\sigma}_{a}\right)^{\dot{\alpha} \alpha} \bar{\omega}_{\dot{\alpha} \alpha}^{\beta}\right] \delta_{\beta}{ }^{\mu} \Delta_{\mu} \varphi=E_{a}^{\mu} \partial_{\mu} \varphi$
$\omega_{\alpha \dot{\beta} \beta}=\frac{i}{i} \omega_{\alpha}^{a b}\left(\widetilde{\sigma_{a b}}\right)_{\dot{\alpha} \dot{\beta}}, \bar{\omega}_{\dot{\alpha \beta \beta}}=\frac{i}{i} \bar{\omega}_{\dot{\alpha}}{ }^{a b}\left(\sigma_{a b}\right)_{\alpha \beta}$.
Taking into account Eqs.(3.13), (A.5), one obtains
$E_{a}{ }^{\mu}=\frac{i}{4}\left[-\left(\sigma_{a} \bar{\nabla}\right)^{\beta} F+F\left(\tilde{\sigma}_{a}\right)^{k \alpha} \bar{\omega}_{\dot{\alpha} \alpha} \beta\right] \delta_{\beta}{ }^{\prime}$
$E_{a}^{\mu}=\frac{i}{4}\left[-\left(\tilde{\sigma}_{a} \nabla\right)^{\dot{\beta}} \bar{F}+\bar{F}\left(\tilde{\sigma}_{a}\right)^{\dot{\alpha} \alpha} \omega_{\alpha \dot{\alpha}} \dot{\beta}\right] \delta_{\dot{\beta}}^{\dot{\beta}}$
$E_{a}^{m}=\frac{1}{4} F \bar{F}\left(\Delta \sigma_{a} \bar{\Delta}-\bar{\Delta} \tilde{\sigma}_{a} \Delta\right) \mathcal{H}^{m}+i E_{a}^{\mu} \Delta_{\mu} H^{m}+i E_{a} \tilde{\Delta}_{j} \bar{H}^{m}$.
The way of derivation of these supervierbeins guarantees that they tranaforia in accordance with Eq. (2.4), 1.e.,infinitesimally $\delta E_{A}^{\mu}=L_{A}^{B} E_{B}^{\mu}+E_{A}^{N} \partial_{N} \lambda^{\mu}$
$\delta E_{A^{\mu}}^{\dot{\mu}}=L_{A}^{B} E_{B}^{\dot{\beta}}+E_{A}^{N} \partial_{N} \bar{\lambda}^{\dot{\beta}}$
$\delta E_{A}^{m}=L_{A}{ }^{B} E_{B}^{m}+E_{A}^{N} \partial_{N} \frac{1}{2}\left(\lambda^{m}+\bar{\lambda}^{m}\right)$,
where \angle_{A}^{B} is defined in Eq. (2.7), and $\Omega^{a b}$ in Eq. (4.10c).
The supervierbeins obtained are not completely expressed in terni of \mathcal{H}^{m} because in Eq. (6.1) the unknown yet quantities F, \bar{F}, $\omega_{\alpha}^{a b}, \bar{w}_{\dot{\alpha}}^{a b}$ are present. To find them we shall introduce new and very useful objects - the left and right aupervierbeins. Their
existence emphasizes once more the chiral structure of our supergroup.
7. Left and risht supervierbeing. Conaider the covariant derivatives of the left chiral acalar SF
$\partial_{A} \varphi=E_{A}{ }^{M} \partial_{M} \varphi$.
Let us rewrite them in the left basis where the chirality condition hes the form
$\bar{\partial}_{\mu}{ }^{L} \varphi_{L}=0$.
To this end one has to replace the derivativea ∂_{M} in Eq. (7.1)
by the derivatives in the left basis. Using Eqs. ($\mathrm{A}_{\mathrm{i}} 10$), ($\mathrm{A}, 13$), (A.16), and taking into account Eq. (3.7a), one pinds
$D_{A}^{L} \varphi_{L}=E_{A}^{m}(1+i \mathcal{H})_{m}^{n} \partial_{n}^{L} \varphi_{L}+E_{A}^{\mu}\left(\partial_{\mu}^{L} \varphi_{L}+i \partial_{\mu} \mathcal{H}^{n} \partial_{n}^{L} \varphi_{L}\right)+$
$+E_{A}^{\mu}\left(i \bar{\partial}_{\mu} \mathcal{H}^{n} \partial_{n}^{L} \varphi_{L}\right)=\left(E_{A}^{m}+i E_{A}^{N} \partial_{N} \mathcal{H}^{m}\right) \partial_{m}^{L} \varphi_{L}+E_{A}^{\mu} \partial_{\mu}^{L} \varphi_{L} \equiv$
$\equiv \ell_{A}^{M} \partial_{M}^{L} \varphi_{L}$
(the derivatives of \mathcal{H}^{m} are always taken with reapect to its natural arguments $x^{n}, \theta^{2}, \bar{\theta}^{2}$). The coefficients ℓ_{A}^{M} in the last line of Eq. (7.2) will be called left supervierbeins. In fact the index M, takes the values m and μ^{μ} only (l_{A}^{μ} vanish because $\partial_{\mu}^{L} \varphi_{L}=0$). The explio1t form of ℓ_{A}^{M} is derived from Eq. (7.2)with the help of Eq. (6.1):

$$
\begin{aligned}
& \ell_{\alpha}^{\mu}=E_{\alpha}^{\mu}=F \delta_{\alpha}^{\mu} \\
& \ell_{\alpha}^{m}=E_{\alpha}^{m}+i E_{\alpha}^{N} \partial_{N} \mathcal{H}^{m}=2 i \nabla_{\alpha} \mathcal{H}^{m} \\
& \ell_{\alpha}^{\mu}=0 \\
& \left.l_{\alpha}^{m}=E_{\alpha}^{m}+i\left(E_{\dot{\alpha}}^{n} \partial_{n}+E_{\dot{\alpha}}^{\dot{\nu}} \bar{\partial}_{\dot{v}}\right) \mathcal{H}^{m}=-i \bar{\nabla}_{\dot{\alpha}} \mathcal{H}^{m}+i \bar{\nabla}_{\dot{\alpha}} \mathcal{H}^{m}=0\right\} \\
& \ell_{a}^{\mu}=E_{a}^{\mu}=\frac{i}{4}\left[-\left(\sigma_{a} \bar{\nabla}\right)^{\beta} F+F\left(\tilde{\sigma}_{\alpha}\right)^{\dot{\alpha} \alpha} \bar{\omega}_{\dot{\alpha} \alpha}^{\beta}\right] \delta_{\beta}^{\mu} \\
& \ell_{a}^{m}=E_{a}^{m}+i\left(E_{a}^{n} \partial_{n}+E_{a}^{v} \partial_{\nu}+E_{a}^{\dot{\nu}} \bar{\partial}_{\dot{\nu}}\right) \mathcal{H}^{m}= \\
& =\left[\frac{1}{4} F \bar{F}\left(\Delta \sigma_{a} \bar{\Delta}-\bar{\Delta} \bar{\sigma}_{a} \Delta\right) \mathcal{H}^{n}+i E_{\alpha}^{\mu} \Delta_{\mu} \mathcal{H}^{n}+i E_{a}^{\mu} \bar{\Delta}_{\dot{\mu}} \mathcal{H}^{n}\right]\left(1+i \mathcal{H}_{n}^{m}+\right. \\
& +i E_{a}^{v} \Delta_{v} \mathcal{H}^{n}(1-i \mathcal{H})_{n}^{m}-i E_{a}^{\dot{\gamma}} \bar{\Delta}_{\dot{\nu}} \mathcal{H}^{n}(1+i \mathcal{H})_{n}^{m}=
\end{aligned}
$$

$$
\begin{equation*}
=-\frac{1}{2} F \bar{F} \hat{l}_{a}^{m}+2, E_{a}^{\mu} \Delta_{\mu} \mathcal{H}^{m} \text {. } \tag{7.3e}
\end{equation*}
$$

Here the notation
$\hat{l}_{a}^{m} \equiv \bar{\Delta} \tilde{\sigma}_{a} \Delta H^{m}$
and the identities (3.13) and (A.6) are used. From Eq. (7.3c) it is clear that the index A of $l_{A}{ }^{M}$ takes the values a, α only so ℓ_{A}^{M} form a square matrix
$\left\|l_{A}^{M}\right\|=\left(\begin{array}{ll}l_{a}^{m} & l_{a}^{\mu} \\ l_{\alpha}^{m} & l_{\alpha}^{\mu}\end{array}\right)$.
Similarly, considering the covariant derivatives of the right chiral scalar SF in the right basis one can obtain a set of right

$$
\begin{align*}
& \text { supervierbeins } \\
& \left\|\tau_{A}^{M}\right\|=\left(\begin{array}{ll}
\tau_{a}^{m} & \tau_{a}^{\dot{\mu}} \\
\tau_{\dot{\alpha}}^{m} & \tau_{\dot{\alpha}}^{\dot{\mu}}
\end{array}\right) ; \tag{7.5}\\
& \tau_{\dot{\alpha}}^{\dot{\mu}}=E_{\dot{\alpha}}^{\dot{\mu}}=-\bar{F} \delta_{\dot{\alpha}}^{\dot{\mu}} \tag{7.6e}\\
& \tau_{\dot{\alpha}}^{m}=2 E_{\dot{\alpha}}^{m}=-2 i \bar{\nabla}_{\dot{\alpha}} \mathcal{H}^{m} \tag{7.6b}\\
& \tau_{a}^{\mu}=E_{a}^{\dot{\mu}}=\frac{i}{4}\left[-\left(\tilde{\sigma}_{a} \nabla\right)^{\dot{\beta}} \bar{F}+\bar{F}\left(\tilde{\sigma_{a}}\right)^{\dot{\alpha} \alpha} \omega_{\alpha \dot{\alpha}} \dot{\beta}\right] \delta_{\dot{\beta}} \dot{\mu}^{\prime} \tag{7.6c}\\
& \tau_{a}^{m}=\frac{1}{2} F \bar{F} \hat{\tau}_{a}^{m}+2 i E_{a}^{\dot{\mu}} \bar{\Delta}_{\dot{\mu}} H^{m} \tag{7.6d}\\
& \hat{\tau}_{a}^{m} \equiv \Delta \sigma_{a} \bar{\Delta} H^{m} . \tag{7.6e}
\end{align*}
$$

The tranaformation laws for ℓ_{A}^{M} and τ_{A}^{M} follow from the equations
$D_{A}{ }^{L} \varphi_{L}=\ell_{A}^{M} \partial_{M}{ }^{L} \varphi_{L} \quad, D_{A}^{R} \bar{\varphi}_{R}=\tau_{A}{ }^{M} \partial_{M}{ }^{R} \bar{\varphi}_{R}$.
$\delta l_{A}^{M}=L_{A}^{B} l_{B}^{M}+l_{A}^{N} \partial_{N}{ }^{L} \lambda_{L}{ }^{M}$
(7.8a)
$\delta \tau_{A}{ }^{M}=L_{A}{ }^{B} \tau_{B}{ }^{M}+\tau_{A}{ }^{N} \partial_{N}{ }^{R} \bar{\lambda}_{R}{ }^{M}$.
A few words about the interpretation of ℓ_{A}^{M} and $\tau_{A}{ }^{M}$. In the initial chiral SS $\left\{\left(x_{L}^{m}, \theta_{L}^{M}\right)\right\}$ and $\left\{\left(x_{R}^{m}, \bar{\theta} \dot{M}_{R}^{A}\right)\right\}$ the chiral SF's are the most general ones. So, the formulae (7.7) could be regarded there as definitions of supervierbeins, i.e., $l_{A}{ }^{M}$ and $\tau_{A}{ }^{M}$ could be thought of as the supervierbeins of the leit and right ss separately. However, l_{A}^{M} and Z_{A}^{M} do not transion with the
help of the left $\left(\lambda^{M}\right)$ and, correspondingly, the right ($\bar{\lambda}^{M}$)parameters onfy. The Lorentz transformations mix them up (the parameters $\Omega^{a b}(4.10 c)$ depend both on λ and $\bar{\lambda}$). Nevertheless, the role of the "left and right supervierbeins" proves to be very constructive.
8. Explicit form of the factors F, \bar{F} and connections $\omega, \bar{\omega}$. The explicit expresaions in terms of \mathcal{H}^{m} for these quantities will be found with the help of the left and right aupervierbeins.

Consider the Berezinians (superdeterminants) of l_{A}^{M} and τ_{A}^{M} : $\operatorname{Ber}\left(l_{A}^{M}\right)=\operatorname{Det}\left(l_{a}^{m}-l_{a}^{\mu} l_{\mu}^{-1} \alpha l_{\alpha}^{m}\right) \cdot \operatorname{Det}^{-1}\left(l_{\alpha}^{\mu}\right)=$

$$
\begin{equation*}
=2^{-4} F^{2} \bar{F}^{4} \operatorname{Det}\left(\hat{l}_{a}^{m}\right) \tag{8.1}
\end{equation*}
$$

$\operatorname{Ber}\left(\tau_{A}^{M}\right)=2^{-4} \bar{F}^{2} F^{4} \operatorname{det}\left(\hat{\tau}_{a}^{m}\right)$.
They are scalars with respect to the supergroup (1.4), (1.5). In deed $\left(l_{M}{ }^{A}\right.$ are defined by the relation $l_{M}{ }^{A} l_{A}{ }^{N}=\delta_{M}{ }^{N}$)
$\delta\left(\operatorname{Ber}\left(\ell_{A}^{M}\right)\right)=\operatorname{Ber}(l) \cdot \ell_{M}^{A} \delta l_{A}^{M} \cdot(-1)^{P(M)}=$
$=\operatorname{Ber}(l) \cdot\left[l_{M}{ }^{A} L_{A}^{B} l_{B}^{M}+l_{M}^{A} l_{A}^{N} \partial_{N}^{L} \lambda_{L}^{M}\right](-1)^{p(M)}=$
$=\operatorname{Ber}(\ell) \cdot\left[\partial_{M}^{L} \lambda_{L}^{M} \cdot(-1)^{P(M)}\right]$.
The last term vanishes owing to the Finstein condition (1.5). Let us stress that this is the only place in the present paper where we do use the Einstein condition. A natural question arises:could this condition be weakened in some way? One such posaibility, connected with the μ_{5}-invariance of the action for eupergravity, is discussed in Sect. 11.

Thus, without loss of generality, we can set the scalars (8.1) equal to some constant:
$\operatorname{Ber}\left(l_{A}^{M}\right)=\operatorname{Ber}\left(\tau_{A}^{M}\right)=2^{-4}$
and obtain explicit expressions for F and \bar{F} in terms of \mathcal{H}^{m} : $F=\operatorname{Det}^{-\frac{1}{3}}\left(\hat{\tau}_{a}^{m}\right) \cdot \operatorname{Det}^{\frac{1}{c}}\left(\hat{l}_{a}^{m}\right), \bar{F}=\operatorname{Det}^{\frac{1}{6}}\left(\hat{\tau}_{u}^{m}\right) \cdot \operatorname{Det}^{-\frac{1}{3}}\left(\hat{l}_{a}^{m}\right)$.

Pinally, we have to find the explicit form of $\omega_{\alpha a b}$ and $\bar{\omega}_{\text {acab }}$. The only requirement they must fulfil is to transform according to $\mathrm{Bq} .(2.18)$. We ahall show now that the following quantities do transform correctly
$\omega_{\alpha a b}=\frac{1}{4}\left(\nabla_{\alpha} \tau_{a}^{M} \cdot \tau_{M b}-\nabla_{\alpha} \tau_{b}^{M} \cdot \tau_{M a}\right)$
$\bar{\omega}_{\dot{\alpha} a b}=\frac{1}{4}\left(\bar{\nabla}_{\dot{\alpha}} l_{a}^{M} \cdot l_{M b}-\bar{\nabla}_{\dot{\alpha}} l_{b}^{M} \cdot l_{M a}\right)$.
Indeed (see Eqs. $(7 . B),(4.10)$ and the definition $\tau_{A}{ }^{M} \tau_{M}{ }^{B}=\delta_{A}{ }^{B}$),
$\delta c \omega_{\alpha a b}=\frac{1}{4} \Omega^{c d} \frac{i}{2}\left(\sigma_{c d} \nabla\right)_{\alpha} \tau_{a}{ }^{M} \cdot \tau_{M b}+$
$+\frac{1}{4} \nabla_{a}\left(-2 \Omega_{a c} \tau^{c M}+\tau_{a}{ }^{N} \partial_{N}^{R} \bar{\lambda}_{R}^{M}\right) \cdot \tau_{M b}+$
$+\frac{1}{4} \nabla_{\alpha} \tau_{a}^{M} \cdot\left(-2 \Omega_{b_{c}} \tau_{M}^{c}-\partial_{M}^{R} \bar{\lambda}_{R}^{N} \cdot \tau_{N b}\right)-(a \leftrightarrow b)=$
$=\frac{i}{2} \Omega^{c d}\left(\sigma_{c d}\right)_{\alpha}{ }^{\beta} \omega_{\beta a b}-2 \Omega_{a c} \omega_{\alpha}{ }^{c} b+2 \omega_{\alpha a}{ }^{c} \Omega_{c b}-\nabla_{\alpha} \Omega_{a b}+$
$+\frac{1}{4}(-1)^{P(N)}\left\{\tau_{a}^{N}\left[\nabla_{\alpha} \partial_{N}^{R} \bar{\lambda}_{R}^{M}\right] \tau_{M b}-\tau_{b}^{N}\left[\nabla_{a} \partial_{N}^{R} \bar{\lambda}_{R}^{M}\right] \tau_{M a}\right\}$.
The terms in the braces vanish because the operator ∇_{α} in the left basis is proportional to $\partial_{\mu}{ }^{R}$ (see Eq. (3.14)), and $\bar{\lambda}_{R}$ does not depend on θ^{μ}.

So, the quantities (8.5) can serve as conrections. However, they are not yet expressed in terms of \mathcal{H}^{m} only, because l_{a}^{M} and $\ell_{M}{ }^{\ell}$ themselves depend on \bar{w}_{α}^{2} (see, e.g., Eq. (7.3d)), Therefore formulae (8.5) are equations rather than definitions for \mathcal{C}_{α} and $\bar{\omega}_{\dot{\alpha}}$. Their solutions are
$\omega_{c a b}=\frac{1}{2}\left(\nabla_{\alpha} \hat{z}_{a}^{m} \cdot \hat{z}_{m b}-\nabla_{\alpha} \hat{z}_{b}^{m} \cdot \hat{z}_{m a}\right)-\frac{i}{2}\left(\sigma_{a b} \nabla\right)_{\alpha} \ln F \bar{F}$
$\bar{\omega}_{\dot{\alpha} a b}=\frac{1}{2}\left(\bar{\nabla}_{\dot{\alpha}} \hat{l}_{a}^{m} \cdot \hat{l}_{m b}-\bar{\nabla}_{\alpha} \hat{l}_{b}^{m} \cdot \hat{l}_{m a}\right)-\frac{i}{2}\left(\tilde{\sigma}_{a b} \bar{\nabla}\right)_{\alpha} \ln F \bar{F}$
where $\hat{\tau}_{a}^{m} \hat{l}_{m}{ }^{b}=\delta_{a}^{b}, \hat{l}_{a}^{m} \hat{l}_{m}^{b}=\delta_{a}^{b}$. The derivation of Eq. (8.6) as
well es formulae for the connections applied to spinors are given in Appendix B .

So, all the basic objects of differential geametry are defined In a reasonable way, and moreover, they are expressed in terms of the gravitational SF \mathcal{H}^{m}. The formalism developed can now be applied for constructing and investigating the invariants of the supergroup. This will be the subject of a separate paper. Here we will give the invariant action only.
9. Invariant action for Einstein supergravity. First of all, a scalar density has to be defined because the volume element $d^{4} x d^{4} \theta$ in the physical SS is not invariant. This is just the superdeterminant
$E=\operatorname{Ber} E_{M}^{A}=\left(\operatorname{Ber} E_{A}^{M}\right)^{-1}$
(the analogue of $\sqrt{-g}$ in ordinary gravity). Indeed (see Bq. (6.3)), $\delta E=-E \cdot E_{M}^{A} \delta E_{A}^{M}(-1)^{P(M)}=$

$$
=E \cdot\left[-\frac{1}{2} \partial_{m}\left(\lambda^{m}+\bar{\lambda}^{m}\right)+\partial_{\mu} \lambda^{\mu}+\bar{\partial}_{\mu} \bar{\lambda} \mu\right] .
$$

Then the action

$$
\begin{equation*}
S=\frac{1}{x^{2}} \int d^{4} x d^{4} \theta \cdot E \cdot \mathcal{Z} \tag{9.2}
\end{equation*}
$$

will be invariant with any matter Lagrangian $\mathcal{Z}(x, \theta, \bar{\theta})(\mathcal{Z}$ being a acalar with reapect to the supergroup (1.4)):

$$
S^{\prime}=\frac{1}{x^{2}} \int d^{4} x^{\prime} d^{4} \theta^{\prime} E^{\prime}\left(x^{\prime}, \theta^{\prime}, \bar{\theta}^{\prime}\right) \mathcal{L}^{\prime}\left(x^{\prime}, \theta^{\prime}, \bar{\theta}^{\prime}\right)=
$$

$=\frac{1}{x^{2}} \int\left[d^{4} x d^{4} \theta\left(1+\frac{1}{2} \partial_{m}\left(\lambda^{m}+\bar{\lambda}^{m}\right)-\partial_{\mu} \lambda^{\mu}-\partial_{\mu} \bar{\lambda}^{\dot{\mu}}\right)\right] x$
$x\left[E(x, \theta, \bar{\theta})\left(1-\frac{1}{2} \partial_{m}\left(\lambda^{m}+\bar{\lambda}^{m}\right)+\partial_{\mu} \lambda^{\mu}+\bar{\partial}_{\mu} \bar{\lambda}^{\dot{\mu}}\right)\right] \mathcal{L}(x, \theta, \bar{\theta})=S$.
In the case of pure anpergravity the action is just the "invariant volume"
$S_{S G}=\frac{1}{x^{2}} \int d^{4} x d^{4} \theta E(x, \theta, \bar{\theta})$.
This remarkable faot was pointed out by wess and Zumino $/ 5 /$. However, in their approach $E_{M}{ }^{A}$ are the basic potentials, and E does not contain their derivatives. So, the variation of the action (9.3) is not atraightforward: certain (previously guessed) "kinematic" constraints on the toraion components must be taken into account.

In our approach E is expressed in terme of the derivatives

$$
\begin{align*}
& \text { of the gravitational SF } \\
& \begin{array}{l}
E=2^{n}\left(\operatorname{Det}\left\|\Delta \sigma_{a} \bar{\Delta} H^{m}\right\|\right)^{-\frac{1}{6}}\left(\operatorname{Det}\left\|\bar{\Delta} \tilde{\sigma}_{a} \Delta H^{m}\right\|\right)^{-\frac{1}{6}} x \\
\\
\\
\times\left(\operatorname{Det}\left\|\delta_{m}^{n}+\partial_{m} H^{k} \partial_{k} H^{n}\right\|\right)^{\frac{1}{2}}
\end{array}
\end{align*}
$$

(see the derivation in Appendix B). Therefore in our case the variation of Eq. (9.3) with respect to \mathcal{H}^{m} leads directly to the equations of motion (more details will be given in a forthcoming paper).

The matter Lagrangian in Bq. (9.2) is obtained from the corresponding flat Iagrangian \mathcal{Z}^{0} by replacing the epinor derivatives by the covariant ones (defined in the present paper). Such an action (9.2) gives in the linearized linit the equations we postulated in $1976 / 10 \%$. Thus the idea of supergravity as a theory of an axial SF generated by the supercurrent $/ 10 /$ is oonfirmed once again.
10. Summary of the main resultg. For convenience of the reader we list here the explicit expressions in terme of \mathcal{H}^{m} for the basic quantities.
$\Delta_{\mu} \mathcal{H}^{m}=\partial_{\mu} \mathcal{H}^{n}\left(1-i \mathcal{H}_{n}^{-1} m, \mathcal{H}=\left\|\partial_{m} \mathcal{H}^{n}\right\|\right.$
$\bar{\Delta}_{\mu} \mathcal{H}^{m}=-\bar{\partial}_{\mu} H^{n}(1+i \mathcal{H})_{n}^{-1} m$;
$\nabla_{\alpha}=F \delta_{\alpha}^{\mu} \Delta_{\mu}, \bar{\nabla}_{\dot{\alpha}}=\bar{F} \delta_{\dot{\alpha}}{ }^{\mu} \bar{\Delta}_{\mu}$,
$F=\operatorname{Det}^{-\frac{1}{3}}\left(\hat{\tau}_{a}^{m}\right) \operatorname{Det}^{\frac{1}{6}}\left(\hat{l}_{a}^{m}\right), \bar{F}=\operatorname{Det}^{\frac{1}{6}}\left(\hat{\tau}_{a}^{m a}\right) \cdot \operatorname{Det}^{-\frac{1}{3}}\left(\hat{l}_{a}^{m}\right)$.
where
$\hat{\tau}_{a}^{m}=\Delta \sigma_{a} \bar{\Delta}^{m}, \hat{l}_{a}^{m}=\bar{\Delta} \tilde{\sigma}_{a} \Delta \mathcal{H}^{m}$.
$\omega_{\alpha a b}=\frac{1}{2}\left(\nabla_{\alpha} \hat{\tau}_{a}^{m} \cdot \hat{\tau}_{m b}-\nabla_{\alpha} \frac{1}{l_{b}^{m}} \cdot \hat{\tau}_{m a}\right)-\frac{i}{2}\left(\sigma_{a b} \nabla\right)_{\alpha} \ln F \bar{F}$
$\bar{\omega}_{\dot{\alpha} a b}=\frac{1}{2}\left(\bar{\nabla}_{\dot{\alpha}} \hat{l}_{a}^{m} \cdot \hat{l}_{m b}-\bar{\nabla}_{\dot{\alpha}} \hat{l}_{b}^{m} \cdot \hat{l}_{m a}\right)-\frac{i}{2}\left(\widetilde{\sigma}_{a b} \bar{\nabla}\right)_{\dot{\alpha}} \ln F \bar{F}$,
where ${\hat{\tau_{a}}}_{a}^{m} \hat{\tau}_{m}^{b}=\delta_{a}^{b}, \hat{l}_{a}^{m} \hat{l}_{m}^{b}=\delta_{a}^{b}$.
$E_{\alpha}^{\mu}=F \delta_{\alpha}^{\mu}, E_{\alpha}^{\mu}=0, E_{\alpha}^{m}=i \nabla_{\alpha} H^{m}$
$E_{\dot{\alpha}}^{\mu}=0, E_{\dot{\alpha}}^{\dot{\mu}}=-\bar{F} \delta_{\dot{\alpha}}^{\dot{\mu}}, E_{\dot{\alpha}}{ }^{m}=-i \bar{\nabla}_{\dot{\alpha}} \mathcal{H}^{m}$
$E_{a}^{\mu}=\frac{i}{4}\left[-\left(\sigma_{a} \bar{\nabla}\right)^{\beta} F+F\left(\tilde{\sigma}_{a}\right)^{\alpha \alpha} \bar{\omega}_{\dot{\alpha} \alpha} \beta\right] \delta_{\beta}^{\mu}$
$E_{a}^{\dot{\mu}}=\frac{i}{4}\left[-\left(\tilde{\sigma_{a}} \nabla\right)^{\dot{\beta}} \bar{F}+\bar{F}\left(\tilde{\sigma_{a}}\right)^{\dot{\alpha} \alpha} \omega_{\alpha^{\dot{\alpha}}} \dot{\beta}\right] \delta_{\dot{\beta}} \dot{\mu}$
$E_{a}^{m}=\frac{1}{4} F \bar{F}\left(\hat{\tau}_{a}^{m}-\hat{l}_{a}^{m}\right)+i E_{a}^{\mu} \Delta_{\mu} \mathcal{H}^{m}+i E_{a}^{\mu} \bar{\Delta}_{\mu} H^{m}$.
${ }^{\text {where }} \omega_{\alpha \dot{\beta} \dot{\beta}}=\frac{i}{2} \omega_{\alpha a b}\left(\tilde{\sigma}^{a b}\right)_{\dot{\beta} \dot{\gamma}}, \bar{\omega}_{\dot{\alpha \beta}}=\frac{i}{2} \bar{\omega}_{\dot{\alpha} a b}\left(\sigma^{a b}\right)_{\beta \beta}$
$E=\operatorname{Ber}\left(E_{M}^{A}\right)=2^{4} \operatorname{Det}^{-\frac{1}{6}}\left(\hat{\tau}_{a}^{m}\right) \cdot \operatorname{Det}^{-\frac{1}{6}}\left(\hat{l}_{a}^{m}\right) \cdot \operatorname{Det}^{\frac{1}{2}}\left(1+\mathcal{H}^{2}\right)$.
11. Concluding remarks. So, the aim of the paper has been achieved. The formalism of differential geometry in the physical 4+4-dimensional SS is developed on the basis of the complex aupergroup of general transformations of the coordinates of the left and right chiral SS. In this formaligem the only independent dynamical variable is the arial gravitational $\mathrm{SP} \mathcal{f l}^{m}(x, \theta, \bar{\theta})$. All
the geometrical atructures, the supervierbeins $E_{A}{ }^{M}$ and the connections $\omega_{A B}{ }^{C}$ are expressed in termas of \mathcal{H}^{m}. A simple calculation shows that this approach is much more economical than the straightforward one. The latter uses $E_{A}{ }^{M}$ as potentials and is based on the general-ooordinate-transformation supergroup in the real SS $\left\{\left(x^{m}, \theta^{\mu}, \bar{\theta}^{\mu}\right)\right\}$ (see, ©.g., Rels. ${ }^{13-7 /}$).
In our approach:
In the straightforward approach:
Variablea:
$H^{m}(x, \theta, \bar{\theta})$ or
$4 \times 16=64$ field
components

$$
\begin{aligned}
& E_{A}^{M}(x, \theta, \bar{\theta}) \\
& (8 \times 8) \times 16=1024 \text { or field } \\
& \text { components }
\end{aligned}
$$

Parameters of the supergroup:

Chiral superfunctions General superfunctions $\lambda^{m}(z), \lambda^{\mu}(z)$, $\lambda^{m}\left(z_{L}\right), \lambda^{\mu}\left(z_{L}\right), \bar{\lambda}^{m}\left(z_{R}\right), \bar{\lambda}^{\mu}\left(z_{R}\right) \quad \bar{\lambda}^{\mu}(z)$ or $(4+2+2) \times 16=128$ functions. or $(4+2+4+2) \times 4=48$
functions.
B supervolume-preservation conditions leave $48-8=40$ parameterfunctions.

Parameters $\Omega^{a l}(z)$ of the local Lorente group or $6 \times 16=96$ functions. Total number of parameter-functions: $128+96=224$.

In fact; to deacribe supergravity only 38 variables are needed (16 componentr of the graviton field $e_{a}^{m}(x), 16$ of gravitino $4^{m}(x)$ and 6 auriliary pields $P(x), S(x), A^{*}(x) ; 14$ of them are gauge degrees of freedom (4 are connected With the general coordinate transformations, 6 with the local Lorents ones, and 4 with the looal-supersymmetry ones). In our oase 40-14-26 gauge functions are used to exclude 64-38-26 superfluous field componente when the gauge is partially fired (see Bq. (22)in Ref. ${ }^{/ 2 /}$).

In the straightforward approach the gauge transformations cannot remove all the extra degrees of freedom ($224 \ll 1024$). Therefore algebraic constraints have to be imposed on the components of torsion tensor. This constraints are guessed by intuition, by analogy with the flat case, etc.

In the framework of our approach the torsion and curvature tensors are evaluated directly in terma of \mathcal{H}^{m} (details will be given in a following paper). It turns out that the oonstrainte
of Weas and Zumino $/ 4 /$ are fulpilled automatically. The concrete form of these constraints depends on the definition of the vector covariant derivative and connection $\omega^{b}{ }^{b c}$. From our natural ahoice (5.3) (and, correspondingly, (5.4)) it follows that the component $R_{\text {az }}{ }^{6 c}$ of the curvature tensor vanishes (see Bq . (2.19)). At this point our results slightly differ from the ones of Ref. ${ }^{15 /}$. However, it is a purely formal difference and can be romoved by adding appropriate components of the torsion tensor to $\omega_{a}{ }^{6 C}$ (5.4).

The last remark concerns the global chiral invariance of the Einstein-supergravity action/117. In our formulation this fact is easily proved. In Ret. ${ }^{1 / 2}$ we considered a supergroup that, compared with the aupergroup (1.4), (1.5), contained just extra γ_{5}-trenaformations. It was given by a condition weaker than Bq. (1.5): the condition of preservation of the product of left and right supervolumes
$\left(\partial_{M}^{L} \lambda_{L}^{M}+\partial_{M}^{R} \bar{\lambda}_{R}^{M}\right)(-1)^{P(M)}=0$.
Now recall that in the present paper we used the condition (1.5) at one point only: in the derivation of F and \bar{F} (see Eq. (8.2)). If Eq. (1.5)is replaced by the weaker one (11.1), then only the product $\operatorname{Ber}\left(\ell_{A}^{M}\right)$. $\operatorname{Ber}\left(\tau_{A}^{M}\right)$ will be a scalar. Correspondingly, the arguments of the beginning of Sect. 8 will allow one to find $\bar{F} \bar{F}$ but not P end \bar{F}. However, in the derivation of the explicit expression (9.4) for $\mathrm{E}=\operatorname{Ber}\left(E_{M}^{A}\right)$ just this product $p \overline{\mathrm{~F}}$ took part (see Eq. (B.8)). So, the Einetein aupergravity action (9.3) with E from Bq. (9.4) proves to be invariant under the larger aupergroup (1.4), (11.1), 1.e., under the global γ_{5}-tranaformation. This property $1 / 12,13 /$ important in the investigation of the higher counterterms /12,13/.

The authors are indebted to E.A.Ivanov, L.Mezincescu, D.V.Volkov, B.M.Zupnik for useful discussions.

Appendix a

Here we prove some useful identities for the differential operators
$\Delta_{\mu}=\partial_{\mu}+i \partial_{\mu} \mathcal{H}^{m}(1-i \mathcal{H})_{m}^{-1} \partial_{n} \equiv \partial_{\mu}+i \Delta_{\mu} H^{m} \partial_{m}$
$\bar{\Delta}_{\mu}=-\bar{\partial}_{\mu}+i \bar{\partial}_{\mu} \mathcal{H}^{m}(1+i \mathcal{H})_{m}^{n} \partial_{n} \equiv-\bar{\partial}_{\mu}-i \bar{\Delta}_{\mu} \mathcal{H}^{m} \partial_{m}$.
A. $\left\{\Delta_{\mu}, \Delta_{\nu}\right\}=0, \quad\left\{\bar{\Delta}_{\mu}, \bar{\Delta}_{\nu}\right\}=0$.

Proof:
$\left\{\Delta_{\mu}, \Delta_{\nu}\right\}=\left\{\partial_{\mu}+i \Delta_{\mu} H^{m} \partial_{m}, \partial_{\nu}+i \Delta_{v} H^{n} \partial_{n}\right\}=$ $=i\left\{\Delta_{\mu}, \Delta_{v}\right\} \mathcal{H}^{m} \partial_{m}$
Then
$\left\{\Delta_{\mu}, \Delta_{\nu}\right\} \mathcal{H}^{m} \cdot(1-i H)_{m}{ }^{n}=0$
and
$\left\{\Delta_{\mu}, \Delta_{v}\right\} \mathcal{H}^{m}=0$.
Putting this into Eq. (A.4) we obtain Eq. (A.3).
B. $\left\{\Delta_{\mu}, \bar{\Delta}_{\mu}\right\}=-i\left[\Delta_{\mu}, \bar{\Delta}_{\mu}\right] H^{m} \partial_{m}$

$$
\begin{align*}
& \text { Proof: } \\
&\left\{\Delta_{\mu}, \bar{\Delta}_{\mu}\right\}=\left\{\partial_{\mu}+i \Delta_{\mu} H^{m} \partial_{m},-\bar{\partial}_{\mu}-i \bar{\Delta}_{\mu} H^{n} \partial_{n}\right\}= \\
&=-i\left[\Delta_{\mu}, \bar{\Delta}_{\mu}\right] H^{m} \partial_{m} . \tag{A.6}
\end{align*}
$$

c. $\left[\Delta_{\mu}, \bar{\Delta}_{\mu}\right] \mathcal{H}^{m} \cdot(1+i \mathcal{H})_{m}^{n}=-2 \bar{\Delta}_{\mu} \Delta_{\mu} \mathcal{H}^{n}$
D. $\left[\Delta_{\mu}, \bar{\Delta}_{\mu}\right] H^{m} \cdot(1-i H)_{m}^{n}=2 \Delta_{\mu} \bar{\Delta}_{\mu} H^{n}$.

Proof: with the help of Bq. (A.5) one finds
$\left[\Delta_{\mu}, \bar{\Delta}_{\mu}\right] \mathcal{H}^{m} \cdot(1+i \mathcal{H})_{m}^{n}=\left[\Delta_{\mu}, \bar{\Delta}_{\mu}\right] \mathcal{H}^{n}+i\left[\Delta_{\mu}, \bar{\Delta}_{\mu}\right] \mathcal{H}^{m} \partial_{m} \mathcal{H}^{n}=$ $=\left[\Delta_{\mu}, \bar{\Delta}_{\mu}\right] H^{n}-\left\{\Delta_{\mu}, \bar{\Delta}_{\mu} \cdot\right\} H^{n}=-2 \bar{\Delta}_{i} \Delta_{\mu} H^{n}$.

How we list formulae for transferring derivatives of SF from chiral bases into the symmetric one and vice versa. Note that the derivatives of H^{m} are always taken with respect to its natural arguments $x^{n}, \theta^{v}, \bar{\theta}^{\nu}$.

$$
\begin{align*}
& \partial_{\mu}^{L} p_{L}=\partial_{\mu} q-i \partial_{\mu} \mathcal{H}^{m}(1+i \mathcal{H})^{-1}{ }^{n} \partial_{n} q \tag{A,B}\\
& \partial_{\mu}^{R} \phi_{R}=\partial_{\mu} q+i \partial_{\mu} \mathcal{H}^{m}(1-i \mathcal{H})^{-1}{ }^{n} \partial_{n} q \equiv \Delta_{\mu} q \tag{A.9}
\end{align*}
$$

$$
\begin{align*}
& \partial_{m}^{L} \phi_{L}=(1+i \mathcal{H})_{m}^{-1}{ }_{m}^{n} \partial_{n} q \tag{A.14}\\
& \partial_{m}^{R} Q_{R}=(1-i \mathcal{H})^{-1}{ }^{n} \partial_{n} \phi^{R} \tag{A.15}\\
& \partial_{m} Q^{n}=(1+i \mathcal{H})_{m}{ }^{n} \partial_{n}{ }^{L} \varphi_{L}=(1-i \mathcal{H})_{m}{ }^{n} \partial_{n}{ }^{R} \phi_{R} \text {. } \tag{A.16}
\end{align*}
$$

Appendix B

Here we derive the formulae (8.6) for the connections and (9.4) for the Berezinian of the supervierbeins.

In the initial formula ($8.5 b$) for $\bar{\omega}_{2} a b$, besides the left supervierbeins l_{a}^{M}, their inverses l_{M}^{α} ore also present $\left(\ell_{a}^{M} l_{M}^{b}=\delta_{a}^{b}\right)$. One can oasily check that (see Eq. (7.3))
$\ell_{m}^{a}=-\frac{2}{F \bar{F}} \hat{l}_{m}^{a}, l_{\mu}^{a}=\frac{2}{F \bar{F}} l_{\mu}^{-1 \alpha} l_{\alpha}^{m} \hat{l}_{m}^{a}$
where $\hat{l}_{a}^{m} \hat{l}_{m}^{b}=\delta_{a}^{b}, l_{\mu}^{-1 \alpha}=\frac{1}{F} \delta_{\mu}^{\alpha}$. Let us insert Eq. (B.1) into Eq. (8.5 b) taking into account Eq. (7.3): $\bar{\omega}_{\dot{\alpha} a b}=\frac{1}{4} \bar{\nabla}_{\dot{\alpha}}\left(-\frac{1}{2} F \bar{F} \hat{l}_{a}^{m}+2 i E_{a}^{v} \Delta_{v} \mathcal{H}^{m}\right) \cdot\left(-\frac{2}{F \bar{F}}\right) \hat{l}_{m b}+$ $+\frac{1}{4}\left(\bar{\nabla}_{\dot{\alpha}} E_{a}^{\mu}\right)\left(\frac{4 i}{F \bar{F}} \Delta_{\mu} H^{m} \hat{l}_{m b}\right)-(a \leftrightarrow b)=$
$=\frac{1}{4} \bar{\nabla}_{\dot{\alpha}} \hat{l}_{a}^{m} \cdot \hat{l}_{m b}+\frac{i}{2 F}\left(\sigma_{b}\right)_{\mu \dot{\alpha}} l_{a}^{\mu}-(a \leftrightarrow b)=$ $=-\frac{i}{16}\left(\tilde{\sigma}_{a} \sigma_{c} d \sigma_{b}-\tilde{\sigma}_{b} \sigma_{c d} \sigma_{a}\right)_{\dot{\alpha} \beta} \bar{\omega}^{\dot{\beta}}{ }^{c} d+$
$+\frac{1}{4}\left(\bar{\nabla}_{\dot{\alpha}} \hat{l}_{a}^{m} \cdot \hat{l}_{m b}-\bar{\nabla}_{\dot{\alpha}} \hat{l}_{b}^{m} \cdot \hat{l}_{m a}\right)-\frac{i}{4}\left(\tilde{\sigma}_{a b} \bar{\nabla}\right)_{\dot{\alpha}} \ln F$.
From Eq. (B.2) the following expression for $\bar{\omega}_{\alpha, \alpha} a b$ can be derived
$\bar{\omega}_{\dot{\alpha} a b}=\varphi_{\dot{\alpha} a b}-\frac{i}{8}\left(\tilde{\sigma}_{a} \sigma_{c d} \sigma_{b}-\tilde{\sigma}_{b} \sigma_{c d} \sigma_{a}\right)_{\dot{\alpha} \beta} \varphi \dot{\beta} c d$
$\varphi_{\dot{\alpha} a b}=\frac{1}{4}\left(\bar{\nabla}_{\dot{\alpha}} \hat{l}_{a}^{m} \cdot \hat{l}_{m b}-\bar{\nabla}_{\dot{\alpha}} \hat{l}_{b}^{m} \cdot \hat{l}_{m a}\right)-\frac{i}{4}\left(\tilde{\sigma}_{a b} \bar{\nabla}\right)_{\dot{\alpha}} \ln F$.
Pinglly, using the identity (see Eqg. (A.3), (A.6), (A.7))
$\bar{\nabla}_{\alpha} \hat{l}_{a}^{m}=\bar{F} \delta_{\dot{\alpha}}^{\dot{\mu}} \bar{\Delta}_{\mu} \bar{\Delta} \tilde{\sigma}_{a} \Delta H^{m}=-\frac{1}{2} \bar{F} \bar{\Delta}_{\mu} \bar{\Delta}^{\mu}\left(\tilde{\sigma}_{a} \Delta\right)_{\dot{\alpha}} \mathcal{H}^{m}$
and the identity (see Eq. (8.4))
$\bar{\nabla}_{\dot{\alpha}} \hat{l}_{a}^{m} \cdot \hat{l}_{m}^{a}=\bar{\nabla}_{\dot{\alpha}} \ln \operatorname{Det}\left(\hat{l}_{a}^{m}\right)=-2 \bar{\nabla}_{\dot{\alpha}} \ln \left(F \bar{F}^{2}\right)$
one obtains Eq. (8.6b).
*The expressions for the connections applied to spinors are frequently used. They are:
$\omega_{\alpha \beta \dot{\beta}} \equiv \frac{i}{2} \omega_{a a b}\left(\tilde{\sigma}^{a b}\right)_{\beta \dot{\beta}}=\frac{i}{2}\left(\nabla_{\alpha} \hat{\tau}_{a}^{m} \cdot \hat{z}_{m b b}\right)\left(\tilde{\sigma}^{a b}\right)_{\beta \dot{\beta}}$
$\bar{\omega}_{\alpha \beta \beta} \equiv \frac{i}{2} \bar{\omega}_{\alpha a b}\left(\sigma^{a b}\right)_{\beta \beta}=\frac{i}{2}\left(\bar{\nabla}_{\alpha}^{\dot{\alpha}} \hat{l}_{a}^{m} \cdot \hat{l}_{m b}\right)\left(\sigma^{a b}\right)_{\beta \beta}$.
Here the identity (C.1) is taken into account. Purther,
$\omega_{\alpha \beta \beta} \equiv \frac{i}{2} \omega_{\alpha a b}\left(\sigma^{a b}\right)_{\beta \gamma}=\left(\varepsilon_{\alpha \beta} \varepsilon_{\mu \delta}+\varepsilon_{\alpha \beta} \varepsilon_{\beta \delta}\right) \nabla^{\delta} \ln F$
$\bar{\omega}_{\alpha j \beta i} \equiv \frac{i}{2} \bar{\omega}_{\alpha a b}\left(\tilde{\sigma}^{a b}\right)_{j \dot{\mu}}=-\left(\varepsilon_{\dot{\alpha} \dot{\beta}} \varepsilon_{\dot{j} \dot{\delta}}+\varepsilon_{\dot{\alpha} \dot{ }} \varepsilon_{\dot{\beta} \dot{\delta}}\right) \bar{\nabla}^{\dot{\delta}} \ln \bar{F}$.
In the derivation of Eq. (B.7) the identities (B.4), (B.5) and their conjugates, and the Fierz rules are employed.

Now let us obtain Eq. (9.4). Using Eq. (6.1) one finds
$E^{-1}=\operatorname{Ber} E_{A}^{\mu}=\operatorname{Det}\left(E_{a}^{m}-E_{a}^{\mu} E_{\mu}^{-1} \alpha E_{\alpha}^{m}-E_{a \mu i} E_{\alpha}^{-1} \mu E^{\alpha m}\right) x$
$\times \operatorname{Det}^{-1}\left(E_{\alpha}^{\mu}\right) \cdot \operatorname{Det}^{-1}\left(E_{\alpha^{\mu}}^{\mu}\right)=$
$=\operatorname{Det}\left[\frac{1}{4} F \bar{F}\left(\Delta \sigma_{a} \bar{\Delta}-\bar{\Delta} \tilde{\sigma}_{a} \Delta\right) \mathcal{H}^{m}+i E_{a}^{\mu} \Delta_{\mu} \mathcal{H}^{m}+i E_{a}^{\mu} \bar{\Delta}_{\mu} \mathcal{H}^{m}-\right.$
$\left.-E_{a}^{\mu} F^{-1} \delta_{\mu}^{\alpha} i \nabla_{\alpha} \mathcal{H}^{m}-E_{a \dot{\mu}} \bar{F}^{-1} \delta_{\dot{\alpha}}^{\dot{\mu}} i \bar{\nabla}^{\dot{\alpha}} \mathcal{H}^{m}\right](F \bar{F})^{-2}=$
$=(F \bar{F})^{2} \operatorname{Det}\left[\frac{1}{4}\left(\Delta \sigma_{a} \bar{\Delta}-\bar{\Delta} \sigma_{a} \Delta\right) \mathcal{H}^{m}\right]$.
This expression can be rewritten with the help of Eqg. (A.6),
(A.7), (7.3F), (7.6g):
$(A .7),(7.31),(7.6 \mathrm{~g}):$
$E^{-1}=(F \bar{F})^{2} \operatorname{Det}\left[-\frac{1}{2} \hat{l}_{a}^{n}(1+i \mathcal{H})^{-1} m\right]=$
$=2^{-4}(F \tilde{F})^{2} \operatorname{Det}\left(\hat{l}_{a}^{m}\right) \cdot \operatorname{Det}^{-1}(1+i \mathcal{H})=$
$=2^{-4}(F \bar{F})^{2} \operatorname{Det}\left(\hat{\tau}_{a}^{m}\right) \cdot \operatorname{Det}^{-1}(1-i \mathcal{H})=$
$=2^{-4}(F \bar{F})^{2} \operatorname{Det}^{\frac{y}{2}}\left(\hat{\ell}_{a}^{m}\right) \cdot \operatorname{Det}^{\frac{1}{2}}\left(\hat{\tau}_{a}^{m}\right) \cdot \operatorname{Det}^{-\frac{1}{2}}\left(1+\mathcal{H}^{2}\right)$.
Finally, inserting the explicit form of \bar{F} and $\bar{F}(8.4)$ into Eq. (B.8) we obtain Eq. (9.4).

Appendix C

In the paper the two-component Van-der-Weerden notation is

$$
\begin{aligned}
& \text { used. } \\
& \bar{\psi}_{\alpha}=\left(\Psi_{\alpha}\right)^{+}, \psi^{\alpha}=\varepsilon^{\alpha \beta} \psi_{\beta}, \bar{\psi}^{\alpha}=\varepsilon^{\dot{\alpha} \beta} \bar{\psi}_{\beta} ; \\
& \varepsilon^{\alpha \beta}=-\varepsilon^{\beta \alpha}, \varepsilon^{\alpha \beta}=-\varepsilon^{\dot{\beta} \alpha}, \varepsilon^{12}=-\varepsilon_{12}=\varepsilon^{i \dot{2}}=-\varepsilon_{i \alpha}=1, \\
& \varepsilon^{\alpha \beta} \varepsilon_{\beta \mu}=\delta_{\mu}^{\alpha} ; \psi \varphi \equiv \psi^{\alpha} \varphi_{\alpha}, \bar{\psi} \bar{\varphi}=\bar{\psi}_{\dot{\alpha}} \bar{\varphi}^{\dot{\alpha}}
\end{aligned}
$$

$\left(\sigma_{a}\right)_{\alpha \dot{\alpha}}=(\mathbb{1}, \vec{\sigma})_{\alpha \dot{\alpha}},\left(\tilde{\sigma}_{a}\right)^{\dot{\alpha} \alpha}=(\mathbb{1},-\vec{\sigma})^{\dot{\alpha} \alpha}=\varepsilon^{\dot{\alpha} \beta} \varepsilon^{\alpha \beta}\left(\sigma_{\alpha}\right)_{\beta \dot{\beta}} ;$ $\left(\sigma_{a b}\right)_{\alpha \beta}=\frac{i}{2}\left(\sigma_{a} \tilde{\sigma}_{b}-\sigma_{b} \tilde{\sigma}_{a}\right)_{\alpha \beta},\left(\tilde{\sigma}_{a b}\right)^{\dot{\beta} \beta}=\frac{i}{2}\left(\tilde{\sigma}_{a} \sigma_{b}-\tilde{\sigma}_{b} \sigma_{a}\right)^{+\beta}$.

Some important identitios:

$$
\left.\begin{array}{l}
\left(\sigma_{a}\right)_{\alpha \dot{\alpha}}\left(\tilde{\sigma}^{a}\right)^{\beta \beta}=2 \delta_{\alpha}^{\beta} \delta_{\dot{\alpha}}^{\dot{\beta}} ; \quad\left(\sigma_{a b}\right)_{\alpha \beta}=\left(\sigma_{a b}\right)_{\beta \alpha} ; \\
\sigma_{a} \tilde{\sigma}_{b}=\eta_{a b}-i \sigma_{a b}, \quad \eta_{a b}=\operatorname{diag}(+--) ; \\
\left(\sigma_{a b}\right)_{\alpha}^{\beta}\left(\sigma^{a b}\right)_{\rho}^{\tau}=4\left(2 \delta_{\alpha}^{\tau} \delta_{\rho}^{\beta}-\delta_{\alpha}^{\beta} \delta_{\beta}^{\tau}\right) \tag{c.1}\\
\left(\sigma_{a b}\right)_{\alpha \beta}\left(\tilde{\sigma}^{a b}\right)^{\dot{\alpha} \beta}=0
\end{array}\right\}
$$

References

1. V.Ogievetsky, E.Sokatchev, Phys. Lett., 79B, 222 (1978).
2. V.Ogievetaky, E.Sokatchev. JINR, E2-12469 Dubne (1979).
3. V.P.Akulov, D.V.Volkov, V.A.Soroke. JETP Piama, 22; 396 (1975): Theor. Meth. Phys., 31, 12 (1977).
4. J. Wess, B. Zumino. Phys.Jett., 66B, 361 (1977).
J. Wess. "Superaymetry-Supergravity" in Proc. VIII GIFT Seminar, Salamanca, June 1977, p. 81.
5. J.Wess, B. Zumino, Phys.Iett., 74B, 51 (1978).
6. L. Brink, M. Gell-Mann, P.Ramond, J.Schwarz. Hucl. Phys., B145, 93 (1978).
7. S.Bedding, S.Downes-Martin, J.G.Taylor. Propr. King'e College, July 1978;
J. G.Taylor. Phys.Lett., 79B, 399 (1978).
8. W.Siegel, J.Gater. Kucl. Phys., B147, 77 (1979).
9. V.Ogievetaky, I. Poluberinov. Ann. Phys., 35, 167 (1965); JETP, 48, 1625 (1965).
10. V. Ogievetsky, E.Sokatchev. Proc. IV Intern. Conf. on Honlocal and Nonlinear Pield Theory, Alushta, April 1976 (JLIR De-9788, p. 183, 1976);

Thel. Phys., B124, 309 (1977).
11. M.T.Grisaru, H. E.Pendelton. Frucl. Phyß., B124, 81 (1977).
12. RoKallosh. JKTP Pisma, 29, 192 (1979); JETP Plsma 29,493(1979).
13. S.M. Chriatensen ot al. Brandels propr. (1979).

Received by Publishing Department
on June 4, 1979

