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The Simplest Group of Einstein Supe rgravity 

The simplest supergroup of Einstein supergravity is considered. 
I t is the complex supergroup of general coordinate transformations 
i n left- and right - handed chiral conjugated superspaces restricted 
by the condi t ion of left- and right - supervolume-preservation. The 
rea l part of the vector coord inate of the superspace is identified 
wi th the space - t ime coordinate xm , and the imaginary one, with 
the axia l g ravitational superf ie ld }(m(x. 0, if) . The transformations 
of the field components of }(m are studied in detai I. The approach 
described is the geometrical basis of the so-called "tensor calculus" 

The investigation has been performed at the Laboratory of Theore 
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I. Introduction 

Supergravity is a gauge version of eupersymmetry which inclu
des necessarily the theory of gravitational field. At present 
there is no common eupergravity formaliem.Einetein'e gravity 
theory is built on a beautiful geometrical basis, the concept of 
curved space-time. An analogous pattern would be most desirable 
for eupergravity. However, the main results of supergravity (the 
renormalizability properties, the possibility of unification with 
internal symmetries, etc.) have been obtained in the framework 
of the eo-called "practical" or "component" approach/11. This 
approach bas nothing to do with geometry. There the supergravity 
group has been realized as a group of complicated transformations 
of a set of ordinary fields. The form of the transformations and 
of the invariant action has (happily) been guessed by 'reat 
computational skill but without any geometrical ideae/1 • The 
difficulty with the noncloeing transformation algebra has been 
solved 121 by introducing an appropriate minimal set of auxilia
ry fields*). Further attempts to simplify and systematize the 
complicated technique of the component approach have led to 
"tensor calculus" rulea/31. These rules for handling sets of phy
sical and auxiliary fields strongly resemble the composition laws 
for the superfield components. In other words, the practical 
approach is gradually going close to a euperfield one. However, 
its geometrical meaning remai ns unclear, and the component nota
tion used is not compact and manifestly covariant. Therefore a 
manifestly eupercovariant formulation based on a transparent 
geometrical idea is desirable. 

*)This set of fields bas been prompted by the field content 
of the axial auperfield which we had'earlier proposed /4/ as the 
minimal adequate gravitational auperfield. 
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It should be point ed out that the search for geometrical app
roaches to supergravity began even before the appearance of the 
component approach, !\!any authors have tried to solve this problem 
(see Refs./5-121 and references therein). 

The common point in those attempts was the use of the concept 
1 "'r- · z•) of superspace ( ss below) l(x ' e ' e I') 1 • In the ss the supergroup 

of general coordinate transformations was considered, However, such 
approaches were found to be too noneconomical, Firstly, the sym
metry group was enormously large. Secondly, the fundamental ob
jects in such theories (e.g,, the "supervierbeins" £'1A {x, (}, S) 
and the connections w,. 8 c (x, B, 9)) were very complicated su
perfields (SF below) containing fields with spins 3, 5/2, etc. 
Therefore, in order to obtain physical information, the gauge bad 
to be fixed strongly and certain properly chosen RJ~ebraic cons
traints had to be imposed (as it was skilfully done by Wess and 
Zumino/6/ ), 

The most adequate formulation of supergravity has to be not 
only geometrical but also minimal (i.e,,the simplest possible 
groups and SF have to be used), 

The outlines of such a formulation were given in 1976 when 
we proposed/4/ to consider supergravity as the theory of an axial "' - . 
SF Je (x,B,e) (the simplest SF containing spin 2) generated by 
the supercurrent, Following to this idea we succeeded to find 
the minimal group of supergravity/13/ and . tben developed a forma
lism for constructing invariants of this group put of the single 
SF H"'. 

In the present paper the minimal group of pure supergravity 
will be described and its action on the components of the SF ){~ 
in the case of Einstein supergravity will be studied in detail. 
The main geometrical ideas are the following. The complex super
group of general coordinate transformations in the complex left
handed chiral 4+2-dimensional ss t (x:,", e-:) j and the _?o.njugated 
supergroup in the conjugated right-handed ss 1 (:x;'' e-;) J are 
considered (here conjugation means: x';=:{x-:.")* .71~=(8[')~ ). 
Then the real (i.e., self-conjugated) physical ss {ex~ er, er)J is 
introduced as a 4+4-dimensional supersurface in the 8+4-dimensio
nal ss fcx:, x-;'' e(, ~{)3 with complex structure. This super-

0 *J We label the vector (spinor) coordinates of SS by indices 
~ 1 ltt 1 "1t 1 ••• (,A 1_r,~-- · ) as it is done, e.g., in Ref. /5/. 
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surface is given by the equations 
1 ( ,.. .,.. ) -IP""'( n eve-;,) iZ x.-x~~. = n. xI I ' 

where J("" is an arbitrary superfunction of the arguments 
" - 1 c "' "' ) e"- e'"' e-v- e- ., X = .f x. + :l:lt > =:_. '"1 = R • 

The coordinates X~ e~ e"' of the physical ss together with the ...... "_ ... 
SF J{ (X~ 9, B") transform under the initial left- and right-
handed chiral supergroups (but not under the larger general coor
dinate transformation supergroup in the 4+4-dimensional real SS). 
Thus the supergravity group is realized in the physical SS non
linearly with the llelp of the SF J{""(x, 9, {j) • 

This group as a whole corresponds to Weyl supergravity, and 
a subgroup of it(singled out by the requirement that the super
volume in the left and right SS be preserved) corresponds to 
Einstein supergravity. A somewhat weaker condition (when only the 
product of the left a11d right supervolumes is preserved) adds 
global chiral tra~sformations to the Einstein supergravity group. 
The simplest action for Einstein supergravity possesses in fact 
such an additional chiral invariance, and this leads to certain 
important selection rules for the possible counterterms. 

Further on in the paper it is shown that in the Einstein-su
pergravity case after a partial gauge fixing the gravitational 
SF ]('''contains the graviton field e<f.-(;x'j , the gravitino 
field 'f'.. ...,(x) and the auxiliary fields S (.r) 

1 
P (X) and A ...,.(:x) • 

The action of the supergroup on these fields reduces to general 
coordinate, local Lorentz and local supersymmetry transformations, 
The closure of the algebra of these transformations is almost 
obvious. Finally, the transformations obtained are identified 
with those in the component approach. 

In Appendix A the notations are listed. In Appendix B the 
Einstein supergravity group including global)Ks -transformations 
is considered, 

I n a forthcomi ng paper a differential geometry formalism in 
terms of the single SF J<~'<~ will be developed on the ground of 
the supergroup found, 

Let us make some remarks concerning the literature on this 
subject. 

An interesting paper of Siegel and Gates/14/ should be pointed 
out. They have proposed a formulation of supergravity using both 
an axial and a spinor SF (the latter seems to be unessential). 
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Though being lese geometrical their approach has much in common 
with ours (especially in the way of use of differential geometry), 
and the final results are equivalent. 

It is worthwhile mentioning that chiral coordinates have also 
been discussed in Ref./8/ although we think the authors have un
derestimated their relevance. 

After the appearance of our preprint / 13/ in Ref./15/ the 
transformations of the chiral aca1ar SF were rederived starting 
with the tensor calculus reaulta/31. 

II. Superepace and Supergravity Group 

II.1. The manifestly covariant formalism of global (flat) 
auperaymmetry is baaed on the concept of ss. Usually an 4+4-

*) f,.., -·3 dimensional real SS (X 1 e/", ().f') is. considered where :X,.., 

is a real apace-time coordinate and er, {J.I' are left- and right
handed conjugated Weyl apinora (Grassman variables). The super
symmetry group is realized on functions cp(x,8, if) (SF) as 

**) follows 
cp1rx: e', e'J =C!J(x, e, e). (1) 

Here the coordinate transformations besides the Poincare group 
transformations include also aupertranalationa 

x'"'= X...,+ i ecr"'~- i 1\0"""" e 
e'.r = e.r + ). .!' 

e ,;. = eP + x;. 
(2) 

.)' -· 
with constant (infini teeimal) Grassman parameters A and )\ .J< • 

The moat straightforward generalization of the auperaymmetry 
group to the nonflat case is baaed on an analogy with the theory 
of gravitation. There the Poincar: group is replaced by the gene
ral coordinate transformation group. Similarly, in a number of 
geometrical approaches to supergravity /5-121 the global trans-

*) Here "real" means self-conjugated under complex conjuga
tion in the bosonic sector and hermitian one in the fermionic 
sector. 

**) In this paper we consider only scalar SF. SF with Lorentz 
indices will be defined in e paper on the differential geometry 
formalism. 
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formations (2) are replaced by general transformations of the 
coordinates of SS 

X 1
"": x"' + /!.,...(X, 8, lj) 

8'1' = er + /1.1" (X,(), B) 

e'i< = e.f 1- ~;. tr, e, e) 
with arbitrary auperfunctione-parametere ~ 

(3) 

However, as it was stressed in the Introduction, such a super
group is excessively large and includes too many superfluous gauge 
parameters. Indeed, in the decompositions of the euperfunctione 

ll(x, e, 0) in powers ~f e and e there are 128 ind.::_p~ndent compo-
nents (4 x 24 in 1\ , 2 x 24 in ').1' and 2 x 24 in ;::1.1' ) while 
only 14 of them have pbyaical meaning (4 parameters of general 
transformations of the coordinates JC~ , 6 for the local Lorentz 
an 4 for the local auperaymmetry transformations). To get rid 
of the remaining 114 ones the gauge has to be strongly fixed. 

II.2. In what follows we are going to propose another, more 
adequate way to generalize aupersymmetry in the nonflat case. The 
basic idea is prompted by the existence of the so-called chiral 
(fundamental) representations of flat auperaymmetry. They can be 
realized in SS more simply than the general ones (1 ), (2). Instead 

f ,.-·] of the 4+4-dimenaional real ss (x"'; B· I e.JA) one can consider 
a complex 4+2-dimeneional left-handed chiral ss {(x;' e{') J and 
ita conjugate right-handed one fJx-;',8~)} (i.e.,x;':(x;:f, 
e{ = (ef ;+ ). In these SS left-handed l.f, {X~.- 1 B~.-) and right-handed 
\f'Q. (X~, Gil.) chiral scalar SF CaP be defined on which global super
symmetry is realized as follows 

\f~,R ( x~,~t; e~,A) = l.f~.,R rx~.-,11; et.,R). 
Here the coordinate transformations include eu~rtranelationa: 

Left SS Ri ght SS 

X ,... "'... 2 · '} .... e-
~~.-=.AP..- t/1(]' It 

e't= e~ +X f. 

'"' .,.. · o .,.,-X I.= XL +2117"o- II 

e'~ = e{ + 11)< 
( 4) 

It is clear that an attempt to generalize supersymmetry group 
just in the simpler chiral SS will lead to gauge groupe smaller 
than (3). However, the vector coordinate .x:' {X~) in the 
chiral SS is complex while the physical coordinate ~~ is real. 
How to imbed a physical SS into the chiral ones? In the global 
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auperaymmetry case the answer is simple. Consider a 8+4-dimensio
nal ss {ex?', x;, ef: e~) J and define in it an 4+4-dimen
aional aupersurface. This means that four of the apace-time coor
dinates have to be excluded by four equations covariant(or in this 
particular case just invariant) under the transformations (4) 

::x:-;'-.:t-; = 2i eLrrW!eR. c5> 
This 
xwt 

L. 

auperaurface can be 
XWI+ (err""" e 

e.r -
L. -

e~"-

parameterized as follows: 
x;: = X""- L. 9a-....._ § 

eP = e;. . 
~ 

Thus one obtains a 4+4-dimenaional SS with coordinates 
f - ..... ) .r -. . x""= I (X t. +X It , 8 , er 

transforming just according to Eq.(2). 

(6) 

(7) 

So we conclude that global auperaymmetry can be realized as 
the group of motions of the 4+4-dimenaional auperaurface (5) in 
the 8+4-dimensional ss with complex structure trx-::,x;, er, e{)} 
(Fig. 1a). 

Note that the chiral coordinates (6) have been earlier consi
dered in the SS {(.x""'; GJ4, G.A)j 1161. However, they have been re
garded just as some bases in SS suitable to describe the corres
ponding chiral SP. We do not consider Eq.(6) as definitions of 
certain bases in the 4+4-dimensional ss. Instead, we take them as 
equations of a auperaurface in the 8+4-dimensional ss. Such an 
interpretation can be nontrivially generalized in the nonflat case. 

II.). This paragraph contains the basic ideas of our geometric 
construction. Define in the left- and right-handed SS conjugated 
supergroups of general coordinate transformations. Their infinite
simal form is 

Left SS Right SS 
x 1

; = x; + ;:!"~(xL, eL) x'; = x; +- ~"'(x., B~t) 
. - . • (8) 

e'J' = e{ + Aj((XL, 8L) e'-: = e-; + ~.f< (XIlJ ijR) . 
L - .... -./< 

where /\""1 ~r are arbitrary left-handed superfunctions and 1\ , A 
are their conjugates (i.e., for instance, II (XR,eR. = il f.x ... ,B.J ). -.. -) (.... )-+ 

Further, when considering the 8+4-dimensional ssf(x:, X;', 9{\ B~ n 
we have to get rid of a four-vector coordinate. For this purpose 
let us define once again a 4+4-dimensional real supersurface to 
play the role of the physical ss. Equations (5) are not more app
ropriate. They describe a particular supersurface (corresponding 
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C::x:i\ e~) 
RSS 

( "' -;.) xA, e-. 
RSS 

/. 

6~0'+-
. ca~ 

oi' /,- '}. ... 
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1-" 

Fig. 1a 

~.-:; .,. /~-~ 
~ .... 

'C(l~ 
..... 0~' 

.>i7' 
-1"~/'l-

~,~ 

Fig. 1b 
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to the flat SS ) and are not covariant under the new transforma
tions (8). Therefore we shall define a general 4+4-dimensional 
supersurface 

"'(' - ) .X.,...- X: = .2 ~ 1{ 2 {x, +X It ) 1 e,, 9P... • (9) 
L ~ 

Here the real superfunction Jt is not fixed (it is represented 
as a "curve" in Fig. 1 b in contrast to the "straight line" in Fig. 
1a). Introducing real space-time coordinates 

X""'= t (X": +x;) ( 10) 

the supersurface equations take the parametric form 

xi= x""+ ,-1('M(x,e,e> .x;= .:r ..... -t. j-(""'(x,e, iiJ 
( 11 ) 

e~ = er (j~ =- e.i< 
It should be stressed once more that the superfunction Jl~ 

in Eq, (9) is completely arbitrary, This is due to two reasons. 
Firstly, we want full freedom in the choice of the supersurface 
(9). Thereby the geometry of the 4+4-dimensional physical SS 

. ~~ .... (wh1ch is determined by the superfunction ~ , as it will be 
shown in a forthcoming paper) is not restricted a priori. Second
ly, the form of the superfunction ;}{VM contains some gauge freedom, 
Indeed, let some particular (although arbitrary) supersurface be 
fixed, Nevertheless, its equations (9) still depend on the coor
dinate frame chosen, i,e.,they will change under the transforma
tions (8) of the coordinates of the 8+4-dimensional SS. Consequ
ently, the superfunction J{"'<4(x,B,~Jhas to transform together 

"' r -. with the coordinates X 1 8 and ()/" of the 4+4-dimens.ional ss: 
.::e"' = x""+ ti""'[:x+i Ht:.r,e,e>, e] + 1 'J...,[x-t"/·(tx,e,e), e] c12a> 

e'.J"= e~+-.::tr[x+t''Ji(x,o,ihe] (12b) 

e'J< = e~ +- ~;. [x~t' 1( (x, 9, eJ, e] (12c) 

-tJI'WI<(X 19 1 fJ'J: t(...,(X (1 e)-i ;f''[:x+(1f{x,e,e'J, e] 'f-
(T, IJ lJ 2. 

+ ~ J:"t[x-d-!rx,e,e))j]. (12d) 

Let us summarize the different steps of our construction, We 
introduced two chiral ss.f(x:',B{'J) andf(x~, 8{)} together with 
the corresponding general coordinate transformation supergroups. 
Then we considered these complex SS as a 8+4-dimensional SS with 
complex structure and identified the real part of its complex 
vector coordinate with the physical spac~-time coordinate, The 
imaginary part was transferred into an axial (see p,III.1) super-
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.... -
field 1f (.xJ),O) giving a 4+4-dimensional real supersurface (the 
physical ss)*). The initial complex supergroup (8) was realized 
nonlinearly (12) in the physical SS with thE help of the SF~"'. 
In what follows we shall identify this group with the supergravi
ty group and the SF ~~with the gravitational superfield. This 
step will be justified by the detailed analysis of the transfor
mations (12) in terms of components of 1f~ carried out in Sec

tion III. 
Note that besides the gravitational SF t{~ general and 

chiral scalar SF's can also be defined in the physical ss. Under 
the transformations (12) the general ones transform as follows 

cp'rx: e: e') = cp(x, e, e) (13a) 

and the chiral ones 

cpi(xi,e'J = CfJ~..r:x,,e) 
cp~ (X~)}') = cp~ (XII, fJ) 

( 13b) 

with DeL and JCA from Eq.(11), The group character of these laws 
is obvious. SF with external indices will be defined in a forth-
coming paper, 

II.4. Comparing the transformation supergroup (3) underlying 
the straightforward generalizations of supersymmetry and our su
pergroup (8) (or, which is the same, (12)), one can see that 
the latter is rather simpler. Indeed, ~e chiral superfunctions-

- 2 
parameters 1\ and ?. in Eq. (8) contain 48 components (4 x 2 in 

..... 2 r -~ -~ 1\ , 2 x 2 in 1\ and the same number in A. and /I ) instead 
of the 128 ones in the general superfunctione in Eq.(3) (see the 
end of p. II.1). However, the supergroup (8) can be narrowed 
further. 

It is easy to see that it bas nontrivial subgroups. To show 
this, consider the analogue of Jacobian (superdeterminant or Bere
zinian/181) of the coordinate transformations in the left (or 
right) SS 

Bm{/o(x~, e~ )}/-= 2>et Jl'dx~ ... _ ?x't ~Bt 'Je'v/1. r;Jdfl r;e{ II 
o(x,,B,) /~:r::' 'Pe{ IB': :P::r://' ff'lJfJtff • 

It has the multiplicative property 
*)Note that in their pioneering paper Volkov and Akulov/17/ 

identified the Grassman coordinate of SS with the neutrino field, 
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~rt~j~(x~', e~ )JJ. Brvzji/'U(xt, B~) Jl = ~IJCdex:, eJ.:) Jl 
rorxL,()L) /fd(XL,BL)/1 //2(XJ..,8~.)/I• ( 14) 

Owing to this property the transformations (8) restricted by the 
condition 

Ben/}7Jrx~.e1>J/ = 1 (15) 
'P(XL, BL) 

form a subgroup of the supergroup of general transformations of 
the left ss. This subgroup has clear geometrical meaning: It 
preserves the "supervolume" in the left ss*): 

d'f 'd2~'~'- o--JJWx~ o:>jll Jlfx '28 -d"x JJ.e 
XL r7 L - DVl "Y::r-,, ~t ) j· 0. ~ (J. L - L L 

In infinitesimal form Eq.(15) reads 
~ ~ L ./"' (') t. ')M ( 1)p(M) 'Ox:'~ (xt,BJ-7)(;-f /1 (x.~..J1i):: ·o,._, /1 - (15') 

(here the index M takes values 'm and)' ; pfwt)-=O,f£r>=JJ.,._Tfle 
analogous condition holds for the conjugated parameters A 

1 
A I' of 

the right supergroup. The constraint (15)and its conjugate reduce 
the number of the independent gauge parameters to 40. 

Two more subgroups are worth mentioning. They are given by 
conditions weaker than (15): . 

&.t)J'iJ(x~ e1))!l. Bvz.li/'O(x~. e~ )/) = 1 or (16) 
~rx.,£h> { l~rx~ elt.) 

~lla-x~,e~) fl. ~rc.-1)/rac~k,ek> Jl =-1. (17) 
'U(:rL 1 6ld '?J(=t R ~i) ' 

in infinitesimal form they r~ad· 

('0: AM +'O:'jM) (-1JP(M) = 0 (16') 

('0~ A""- 9~ ~"")(-l)p(M) = o. '17 ') 

II.5. Now we shall formulate the main statements which have 
to be proved. 

A. The transformation supergroup (8) is the group of Weyl 
(conformal) supergravity. 

B. The transformation supergroup (8) with left (and rigbt)
supervolume-preservation condition (15) is the group of Einstein 
(N•1) supergravity. 

c. The transformation supergroup (8) with conditions (16) or 
*) An analogy: in space-time {(X,... J J the group of general 

coordinate transformations Elt"'=-j"'(x) bas a subgroup singled out 
by the constraint M/I'Ql:'/thcJI= 1-'0fO:x..,..f""'= 0 • Note that on the 
way towards the theory of general relativity Einstein /19/ bas 
intensively discussed this volume-preserving subgroup. 
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t) 

(17) is the Einstein supergravity group plus global chiral or 
scale transformations. 

Case A bas been considered in our paper/201. Case B will be 
investigated in detail in Section III of the present paper and 
case C in Appendix B. 

III. The Einstein supergravity group and the components 
of the superfield Jl'"" 

In the present section it will be demonstrated that the axial 
SF j{Y'A(x,9,9) describes the gravitational supermul tiplet, and the 
group (8), (12), (15) (case B) is the Einstein supergravity group. 
To this end we shall establish the physical meaning and the tran
sformation properties of the field components entering into the 
decomposition of 1{"' in powers of e and e : 
"J(";;II(x,B, e)= BYifrx) +t' e..rJ_/"(x) -i ~ j)MI"(x)+ eCJQ. e ~tt"'W(x)+ 
+ae eB(P...,rx> +•S"'rxJ) -r;): ee (prx)- iS'...,rx)) + 

-+i~ ee. e.f'fj.Y<t(x)-L'Jt8B.8,; r"'"'.f(x) +~ ee. @e C¥-l(x). 

(18) 

. .... 
In this decomposition the tensor field € (X) will describe 

graviton (the vierbein field)*) and the Rarita-Schwinger field 
"' -"'· 'fl' (x)

1 
l.jl '.I'(X) will correspond to gravitino. The constant ·:Je of 

dimension CM1(~=C= 1)will be identified with the gravitational cons
tant. All the other fields in Eq.(18) will be either auxiliary 
ones or purely gauge degrees of freedom. 

This section is planned as follows. First, we have to get rid 
of the nonpolynomiality of the transformation law (12). This can 
be achieved by such a partial gauge fixing in which the first se
veral terms in Eq.(18) vanish. Afterwards there remains certain 
class of transformations (12) which preserve the fixed gauge. Their 
action on the remaining components of -:Jlwo is established. This 
class of transformations turns out to consist of Einstein general 
coordinate transformations, local Lorentz, and local supersymmetry 
ones. The evident group property of these transformations is de
monstrated. Finally, we prove the equivalence of the results ob
tained to those of the component approach/21. ,... 

*) For this reason we call the superfie1d }l "axial": the 
tensor field e<l..,.. (X) is the coefficient of the axial combina
tion {)q-a. 8 . 
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III.1. We begin with a discussion of the functions--parameters 
in the decomposition of the euperfunctione .ilM(.x._,eJ : 
'?t"M(XL 1 e)= -a .... (x.L)+tl"tx .. )+-8v!f.,(xL)+ UB(s ... rx ... )+t'p""'fX;,..)) 

?..f'(x" B)= f~(:xL) +B"OJ, l'(x")+BB'//fx") 
( 19) 

' ~ " - "" a'"" "' .,.. and their conjugates ,./''(x, G) (the parameters a 1 111 1 .S 1 P are , .... 
real functions, e.g.((t'"'(X,AJ)* = Q (X,) ) • In Einstein eupergravity 
(case B) there is the condition of eupervolume pr~eervation (15) 
which leads to the follo•ing restrictions 

<GJ! pYIII(XL) = 0~ S.,...(XL) = 0 (20a) 

r;_.t-rxd = -1 ~ lfvot.rrx") . d (20b) 

w/(xd= f(-o.,!a""'rx")+t"l:;i'MtxL))'8( -f_Q rxL)(Ua.i)t' (2oc) 

(and to the corresponding equalities for the conjugated quantiti
es). Witho~t lose of generality one can regard the antieymmetric 
teneor.Q.c. (X£) in Eq.(20c) as a real function*). 

III.2. Several gauge functions in Eq. (19) can be used to 
exclude some components of ]{'M (18). To show this let us write 
down the transformation law (12d) as a form-variation of 1.{""' 

b)t 1(''(x,9, e) = 1-l,'mrxA eJ-l(*rx, e,e) = -j~Ytll(x+,-~ e>- .:f""(.x-i~ej]-
-1 [';t'(x+t'1l16) + J.""(:x-iH, lJJ)~ ...... "'Jf"'(x, e, e)- <21 > 

- r~v(X+t ' H,e)lev +~v(x-t'1{,9)~v] "Jf'V!A.(~B,B)~ 
Now decompose the right-hand side in powers of J< singling out 
the terms without 1-/""' 
'b~ 1(''(x,e,9) =- f ')-(x, e)+ f ~...,rx) 6) -t-

. "" - -Ytii.Y 
-::: g"""(x)- t 9vlf-v (x) +f e.; if (X)-

- f ee ( s"'rx)+t'f"'(x;)) + f ee ( s{x)-t'p""'"fx)) +- - -
')'Ill 'V 1'K -- '" "11 .... 

We see that the components B J lv y 1 X.;, 0~ ~ get completely ar-
bitrary additive contributio~e at infinitesimal level. This fact 
indicates that they are pure gauge degrees of freedom which can 
be removed by an appropriate gauge choice. 

*) ( a.~ . q,6) (J2 a.€ -1 a.~ccln ) ~ _ 
Indeed, n.1 +1122 era.~::: 1 -.r~ ..1"2cd Q.g= 

e if € - a. ~.a a. o;g ((Jtg) =It) due to the identity ~~ = f €.teed cr' . 
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So, there exists such a gauge in which the axial euperfield 
decompoei tion is reduced to _ _ :... , ,,.. ) - <tM 

'J{""(x (},9)=JeBB(P"'"'rx>+t$fz>)+;}e6()(p {x)-tS (X) ~eaa.ee (x}+ 

+i·x/89. e.r 'fr.,.{X) -i'£ ee. 8;. iji"".f(x)+ ~ ()9. ee C""rx) . <22 ) 

In this gauge the transformation law (21) acquires a polynomial 
form because the third power of ;Je.,.,. vanishes. In the eupersymmet
ric Yang-Mills theory \'lees and Zumino used a similar gauge in 
order to get rid of nonpolynomial ities/21 1. 

III.3. It is very important that after such a partial gauge 
fixing there remains a set of transformations of the t e (21) 
preserving the form (22) of ~. These transformations have the 
following specific parameters 

tl4t=0 wt m 

\f>"ttA = 2 i ( cr'Mf)M + ~t i fl" ( P + i $ ) r / . .,., c~ 
~v.o;. = 2 i c;r ..... E}r- ~ti €.r (P - ~0 ·). 

(o--= a.:;_ ea"") 

(23a) 

(23b) 

(23c) 

Here we come acrose a peculiar phenomenon: Due to the partial 
gauge fixing the transformation parameters become dependent on 
the fields. Just for th i s reason the bracket parameters 
("structure constants") of local supersymmetry depend on the fields. 
We shall discuss and use this property in what follows. 

III.4. Now we consider separately the role of the functions
parameters p"""fX) and S.,..(X) in Eq. (19 ). Under the transforma
t ions (21) they change the component fields P-...f:x), S'...,(x) and 

( ... (X) only: 

~* PVM(X) = ~ f"//lt(X) 

El<t""rx) =-/~ s""(x) 
.... "" s\'1"':1 'WI "j\') P..... ""1:1 s'lt! S*C (x) = P ~""s""'+ o.,_ p -5 Oyt - P "to~ 

(24a) 

(24 b) 

(24c) 
In Einstein eupergravity the longitudinal par~of the gauge 
functions f.,.. and 5"" vanish owing to the restriction (20a ). Then 
equations (24a), (24b) tell us that the transversal parte of the 
fields P'V!Afx) and $""r::c> are gauge degrees of freedom. Because of 
this it is expedient to introduce fields 

P = '0....,. P..,..., S = '0'1'\11 S""" (25a) 

Z/'" = C'M + 2 de ( p ...... a_.. S.,.. -SY\'0"' p-) <2sb> 
that do not change under transformations (24). Now one can forget .... ...... about the parameters f. {:r) and 5 (X) as they have already played 
their role. 
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III.5. Thus after the partial gauge fixin~ at our disposal 
there remain the functions-parameters a-rx))JJ."- (~) and ~(:c>([ftz)). 
In this paragraph it will be shown that they serve as parameters 
of general transformations of coordinates ~~ , of local Lorentz 
transformations, and of local supersymmetry, respectively. 

III.5.1. We begin with the parameter Ct~(x). Under the trans
formations (21) with this parameter one has 
&; p = '0.,.. Q;~ p + a.""'O~ p (a) 

s~ s = 'O.,...ct"'. $ + a"''O., s (b) 

'bt'e'l'M=7>~a."".e~:""+a"'o ..... eQ.""-o.,.a..""". e<t"' <c> (26) 
,.. .,.. WlllJ""' "'()IJj'WI. n ~w"" (d) 

b6 ~ : f ~,a. . T,. +a "l\. Tflf. - P')'! a . I« 

~*'J:J'M= 2'0.,.a.~'2r+ ct""''P"'':<f'-ro"'a~~"' . (e) 

Here the Weyl spinors r~J Yi~J" are combined into the Majorana 
spinor (in this section we shall use 4-component notation) 

""" ('#'"") if.: = ~~,. . (27) 
We see that ~""(:t) is a general coordinate transformation para-

"' lt. '101 I 11 - f>o. 'WI meter, the index of the fields e , 1rK and ~ being a 
world contravariant one. The indices OL of the field e«-'M and cl. 

of the field YJ~""' are not affected by transformations (26). We 

shall see in the next paragraph that they : are local Lorentz in
dices. To distinguish such indices from the world ones we shall 
denote them by the first letters of Latin (vectors)and of Greek 
(spinors) alphabet. 

Note that all the fields have nonzero weight (1 for f' , ~ 
and ft''Wt, J for 'ft.""", 2 for 2....._ ). Of course, these weights 
can be eliminated multiplying the fields by appropriate po-
wers of 'l>et//eCl""" //. Q.g 

III.5.2. The transformations with parameter .s2 (X) have 
the following form 

s~ p = ~: $ = 0 (a) 

b: eQ..,.. =- 2 nQ.~ e; (b)(28) 

it lp.,."""= fnQ.g(o;.c Lf''""). <c) 
<:;-tt 'WI. .f 1':\ na.~ C I eC~ J"t'' 
OJ... ?j :-!" U"t''.J' • C'ct.gCCI. e . (d) 

These are local Lorentz transformations. The fields F> and 

S -~ are scalars. The field e (X) with respect to index a. 
transforms as a Lorentz vector (its second index ~ is a world 

CI."M LJJ 'rtf one, so ~ is the vierbein field). T~ is a Lorentz epinor 
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( o(. ) and a world vector ( '»1 ). Only the field 2fWI bas a non
standard transformation law (28d). So it is convenient to intro
duce a new field variable 

A'WI_r;,:o/V\_1..c-"'ld7:,.., ("). eq_ (29) 
- .u 't c. 'C l a. u.., "t ' 

~.!~i-r = fa.kd eo. .... eg""' ece e J..--z Cl.... \It 

and e ..... a.. is the inverse vierbein matrix (e ... ~ e. = 8-... ) • 'l'he 
contravariant field ~~ obtained has now standard transformation 

laws "' '"" ..., ""' ..... '\'\ 
0~ A ..... = 2 o"' a. • A +a o""' A - o'\'1 a.. • A 
b~ A'"'·= o. 

(26a 1 ) 

(28d I) 

III.5.3. Finally, consider the transformations with parameter 
e.-= {/1) 
which have to be the local supersymmetry transformations. One 
obtains 

,. p f "' (- /Jl'Y'<) 8"5 =- 2 \J.., fJ'sT 

s: s = I fl .... ( E lf1 .... ) 
~it Cl'WI • - Q.JJJ"'" 
o5 e = l <£ f ~ T 

~:lflv.-. = 2(Jfs-£ ),( A-.-2 i ( a-"'1\a f). +2i[(S +Prs) Cf"'f)] Q( 

(30) 

s: A.,..= -b z"'Mt-z:Q"' (fJ~lflz)+ i (~ fJJt'J1slflvt_ 1 fJt) .. a, 41~ 
- 3d l~ f) 'f"'ts41"'- 2 l (P + Sjts-) 'f"" 

.... 01.-. Ill &'""'e 4 ~ 
where jt = fla. e , I" : T 'MO(:l € "'I\ • The symbol V'Mot denotes 
the covariant derivative for fields of nonzero weight. (Its defi
nition is given in Appendix A, Eq.(A.2)). 

II1.5.4. At first eight formulae (30) differ significantly 
from those in the component approach/21. However, these differen
ces are superficial and can be eliminated. For this purpose one 
has to do the following. Firstly, one has to remove the weights 
multiplying the fields by appropriate powers of e= :odUe...~l~ Se
condly, some redefinition of the fields lf.t_ ~ S 

1 
P and A..,.. is 

needed. The new field .variables are the following 
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e 1a.- = e"'3 ea.'t>t 

41 1; = e 111 ( 41 'V\1- f )1 /1 ~ lf1 '"') « 

I 1/3 p t' LJJ I 't>t /f'w I £1 J I J I 'VI p = e - f" T v "'"'~Is T 

ell _ 1/J ~ j_ LJJI""" ,.._ I 111 1 ?7 
~ - e ~ + 8 T v-M'\11 I 

. - ,,., ' -,,., ,,..... Jill 
AIW.= e2'3A"f0\+t 4J'"""jt'..t)4.r'f/ -tlfl jt )1:.-T'VI+ 

.!l£ c'""'~'~fl< JJ!I rt' JJJI + fl. c. T" d ( T K 

!.!"" H ct ...... "'"" 'tt'ltt "'' e' It:/. Ju''YI where 4 . =ra.e 'I' -=)1o.e , r~= ""a.e.-t T . • 
Thirdly, the indices of all the contravariant vectors have to be 

. a' e' ~ lowered w~ th the help of the metric tensor d"""., = )ICC(. e.,. 
Finally, the transformations (30) have to be modified ~y combining 
them with Lorentz transformations (20) with the parameter 

AL j_ t:. -, '"' JJII')I ( 1 -~, ) S2t.~.t = -.t c;~g,...,., f jt 'J's-T £,~. = e &« . 
The resulting local eupereymmetry transformations of the new field 
variables have the form(primee are implied everywhere) 

b'S:u ~a. = - i f jto. 41-
bs:~L lfl-a~. = -2(V.,.,f)ot- ¥jt-...[{~-Pfs)f).+2[{A~- rj-...)"'A.JjsE).. 
c * ~ ~· - 'YI0'\1 ,,, ,· (- ""''" ) r' 
Os+& ~ = J:' ~ (} \7'101 "1''11 + ".f ~ )1 .,-,.,.. ~ -

-f tf(/'s'fi~)P + t(f)1s 4J,,..) A-w. 
c- "" p , - ....... i r- .... 111 ) r4 
osML -= -:r ~~scr- V,., 41~ + l' Ef jk..,..,.. ~ + (31) 

+ t at"" 41,.., ) P + 1 cr lf- ) A"*' 
C' * i - " n W i - ..,. n 111 + t' c tJ c't'J'VIn.ftJ./K 
05~/)L ~::: -I ~ Jl fsvv. T'r<t + }' £ f J's v,.. ..,....,.. 7j t:""M'I'I~I( 7:' 4 v T -

-~ l (P+$J1T)4l~ + f/&r"Lfl,JA~ 
.£- 'VI I;} ) A i A"'(- I I,JK) -t~fj' ..,...l)!.o ,., .... +ij f,..""el<. EJ' )'s, • 

where \7~ is the covariant derivative (see its definition in 
Appendix A, Eq.(A.2)r note that terms bilinear in ~~appear in 
the connection coefficients (A.3) just because of the changes of 
variables made). The transformations (31) coincide with those 
earlier guessed by other authors in the component approach/ 21. 
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Stress once more that the representations of local eupereymmetry 
(30) and (31) are equivalent. 

Note also that in the component approach/2/ transformations 
of the eo-called "scalar" and "vector" multiplete of matter fields 
have been found, These multiplete correspond to the chiral and 
general scalar SF defined in Eq.(13). It can be shown (we shall 
not do this here) that the SF laws (13) in terms of component 
fields give the same results as the ones of Ref./ 21 • 

III.6. Now we have to check that the transformations (12) and 
( 15) in the gauge (22) (i.e., those with epe'cific functions-para
meters (23)) form a subgroup of the group (8), (15). 

In the component approach the only method to prove this fact 
is a straightforward calculation of the commutators of transfor
mations (31) between themselves and Ni th transformations. o: 
and b1 . Then one must succeed in identifying the different 
parte of the commutators obtained with the initial transforma
tions having some new ("bracket") parameters. This is a nontri
vial technical task. The main difficulty is due to the field 
dependence of the bracket parameters. 

In our approach we can proceed much more simply and effec
tively because we know the clear group structure. We have a field 
dependence of the parameters from the very beginning as a conse
quence of the gauge fixing (23). The only question is what hap
pens to this dependence when one commutes the transformations. 

Consider symbolically the general situation. Take a set of 
fields that transform infinitesimally according to 

<.p ~ lf + G ( ct) Cf' , < 32 > 
where ~ is a set of parameters and (; are the generators of 
the transformations. Let the transformations (32)form a group. 
This means that the commutator of two transformations with pa
rameters «t and c:t2 respectively is a new transformation of the 
same type with some bracket parameter 

[G(ct2), G(a.tJ]'f' = G (al (a.1,az)) lf. (33> 
Now let the parameters depend on the fields, t{-: ct(lf) : 

\f ~ lf + G (a. t lf J) lf . <34 > 
Then two successive transformations give (taking into account 
the infiniteeimality of the parameters) 

lf'..:,<f+ G (a, {If)) 'f~c.e+G(a,(lf))'f + G[az {lf+G(a.,llf))'f5).G[If~Gr(a1{lf'))lf]= 
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= 4'+ G(a1t'f)) If+ G(a.2(4'))lf +G- [ ~ G(a.,('f))'f'] lf + 
+ G{a2('f)) G (Q1{<()) l{J • 
The commutator of these traneformat~one is equal to 

[G2 , Gt)lf' ::- G [~G (a1 (4'))4' ]lf- G [ W G {llt(lf)) If] 'f +
+ [G(o.2('f)) 1 Gft<1f'f))]lp • 
We conclude that due to the group law (33) and to the evident 
property Gfa1)+G(a.") = G (a 1+a11

) this commutator is again a tran
sformation (34) with b~cket parameters 

a'Yif)== ~ Gra,t~J)!f- ~ G(a2(~))1l'+ct3[a.,<r), a2 {<f)]. 05> 
The last question is whether the bracket parameters depend on 
the set of fields, Gt 1.? = Q, 8-z: fct) , in the same way as the ini
tial ones do, Ol = 0..(4') • In our case the answer is yes. Indeed, 
the field dependence (23) is a consequence of gauge fixing and 
the commutator of two gauge preserving transformations preserves 
the gauge too. 

So, the knowledge of the eupergravity group structure makes 
evident the closure of the transformation algebra of field compo
nents. Moreover, it gives a simple expression (35) for the brac
ket parameters. We shall not use their explicit form. 

IV. Conclusions 
The analysis carried out in Section III corroborated that 

our group is in fact the eupergravity group. The structure of 
this group proved to be very simple and transparent although 
unusual. Two features should be stressed especially. First, the 
initial SS where the group is defined has complex structure. 
Second, in order to introduce the physical SS, the imaginary part 
of the vector coordinate is identified with the axial gravita
tional SF, i.e.,it is converted into a dynamical variable. 

The dynamics is baaed on the symmetry group. To describe 
dynamics, it is necessary to express invariantly the action and 
possible counterterme via the dynamical variables. In a forth
coming publication we shall adapt the formalism of differential 
geometry for construction and investigation of invariants. It 
will essentially differ from the one applied in Ref./5/ in two 
aspects. Firat, all the geometrical quanti ties will be expressed 
in terms of the single dynamical variable, just the axial SF 
~~(X,~8). Second, our local Lorentz group acting on the external 
indices of the superfields will not be independent. Instead, its 

transformations will be induced by the world transformations. 
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Appendix A 

In the present paper the Van-der-Waerden two-component for
malism is mainly used. The basic notation is as follows: 

\}' ~ = (lf'o() t J 1.( <1. =- f lll.f-' r;. ) If 01. ::: t;t.f if;. 
c-12 l'ii c --~ .. -c _c,_1 
f. = l' :-G12- G11. - C;z1- &:7.1 -

ljl\f = lf'ol <f tJ. ) cp ~ = 'If/:.< t..f Jt. 

( -+) "' ~ol ( ..... ) ~~~. ( aa. )"',t = 1} 0"' ,j.(l. ) c oa) = 1 , - () 
i( ,.._ ,......, 

o;~ = :r ~ ~ - (}6 cr-Ct }) 
,.._ l r "-' 1"-

Cia.t = 2f~~ -~~) · 
At the end of Section III four-component notation is employed. 

The Majorana spinor is written down as 

Ill=-(!~) 41"'= crLflLH 
"t' o( lj/"' ) f' ) ( 

f,;J 0) C- .. •fD121 l 
- 0 f•t> ) = 

_ ( o ~~et) _ (ia o) , _ , r(A.- ~ o , r>- o -it ) a-ct.e- 2 [jttt,J&J. 
In Eq. (30) the vierbein ea.-. has weight 1 and for fields of 

"" nonzero weight the covariant derivative ~ has the form 
"' .... fA ~ r- tn"" r: t~ tn 1< i Q.l:/ '\'\) 
V""'f"=~ll'.+'ZJ',,..To~+"'~<To(+ 2 w ..... tO'Ct8lf' II(. (A.1) 

Here"lJ' is the weight of the field <(J: (i.e. o~te: =Udl<a~«t'""+ 
ta." ~"If:- 'Oka. ~ 'f' ~ >; T;.: i '0~ e'l'\(t. ett'\1 ~ "' 

"A 1 ( l"'l "'" '"),""e q ""er:~ q ) ~~c.=r -u~eltct·e +" 'Ka..·e~-3 o..,...efa·ek 

r: c-"" 1r" ( )· a"'"" 'lit ct"tt +"'oK -2 ~~f,(+'M~K J d :eet e ; 
' ~g if c~ Cl «'l'l <A ct D~"'1 ~ e e C Cll<eQ.YI) w...., = ii v...., e'\'1. e - """ e""". ~ + "~< '\'IC. ,., e -

- i e,: e~ 'K ~ - (a.'-'+ g) . 
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In Eq,(31) the vierbein and all the other fields have zero 
weight and the covariant derivative tl~ takes the form 
" ~ 1':1 '"""' r 'Y1 tok i ag ( "') (A 2) V~ \f ri. = lll\\ 't' A +I "r>\ 1C "t «. + :f ~- ~ t If {!( • ' 

where 

c ~ = -
2
1 (- '0.,... el(C(. eq~+ 'O'Yie'lt'l· e:, - ~'\'le 'dwt eia. e: ) +- ('"' ~ \() 

'VII\)( 

r. I c:t8_ 1.. (1:1 ect ei'VI r;:'t e a n€'"'+'0 e e(.. eQ)(ee'M)+ (A.3) 
""""' - If v"K\ 11 • - v., "' . 1;. 1< ~c . ~ 

+ 3i ( 2 4l'l"'}fl1 4{-2 Lfl .... r/( 4{. + 'fl""r"" 4'J() e(t'lle8
1<- {a.~ €). 

As a consequence of the field redefinition (p.II.5.4) there appears 
a gravitino-field-dependent term in the expression for connection 
W-.o. S • 

Appendix B 
Here we analyse the subgroup of the group (8) preserving 

the product of left and right- supervolumes (restriction (16)), 
Using the decomposition (19) we write down condition (16 1 ) for 
the parameters-superfunctions as 

O~ a'YI<(XL) + i 9~ {M(~L) +Bf P:. Cfj.w.{XL) + 8B(o;;. S..,..(:Xt_}+t~: tr:xl>)-

-W~(XJ +2 er"l
1

rxL)+'6:,Q ..... (xtJ,)- i o~ {M(:x~) + 

+e_r '0! lj-rrxi()+OB (0.,! s ...... rx,..)-io! p~rx~))-
-w~ (x~) -t-.2 Bj. f.f.rx,.)=O, <B.1) 

where ..., ~ 7r 

~:'=X.,...ft"J{ (x1 e,~), x';=x--t·-u rx,e,r:J). (B, 2 > 
The partial gauge fixing is again given by Eq,(22), It is easy 
to check that transformations with parameters Bw violate this 
gauge, so we have again 
~ w.:: 0 . ( B, 3) 

Now we substitute Eq.(B.2) into Eq.(B.1) taking into account 
Eqs, (22)and (B.3). The decomposition (22) of df...,begins with terms 
bilinear in e and (or) e . Therefore the coefficients of zero 
and first powers of 6 and 6f in Eq,(B,1) must vanish 

-tzl"rx>=-:f'P~ \f;rx>, ~.rtx) =-1 'a... if;ux) (B.4) 
W_/{x)+W'J. (X)-:: 2'0~ 'l~(X). (B.5) 
Equation (B.4) coincides with Eq,(20b) while Eq.(B.5) is somewhat 
weaker than Eq,(20c), Further, an analysis of the coefficients of 
ee , ee and$'J'G\, e gives the conditions 
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'0""' pw.(.x)-::::. 'O'WI S"-\(X) = 0 
which are the same as (20a) and 

~- (w;'<1"(:r) - W_t<_,.< {X)) = 0. _ (B,6) 
The coefficients of the higher powers of e, e vanish automatically, 

Conditions (B,5)and (B,6) lead to 
v ( 1 '> ..,..( ) · o ) -1 V i cd { v wr rx)= z (l'"'a. x +to .JL.r +;:J2. r:r) 6q_~)r • (B, 7 ) 

Eq,(B,7) is the same as Eq,(20c ) except for the extra constant 
real parameter ~ • It is not hard to verify that this parameter 
generates global f> -transformations of the field-components of 
~~. So, we conclude that global chiral transformations can easi
ly be introduced into Einstein aupergravity just by replacing the 
volume-preserving condition (15) by a slightly weaker one (16). 
The implications of this fact will be discussed elsewhere. 

Similarly, condition (17) can be shown to allow for extra 
global scale transformations (instead of the f!i -ones). 
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