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A~aHacbeB r.H.' AcaHOB P.A. E2 - 12390 
0 3aAa4e ABYX Ten B cneu~anbHO~ Teop~~ 
OTHOC~TenbHOCT~. 4acTb I 

MeTOA nyaHKape B AaHHO~ pa6oTe np~MeHReTCR K pac
CMOTpeH~~ 3aAa4~ ABYX Ten B paMKaX cneu~anbHO~ Teop~~ OT
HOC~TenbHOCT~. Teop~R COAeP*~T ABe np0~3BOnbH~e ~YHKU~~ OT 
~HBap~aHTOB rpynn~ nyaHKape. np~ nOAXOAR~eM B~6ope 3T~X 

~YHKU~~ OKa3~BaeTCR B03MO*H~M on~caTb TP~ pewa~~~X on~Ta 
TeOp~~ OTHOC~TenbHOCT~. AHanor~4H~e peaynbTaT~ nony4a~TCR 

B nOnHOCTb~ KOBap~aHTHOM ABYX4aCT~4HOM ~OpMan~3Me. C no
MO~b~ paano*eH~R no o6paTH~M CTeneHRM CKOPOCT~ CBeTa 
nony4eH~ np~6n~*eHH~e nopeHu-Kosap~aHTH~e ypasHeH~R, 
KOTOp~e He COAeP*aT 3~~eKTa 3ana3A~BaH~R. 

Pa60Ta B~nOnHeHa B na6opaTOp~~ TeopeT~4eCKO~ 
~~3~K~ O~R~. 

Coo5WeKHe 05beL!HKeKKOrO HHCTHTYTB S!llepHbiX HCCneL!OBBHHll, lly6Ha !979 

Afanasiev G.N., Asanov R.A. E2 - 12390 

On the Special Relativistic Two-Body Problem. 
Part I 

The method of Poincare is applied to the considera
tion of the two-body problem within the Special Relativity. 
The formulation of the theory contains two arbitrary func 
tions of the Lorentz invariants. A specific choice of 
these functions leads to the correct description of the 
three crucial experiments of the General Relativity. The 
expansion on the inverse powers of the light velocity being 
performed, the approximate Lorentz covariant two-body 
equations without retardation effects are obtained. 

The investigation has been performed at the 
Laboratory of Theoretical Physics, JINR. 
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1. At present only few attempts are made to solve the 
two-body problem in the framework of the Special Relativity 
(SR). With some reservations these may be divided as fol
lows: 

a) theories in which the two-particle interaction pro
pagates with the finite constant velocity equal to that of 
1 i ght '1·6/ ; 

b) relativistic Action of a Distance theoriesn~~ 
c) relativistic theories in which the velocity of the 

two-body interaction is not fixed -'10-12/; 
d) relativistic approaches, corresponding to the quasi

potential equation approach in quantum field theory /13-15 /; 
e) theory of world minimal surfaces '16 / 
It is our aim to apply these theories mentioned in 

a) to the calculation of the concrete physical effects. 

2. The early attempts to create the Lorentz-covariant 
theory of gravity are due to H.Poincare n ' and H.Minkow
ski 2 . The equations of motion suggested by H.Poincare are: 

2 
d X 1i f1 

- - ---- ~ X . --·-
dr 2 1 B3 

1 
2 

d t 1 
C ·--- ······ 

dr2 
1 

f 
r .. _l . 

!33 

1 dx1i 1 dx2i A-f1 1 
' f2' -·- ------ - - -· ------- ( J2 ! -------)· - - ' 

C d r 
1 

C d r 
2 

!3!1 C 

dt 1 dt2 A-f1 1 
f ' ----- - ---- (f • ------ ) ··- - ' 
2 d d 2 B3 C 7 1 '2 

( 1 ) 

The followin<J notation was used in (1). xki and tk are the 
i-th cartesian coordinate and the time of k -th particle; 

'k and sk are the proper time and the invariant interval 
of the k-t h particle: 

-----------------2 2 -+ 2 
dsk ~ c-drk \ ' C -dtk-(dxk), xi = x li-x 2i , 

2 "' 2 r ~ ~ x 1, t 1 ~· t 2 • r c, 

c is the velocity of 1 ight. A,B,C are the following Lo
rentz-invariant combinations of the relative coordinates 
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_, ctxk 
and the particle velocities vk = -----

dt k -+ -+ ' 1 1 _, _, 1 1 _, _, 1 - v 1 v2 : c 2 
A = ----(r- -- Ix v ), 8 =- ------(r- -- Ix v ),C = - - - ---- - ------- - - . ---- c 1 --- --- c 2 ------ ---- ---v 1-{32 v 1- f3 2 v' 1- {3 2 , , 1- {3 2 

All the quantities referring to
2
the first particle ~re tJken 

at the time t 1= t, while those for the second one at the 
time t2=t 1-~.The functions f 1 and f2 entering in (1) are ar
bitrary functions of the Lorentz invariants A,B,C which 
have the following asymptotic behaviour as c goes to in
finity: 

1 
f 2 - 0 <c-), 

1 f - y + 0(--). 
1 c 2 

Equations (1) are made of in a such way as to reproduce the 
well-known Newtonian gravitational equations (up to the 
order 1/ c 2 ) in the limit C-+oo,Note the difference of expres
sion (1) from the one given by H.Poincare 11{who for the sake 
of simplicity set f 2 =0.Even more special cases were consi
dered by H. Minkowski ,'2 / and in ref. /3 / , Using the analogy 
with electrodynamics as a guideline, they defined the two
body forces with the aid of the Lienard-Wichert potentials n 7 ~ 
In this case f2 = 0, f 1=const.Clearly, equations (1) may be 
ea s ily generalized for arbitrary potential dependence upon 
the interpart icle distance. 

3. Leaving the discussion of the approx imate solution 
me thods of (1) and of the known exact particular solution s 
f o r the latter conside r here t he potential limit (M2 -+oo). 
In this case particl e 2 undergoes uniform straight 1 ine 
motion. Th e Lorentz transformation to the rest frame of 
pa r ticle 2 being mad e , the following equations for the mo
t ion of particle 1 are easily obtained: 

d2xl 
-drf = 
d2 t 

d 7 2 
1 

f1 1 dxi 
X - --- + f · -- - - --- , 

1 r 3 2 c dr 1 

1 I ( f 2 r3 xv1) + ---~- v1 
v'l--:~y c3 

f1 
c2 

Change the proper time in (3) to the coordinate time t 1 

(3) 

d2x i 2 f1 1 dxi -- - 2- f 1 (xv 1) 
-----= (1-{3 Hx-- ---+-- ---[f ·v'1-{3 1--- - - - - - -]1. (4) 
d t 2 1 1 r 3 c dt 2 r 3 c 1 1 

Now compare equations (4) with those for the test body mo
tion in Ge neral Re lativ ity (GR) in Schwarzschild metric: 

4 

2 
d xi d x i 1 ct11 2 2 mc2 2m 

----- = ----- 11 -( xv )- x[--- - --( xv ) 1-11v •-------].(1---- l. (5) 
dt 2 dt 1 I 2 r d r 1 1 r 3 r 

1 1 
::m 1 GM * Here 11 = --- --- ----- . m " ---- . 
r 3 1- 2mr - . c 2 

The equations of motion (4) and (5) are exactly the same 
if the following choice of the functions f 1 and f 2 is made: 

. 1 -- 2m:' r r 2 n.. 2 2 3 2 
t 1 , - - ------

2
- - [ -- -~ ( x v 1 ) + 11 v 1 . r ~ m c ], 

1 -- {3
1 

2 dr 

1 _ ---z- f 1 ( XV 1) /l" (XV 1 ) - f2 v 1- {3 = --- --- - + -------- 0 

c 1 r c 1_ f3i 
(6) 

4. The same coin~idence with GR in the potential 1 imit 
could be also obtained in the framework of the manifest 
covariant 2-body formalism 17 ·9 / . In this formalism only 
those parts of particle trajectories interact which have 
the same time in a given Lorentz frame. The equations of 
motion are: 

w 1v = ( x ~' - yiv w)- f ' (V2v-y4 -vlv)-g , 

W 211 • - ( X v' -- y 2- V 211 ) . F ' ( V 111 - y 4 -V 211 ) . G . 

Her e x11 -- x 111 (t)- x 2 ( t) , vi 11 and wi11 are the four-velocity 
and accel e ration of th e i-th particle; y1 ~ ( v 1 - x) , y2 · (v2 - x), 
y3 (x - x) ., y4 ,· (v 1 -v2) f .g,F,G are the functions of invariants 
Yt, Y2 • Y3 • Y4 -

The condition of the Lorentz-covariance of the preceding 
equations leads to the system of four non! inear differential 
equations for the functions f , g , F, G 

19 ' . In the poten
tial 1 imit one of the particles (say, 2) moves with a cons
tant velocity. Then G= F =O and the mentioned above system 
of equations reduces to the following 1 inear one: 

D . f = 0, D · g + f = 0, 
where Dis the differential operator: 

D = y } __ + _it__ + 2 y __ it__ . 
4 ay 1 ay 2 2 ay 3 

These equations are easily solved. The result is: f is an 
arbitrary function of two invariant variables y:- y3 and 
Y1- Y4 Y2 . g is equal to 

* M= M2 is the mass of the second particle. 
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yl 
g = - f . - -- + g 1 • 

Y4 
where g1 is also an arbitrary function of the same invariant 
variables. · 

From this it is evident that these arbitrary functions 
can be chosen as to obtain the equation identical to that 
of test particle motion in GR. 

5. The identity of (4) and (5) means that numerical 
values of those effects which may be calculated without 
recourse to the concrete form of the interval are the same 
both within the treated Lorentz-covariant theory and the GR. 
Fortunately, this is true for the three decisive experi
ments supporting the GR. We demonstrate this without too 
much details. 

First, calculate the angular momenta integrals. It fol
lows from (4) or (5): 

xix.-x.x ___ J J i 
1- -fu;/r ______ = L ij = con st. (7) 

The dot means the coordinate time derivation. The energy 
integral is equal to: 

(x· x) 2m (x· x) 2 2mc 2 
- -------- - + --- ---- ---- - - - --- - --- -- = f. ( 8) 
(1 - 2m/ r) 2 r 3 (1- 2m/ r) 3 r(1- 2m/ r) 

It follows from (7) that the test particle orbit always lies 
in a plane, which may be chosen as (XY) one. Then (7) and (8) 
take a simpler form 

r2¢ 
--------- = L 
1 - 2m/ r ' 

r2+r2¢2 2m i2 2mc2 
----- ------ + --- ---------- - ---- ---
(1- 2m/ r) 2 r (1- 2m/r) 3 1- 2m/ r 

(9) 
1 

-- = f· 

r 

Excluding time from (9) one easily obtains the orbital 
equation for motion of the test particle: 

2 2 2mu 2 ) £ u + ( 1 - 2mu )u = ---- ( c - £ + ----¢ L2 L2 ' 

1 
(u = r- ). 

Differentiate (10) with respect to¢: 

u¢¢+ U = 3mu2 + ~~(c2-£). 
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( 1 0) 

( 11 ) 

Equation (11) does not differ from that of describing 
the test particle motion in GR. Because of this the advance 
of planetary perihelia is the same in both cases. Further, 
as for the photon the value of f (= energy per the unit 
of mass) is equal to c 2, one has: 

2 u¢¢+ u = 3mu 

that coincides with the light propagation equation in GR. 
So, the bending of light is also the same. Regarding 

the half of the first two terms in the energy integral (8) 
as the kinetic energy contribution (this follows from non
relativistic limit) and equating it to the photon energy hv, 
one obtains the correct value of the red shift: 

GM 
v - -r-· 

Some precaution is needed, however. Equations (9) form 
a complete system. So it is impossible to add to (9) something 
like that 

·r 2 + r 2 ¢,2 = c 2 ( 12) 

as it is demanded by Special Relativity for the photon velo
city. Obviously, Eqs. (9) and (12) are not consistent. The 
relation (12) means that light does not interact with gra
vity. The fact that the absence of such an interaction leads 
to the numerous paradoxes and is not consistent with the 
energy conservation was recognized by A.Einstein as early 
as in 1911ns~ So, for the light we do not impose condition 
(12). Instead of that we consider the motion of photons 
and test bodies on the same footing and demand velocity 
of light to be equal to c at the infinity (or in the ab
sence of gravity) *. Then relation (8) fixes energy constant 
c equal to c2 for photons. The aforesaid is applied of 
course only to eq. (9), obtained from general eq. (4) with 
a very specific choice of the functions f 1 and f 2 (which 
aimed to reproduce the exact motion equations of the GR). 
It seems that different choices of f

1 
and~ which reproduce 

the experimental situation for slow motions and do not 
disagree with (12) for photons are also possible. 

Elementary calculations show that a simplified electro
dynamic version of the two-particle forces suggested in ~.3/ 
gives in the potential 1 imit wrong value for the precession 

*This suggests that photon mass is very small, but finite. 
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of Mercury (equal to minus one si x th of the experimental 
value). 

A few attempts are known to simulate the motion equa
tions in GR by using the specific forces in the framework 
of SR. It was shown in refs / 19-' that if the exact coinci
dence in the framework of equations takes place, the force 
in SR dynamics is the polynom of the fourth degree relative 
to the velocities: 

d 2 X a a a d X A d X p d X a d X,\ d X a d X p 
------ = F = n>. ----- ----- - ---- Ot. ------------ (3a) 

d T 2 p d T d T d T ap d T d T d T 

In the treated case the quantities aa,\ are the differences 
of the Christoffel symbols r~ for thepflat (i.e., Lorentz) 
and curved (i.e., Schwarzschild) spaces. Prove that equa
tions (3a) and (3) are equivalent. In the cartesian coordi
nates all the symbols r1P for the flat space are zeroes. 
Then, eq. (3a) is the motion equation in Schwarzschild met
rics, which coincides with eq. (5) if the parameter r is 
chosen as the coordinate time. This means that the triple 
sum in the right-hand side of Eq. (3a) is converted to the 
f i r s t t e rm of the r i g h t- hand s i de of E q . ( 5 ) . So , E q s . ( 3 a ) 
and (5) are the same. As Eq. (5) follows from (4) (if the 
prescription (6) for the functions f 1 and f 2 is made), so 
Eq. (3a) is equivalent to ( !1 ) and (3) . 

6. The system of equations (1) which defines the motion 
of the first particle ~hould be completed with the equations 
for the second one. The choice f or the dif f erence t 1-t 2 (~~ ~) 
made in (1) corresponds to the retarded action of particle~ 
on particle 1. An opposite choice (t ct2 ;-~-) leads to the 
advanced action (the action from particle 2 reaches par
ticle 1 before it leaves particle 2). One may wel 1 use 
instead of retarded case (1) the half sum of the retarded 
and advanced interactions. Then, for the electrodynamic case 
mentioned above it is possible to find the Lorentz-invariant 
Lagrangian and to recover the integrals of energy,angular and 
1 inear momenta ~o~ Tbe particular exact solutions of the 
Special Relativistic two-body problem are known for this 
case '4 -' . The particles move along the concentric circular or
bits with the constant angular velocity. Exact solutions 
corresponding to the simi Jar concentric motion may be found 
for the short range potentials too ·15 : . If the interaction 
of 1 with 2 is retarded and 2 with 1 is advanced, then in 
addition to the concentric motion one may recover the exact 
solutions corresponding to the straight 1 ine relativistic 
two-particle motion~~ 

8 

The exact solutions are unknown if both interactions 
(1-2 and 2-1) are retarded. For the slow motions it is pos
sible to carry out the expansion of equations (1) on the in
verse powers of ~- , Keeping the terms up to the order -!2 one can easily obtains: c 

2 2 .... .... ........ 2 
d xli GM 2 1 v 1 3 (rw 2 ) 3 rv 2 ------ = - ----- ( 1 + --- cf> - --- - - - --- -- - --( ----) ) X . + 
dt2 r 3 c2 1 c2 2 c2 2 r c I 

1 G~1 2 ........ 
+ --2( vli -v2i )[¢2 + ---3- (rv1)], 

c r 

( 4) 

where we set: 
1 

r 1 = - GM 2 < 1 + -c-2 ¢ 1 > 

1 
f2 = -c-¢2 . 

Not e , that all the quantities entering into Eq. (14) (i.e., 
coordinate, velocities, acceleration for both particles) are 
taken at the same timet. The motion of the second particle 
satisfies the same equation (with the replacement of indi
ces ( 1 .... 2)). Eqs. (14) are the system of the ordinary dif
ferential equations which may be solved with the usual 
means if the initial coordinates and velocities of the par
ticles are known. 

If the motion is not slow, but the masses of particles 
are essentially different, then one may use the method 
s uggested in /21/ for solving equations (1). Exactly, in the 
first approximation the mot ion of the greate r mass M2 is 
supposed to be the uniform and straight-lined. For the given 
motion ofM 2 equations (1) are the ordinary differential 
equations. Solve them and recover the motionM 1. So the 
motion ofM1 is known. Inserting it in the equations for M2 
one again obtains the equation forM 2 but with the correc
tions of an order of M1/ M

2
.This procedure may be continued 

further and if it is convergent (no proof is known) then one 
has a definite answer. 

In both approximations the knowledge of the initial po
sitions and velocities of the particle is sufficient for 
recovering the future particles story. But for the exact 
system of equations (1) (plus those for the second particle) 
it seems impossible to formulate a well-defined initial 
value problem: Due to the finite propagation of the inter
action one must either specify initial conditions on the 
finite part of the particle trajectories or specify at a gi-
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ven point not only the initial coordinates and velocities 
but all higher derivatives too ~2~ So, the approximate solu
tions mentioned above fi 11 a very narrow gap in a total 
variety of exact solutions. A possible way to overcome these 
difficulties, which is greatly appreciated is to formulate 

a suitable heuristic principle l16~ which permirs one to 
restrict the mentioned above variety of solutions. However, 
the relation of this principle to an experiment is unclear. 

In ref.~3/ a general form of the approximately invariant 
relativistic 2-body Lagrangian was found. By ·~mparing eq. 
(14) with that obtained from approximately invariant rela
tivistic Lagrangian ·~ 3~one easily restores Lagrangian, cor
responding to Eq. (14). This in turn gives motion integrals 
corresponding to an energy, angular and 1 inear momenta. 

7. The approach adopted here is rather phenomenological. 
In fact, unknown functions may be approximately fixed by 
comparing either with an experiment or with GR. This cont
rasts to the fundamental ity of the Einstein approach in GR, 
where the only information which is needed is the distribu
tion of matter. But until now there is no satisfactory solu
tion of the 2-body problem in GR. On the other hand, the 
Special Relativity suggests the interesting possibi 1 ities, 
which were mentioned at the beginning of this paper. 

We are very thankful to Prof. N.A.Chernikov and Dr. 
N.S.Shav~khina for the very useful discussions. 
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