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Generalized Bargmann Inequalities 

2 0
A wide set of inequalities is derived for (~. -~~) i n 

L (R ) which contains the Bargmann inequali ties as a s pe­
cial case. 

The investigati·on has · been performe d at the 
Laboratory of Theoretical Physics, JINR. 

Preprint of the Joint Inst itute for Nuclear Res earch . Dubna 1979 

Some years ago Bargmann proved validity of a set 
of inequalities /1/ which includes the conventional 
uncertainty principle relations in L2 (R n), n ~ 2, as 
well as for example the known relation 

2 3 1 -2 2 3 00 3 ( ) f lv t/l{x)\ d x~ ~ f r \cfr(x)\ d x. 1/rE C 0 (R ). * 
&3 4 R3 

Inequalities of this set can be applied in at least 
two directions. The relation (*) is useful for 
self-adjointness proofs (cf. ~~ . Sec.X.2) and also 
its generalizations can serve to the same purpose ~~. 
On the other hand, some of the Bargmann inequalities 
give, e.g., the (exact) lower bounds for energies 
of orbital series of the hydrogen-like atom in n 
dimensions, n ~2· 111

• Another inequality from the 
considered set analogous to ( *) can be also used 
for energy estimates 141. 

Recently Sachrajda, Weldon and Blankenbecler 
(SWB) have derived formally inequalities which genera­
lize the Bargmann-type inequalities in the one­
dimensional case~/; the purpose of their paper was 
again to give some lower bounds for the Schrodinger 
operators. We shall use here their idea to prove 
validity of a set of inequalities which will contain 
the Bargmann inequalities as well as the exact 
version of the SWB-resul t as speci.al cases. Ap­
plications of these inequalities will be discussed 
elsewhere. 
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Let us first introduce notation. We shall deal 
with the Hilbert space J{n =L 2(Rn ), elements of R n and 
their distances from origin will be denoted by 
x = (x 1, .•• , xn) and r, respectively. The operators 
v = ( vl''"' v n) and /'t. = v 2 are defined conventionally 
( ~.!, Sec. IX. 7; 161, chap. 7): 

~ -1 
( v . 1/J)(x) = i(k. 1/J(k))(x) = i(F (k . F .p))(x), 

J J n J n 
(1a) 

----(-/'t.tjJ)(x) = (k 2-~(k))(x) = (F- 1 (k2 F .t.))(x) 
n n 't' 

(1b) 

with the appropriate domains; here k = (k 1 ••.. , kn) 
n 

k 
2 

= !. k ~.and F n denotes the n -dimensional Fourier-
PlanthJr~l operator. . 

PROPOSITION 1: Let .p E D(-/'t.) and assume g to be a real 
function on Rn, g.p f. 0, g, yg Lebeague meas~rable and 
such that llgcf>ll<oo, llgr- xvcf>ll < oo, ll<vgr 1x)cf>li < oo, 
llgr-1 xj¢11 < oo, j = 1, ... , n, and llvgr- 1xcpll<oo for 
cf> E- l.pl u S(Rn}.Then 

1 -2 -1 -1 2 
(1/J, -/'t..p) ~ -~f llgtfrll (.p, (r x V g + (n- 1)r g)I/J) . (2) 

Proof: Since lr- 1 x j I ~land .p E- o<-/'t.) ,we have 

2 n 2 n -1 2 -1 2 
(1/J, -/'t..p) = llv.PII = _!. IIVJ· .PII ?:. _!. llr XJ-VJ·.PII =ll r xvi/JII. 

J= 1 J=l (3) 
The last expression can be estimated by the Schwartz 
inequality: 

llr - 1 x V .PI I 2:2. -~~-1-XJ_~~~~2~ > [-~~~~=~-~Y-~~~1/J) ] 
2 

llg.PII2 - llg.PII --- . <4> 

The operator of multiplication by g (denoted also 
as g) is self-adjoint on D(g) = l.pE-J{n: g.pEJ{ "!,analogous­
ly r- 1 xj are Hermitean. Further each Vj is skew-sym­
metric on D(-/'t.), thus 
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2Re(r - 1 x V .p, g.p) = (g r - 1 x V .p,.p)- ( Vr - 1 x g.p, .p). (5) 

c n -1 -1 -1 
For any cf>E-o(R)we have Vr xgcf>=(Vr xg)cf>+r xgVcf>. 
Since S(R n) is dense in J{ n and all V{s are closed, 
there exists a sequence I cf> k I C S (R n) to any .p E D( -/'t.), 
cf>k- 1/J, Vcf>k ... v.p. The multiplication operators r-l x jg 
and Vr- 1xjg are self-adjoint, thus also closed. Due 
to the assumptions IV j .pi u S(Rn) c D(r- 1xjg ), j = 1, ... ,n 
and l.pl u S(R n) C D(V r- 1 xg) so that r- 1 xg V cpk-+ r- 1 xg V .p, 
(V r-1 xg)cf>k -+ (V r-1xg)tjJ.The same argument applied to the 
operators r-1 xjg gives c1 xjgcf>k -+_r-1x . g.p; using once 
more the closedness of vj's we obtain ~r-1xg¢k-+vr-1xg.p, 
and therefore 

V r-1 xg.p = (V r-1 xg).p + r - 1xg V .p. (6) 

Now the relations (3)-(6) together with Vr-1xg 
= r-1 x V g+(n-1)r-g prove the desired result. • 

REMARKS: 1) The inequality (2) will be denoted as 
B(n;g) or B(n;g,O). Especially for n;::: 2. g(x) = r p.+ 1 , p.C.-2, 
we obtain the inequalities formally identical with 
(C 1-') of/11. Assumptions of the proved proposition 
are, however, more restrictive than those of 111; that 
is the price we pay for the more generalg. Later we 
shall give weaker assumptions related to a special 
class of the functions g (Corollary 1 to Proposition 4). 

2) The inequalities under consideration can 
be presented also in the f9rm II V .PII ~ ... , then 
.p E- D(-/'t.) may be replaced by .p E D(V) = . ~ D( v . ). The 

J = 1 J 
form (2) is, however, more suitable for estimating the 
kinetic energy terms of the Schrodinger operators. 

3) The condition llvgr-1xcpll<oo is a shorthand for 
gr -1 x_ cf> jED( V .), j = l, ... ,n; in general it has to be 
verified with the help of the definition (1a). 

The main difficulty of the presented proof was 
to establish the relation (6) • It can be done in a 
simpler way if the action of v is explicitly known. 
Such a situation occurs if n =1; then D( V) consists 
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of all functions t/J EL2(R)which are absolutely conti­
nuous in any finite interval of R and the derivatives 
t/J'&J.J!(R).This domain is com e ntionally denoted as 
AqR], action of V on it being Vt/J=t/J '.Analogously 
D(-~) = AC2[R] = l.p E AC[R]: t/J 'E .AC[R]I and -~t/1=-t/J". With 

these prerequisites we can prove the exact version 1\ 

of the SWB-inequalities: I 
PROPOSITION 2: Let t/J E·AC1RJand g:R-+R Lebesgue measu- ; ) 
rable such that g' exists a. e. in R, 0 < llgt/JII <oo, gt/JEAC[R] 
and llg't/JII <oo. Then 

<.p, - t/1 ") :;:: {-II g t/111-
2 <.p, g 't/1) 

2 
c 1 > 

Proof: In the same way as above we obtain (1/J,-t/J"):;:: 
2: llgt/JII-2 (Re(t/J', ·g.p)) 2 and 

2Re(.p', g.p) = (gt/J', t/J)- ((gep) ', t/J); (8) 

the last equality needs g.p'&L 2(R) besides the as­
sumptions explicitly stated.Both the functions g,.p 
are differentiable a.e. in R(t/J' is even continuous), 
thus the same holds for g and (gt/J)~g'.p+gt/J~ further 
g.p' as the difference of L2 -vectors belongs to 
L 2(R). Substitution of the last equality into (8) 
gives (7). • 

Bargmann has shown that for g(x) = rP.+ 1 the inequa­
lities stronger than (2) hold on eigenspaces of 
the "angular momentum". We shall deduce an analogous 
result for spherically symmetric g's. Let us start 
with some auxiliary statements borrowed from 111. The 
harmonic polynomials Ze are defined by the relations 

xvze = fZe, ~Ze = 0; (9) 

they are related to standard spherical harmonics 
Yf=Zf~~;.s.~ being a sphere in ' Rnof radius r, by 
Zf(x) = r Yf (r- 1 x). Further !Yet I~ 1 will denote some 

ortonormal basis among the spherical harmonics with 
given f: 
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·) 
r) 

(Y 0 , Y 0 , ) = f Y 0 (x)Y 0 , (x)da (x) = o , , 
L t Lt 8 L t L t n tt 

g1 
n 

t, t '= 1, ..• , sf , where da ~ if, the Euclidean measure 
on 8~. dan=dan~and Zft(X)=r Yft(r- 1 x). F.:j,nally, let 
(.,.)e be the inner product in L 2 (R+, rPe dr), ,8e=n-1+2t 

PROPOSITION 3: (a) The following decqmposition is 
valid for n 2: 2: 

n oo n n 2 ,Bf 21 
J{ = I e J{ f, J{ f = L (R+• r dr) •EeL (Sn,dan), (10) e = o . 

where the projection Ee refers to the subspace of 
L 2(Sn1,dan) spanned by IYft I ~~ 1 ; analogously each He 
can be decomposed into a direct sum of orthogonal 
subspace~ Hft = Ee J{r = l.p:t/J(x) = f(r)Zet (x), llffjf < oo I. 
(b) t/JE-J{e, t/J(x)=f(r)Ze (x), belongs to D(V) if and 
only if tf is absolutely continuous on R+ and 
llf'lle < oo; then it holds 

IIV t/111
2 

= II r 'II~ . 01 > 

(c) If t/JED{V).the same is true for each Eett/Jand 

IIVt/111~= I IIVEett/111
2

-. e t 
Let us' further consider a real-valued function g 

on R n. the values of which depend on r onl.Y: g(X)= g(r), 
g being a function on R . We shall assume g to be abso­
lutely continuous in (a~y finite interval of) R+ so 
that g'-exists a.e. in R+. One can easily verify that 
for each t/JE · J{ft' t/J(x) = f(r)Z et (x), the following 
relations hold 

llgt/JII = llgflle , llr-
1 

gt/JII = llr-
1
gflle, 

2 n 2 11-, 112 II(Vg)t/JII = j~ 1 ll<v jg)t/JII = · g r f. 
(12) 

PROPOSITION 4: Assume g to be absolutely continuous 
in R+. then for any t/JEJ(en D(V).~2,such that O<llgt/JII<oo, 
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llr- 1 gi/JII < oo and II(V g)I/JJI 2 < oo the inequality 

2 1 -2 -1 2 
II VI/Jll ~ ,4llgi/JII (I/J,(g'+'/3er g)I/J) 03) 

(denoted as B(n; g, e ) ) holds, where g':: r- 1 xV g, 
g'(x) = g'(r). . n 
Proof: (a) Let us first take t/1 E-Het, t/J(x) = f(r)Zet (x). 
With the help of (11), (12) and the Schwartz inequa­
lity we obtain 

11Vt/lll
2

llgi/JII
2

= lif'll111ifllf ~(Re(f',gf)e)2 ; (14) 

all these experessions make sense due to our as­
sumptions. The fun3t~ons f,g are absolutely conti­
nuous, thus also fgr f is absolutely continuous 

f3 f3- f3e 
and Ia = J f'(r) g(r)f(r)r dr may be integrated by 

a 
parts: 

f3 - 2 f3e f3 f3- - J3 e 
Ia = [g(r)l!(r)l r ] a _ , J f(r)g(r)f'(r)r dr - · 

a 

-f3 - -1 ~ 2 fJe f (g'(r) + f3e r g(r))lf(r)l r dr. 
a 

According to the assumptions all three integrals here 
are absolutely convergent for a-+ 0, (3-+oo so that 

h 0 f 0 0 t 1. . 1. - I I 2 f:3e t ere ex1.st 1.n1. e 1.m1.ts c 0 = 1m g(r) f(r) r 
p r-+ 0 

C00 = lim g(r)lf(r)l
2

r e. On the other hand, llr- 1 gflle<oo 
r--+oo oo 

- 2 Pe-t 
means that the integralfg(r)lf(r)l r dr dr is abso-

0 
lutely convergent what is impossible unless c 0 = C 00 = 0. 
Using further the fact that g is real-valued we 
obtain 

- 1 oo 1 00 
- - f3e Re(f',-gf)e = 2 1

0 
+ .2 J f'(r)g(r)f(r) r dr = 

0 

i.e. , 

1 -, -1 -
= _ ,2(f, (g +"f3e r g)f)e 

a 

~ 1 -1 
Re(f', gf)e =- -(1/J, (g'+ f3er g)ljl). (15) 

2 

Substituting this equation into (14), we get (13) 
for the considered ljl. (b) Further we take t/1 tJ{ ~, 

se 
1/1 = ~ 1/1 0 , 1/10 (x) = f 0 (r)Z 0 (x) . The operator 

t= 1 Lt Lt Lt Lt 
of multiplication by g is of the form g ®Is ,i.e., 
gtjJ0 , gtjJ 0 , are orthogonal for t,tt' - and llgi/JII<oo implies 

c.t Lt • 

llgi/Jet II< oo, t = 1. ...• se. Analogously we obta1.n 
r 1 gljlft II < oc, II< V g)I/Je ll<oo and with _the help of 

Proposition 3 (c) alsci 1/lft E D(V) for t = 1, ••• ,s e ; thus 
the relation (13) may be used for each 1/Je • For 
Ge = g'+fJer- 1g it holds Gel/JetE-~~. and theiefore 

1 1 se se 2 2, ~ 
2<1/1. Ge 1/1> = 2 t: 

1 
<1/1 et · 0el/let > .:s t: 

1 
[II VI/let II llgi/Jet II J 

2
• 

Finally, the Holder inequality gives the desired 
result 

1 se 2 Yl se '-A 
:r< 1/1, c e 1/1 > .:s [ t =~ 1 IIV 1/1 e t II 1 2 [ t: 1 II g 1/1 e t II 2 , 2 

= <IIVI/III
2

11gi/JII
2

) lh • 

REMARKS: 1) The inequalities (B(n; r p.+ 1
, 0~ fJ. ~- 2, n ~ 2, 

coincide with (C ~.e ) of Bargmann. The more detailed 
analysis given in /1/ shows that in this case 
1/1 E- H e11D<V> and ll gi/JII < oo is sufficient, or even only 
1/J E- He n D(V)if - 2.:Sp. ~-1 (except for g 1/J.;, 0). 
2) It holds {Jg=n-1+2e,thus the inequalities (13) 
are stronger than (2) if (ljl, r -1gljl) .2: 0. 

COROLLARY 1: Let the assumptions of the Proposition 4 
be valid with replacement of }{ ~ by }{ n and D(V) by 
0(-~}. If (ljl, r -l gljJ) ~ 0. then the inequality (2) 

holds. 
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The proof is essentaially the same as the part (b) 
of the preceding proof, the only thing to add is 
the inequality 

1 1 . 1 
-~ (rjl, G 

0
rjl) = -- I (1/Jo , G 1/J o ) < -- I (1/Jo , Go 1/J o ). 

2 2 f,t Lt Q Lt _ , 2 f,t Lt L Lt 

• 
One can obtain also a result analogous to 

Proposition 2 for J{ = L2 (R ): 
+ 

COROLLARY 2: Let g: R+->R be absolutely continuous, 
r/JE- ~Ac 2[R_Jand O<j jgrjljj < oo, jjg'rjljj <oo, then the inequali­
ty of the form (7) holds. 
The proof reproduces essentially the part (a) of the 
preceding proof with {3 e = o. • 
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