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Qua~ipotenti_al Models of the .Relativistic O~ci llator 
~~ <I; ~ • 

Two exactly solvable one-dimensional models of the relati
vistic harmonic oscillator are investigated in the framework 
of the quasipotential approach in quantum field theory. The co
herent states are constructed and the dynamical symmetry groups 
are found for both the models. 
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The harmonic oscillator, being one of a few exactly solvable 

problems in the nonrelativistic quantum me~hanics, has been 

extensively used in the various fields of the theoretical physics 

statistical mechanics, theory of superconductivity, nuclear 

physics, and so on. The interest to the harmonic oscillator was 

revived after the appearance of the quark mode_ls, which has made 

it possible to describe the basic features of hadronic structures. 

The further development of the quark modeis has led to the 

necessity of constructing the relativistic wave functions of 

compound particles and, in particular, the relativistic harmonic

-oscillator models /l-5/ 

The characteristic feature of the harmonic oscillator is the 

existence of a class of solutions in the form of coherent states 

(o.s.). The utilization of the o.s. allows one to use the more 

simple classical language for the description of quantum pheno

mena. Originally the c.s. have been introduced for the quantum 

states with quadratic Hamiltonians, i.e.,for the systems, which 

can be represented in the form of finite or infinite set of 

harmonic oscillators. The c.s. of quadratic systems are defined 

as the eigenstates of nonhermitean boson annihilation operators/6/ 

and are the Gaussian wave packets minimizing the coordinate and 

momentum uncertainty product,the form of which is unchanged in time. 

The definition of the c.s. for arbitrary qvantum systems as the 

eigenfunctions of the integrals of motion has been suggested in/7/. 

The c.s. representation turned out to be fruitful also for 

the i~estigation of the hadronic interaction at high energies. 

For instance, in /B/ there has been considered the high-energy 

model, in which the excited states of colliding hadrons have the 
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coherent character, while in 191 on the basis of the c.s. method 

the factori7.ation of dual amplitude of semimultiperipheral-type 

isdbtained. The problems arising in the consistent formulation 

of quantum field theory in the c.s. representation are studied 

in /10/ • 

We investigate two exactly solvable one-dimensional models 

of the relativistic harmonic oscillator in the framework of the 

quasipotential approach in quantum field theor,y /ll,l 2/ • The 

coherent states are constructed and the dynamical symmetry 

groups are found for both the models. 

The one-dimensional quasipotential equation for the 

wave function in the p-representation in the case of eq~ masses 

is wrltten in the form 

( Er- E't)fi(p) = 2~ ~ V( p,k;E~)~~(K)d.n.k (1.1) 

d "- ch. 
where .. u"- \'t+ K2fm'c< is the imrariant !_olume element in the 

p-representation, E'}=cJmtct+'}~ 1 

and V(p,K;Ei.) is the 

quasipotential 1121 • The transition to the relativistic confi-

gurational x-representation /lJ/ 

'f!'tCx) = ~ ~dnr sCp,x)o/<tCp) (1. 2) 

is performed by the expansion in tenns of the matrix elements 

of representations of the Lobachevsky space motion group 

-L!!!Sx -tmcx 

sCp,x) == ~Er~~f 1 j; = e T Jr, 
(l.J) 

4 

2 I 

where Ep= tnc chJp p == mc.sh)p and J =l!n~ P m<L 

is the rapidity. 

Equation (1.1) in the x-representation has the finite 

difference fonn: 

( Ho- E't)~(x) = 1 V(x,/; E1)W(x')dx', 
~ -oo T'l 

(1.4) 

I "-' lf I 

V(x, X; E't)= j ~cp, x)V(p,K; E't)s(K,X )di2pdn ... 
(1. 5) 

Here Hex)= mc
2 c.h(itJ..) o ~c clK is the free Hamiltonian, the 

function (l.J) being the eigenfunction of Ho(x): 

Ho(x)s(p,x)=ErsCp.x). (1.6) 

The free particle momentum operator 
A h(;t; _J_) 9',=-mcs Jii"ldx 

and Hamiltonian ~o(x) satisfy the following commutation rela

tions with the relativistic coordinate x: 

[ X ) ~X 1 = ~~ H c (X ) ' [ X , ~ c ( x)] = i! P, (1. 7) 

In the nonrelativistic limit, i.e.,when c>--oo, Hc(x)-
2 p2. ~ ~ li. d... 

-me+ 2~· 5->.____,.P,=-L dx andthe:fl.lnction ~(p,x) 

·~· goes over to the one-dimensional plane wave e t 

l.In the case of the local quasipotential V(p,K;E't)= 
=V [(pHk)

2
; Ecy] /lJ,l4/ , equation (1.4) takes the fonn 

[ H
0
(x) + V(x)- E1] t(x) = 0 . (2.1) 
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We consider the model of the relativistic harmonic oscillator, 

which corresponds to the interaction potential /l 5/ 

V( ) mt}· C2 ) (1~ L) 
x = 2 x ex p rnc- d x , 

(2) ~k) 
X = ><(x + me · 

(2. 2) 

With such a choice of the potential \T(x) the follovdng commu

tation relations for the relativistic coordinate X hold: 

[x, ~(xJ]= ~ [~x- /:VCxJ], [x,~-tV(xl]=~~,\i(x), 

[[x,~(xl], H(xJ] =(i\w)zx, 
(2. J) 

:L.e, .. in accordance with (1.7) Il(x) = Px- -&-V(x) can be called 

the generalized momentum operal:or, and the double commutator in 

(2.3) coincides with the equation of motion of the nonrelativis

tic oscillator in the Schrodinger representation. In the non-
hlt,/ J. relativistic limit the potential V(x) ........-+ 2 X • 

The quasipotential equation (2.1) for this model with the 

aid of the dimensionless quantity X=.!!!.£. X 
1i is written in 

the form 

[ c~(tjJ + tC!~,)xc~+1)expCdx>]~'}Cx)==chJ~~(x). (2.4) 

The corresponding to (2.4) equation in the p-representation 

[ I I (kw)
2 

-Jrc-1
2 

L) I ]tTl Ctljp-2 me' e \dJ~-dJr -~ttJt- 11(jr)=O (2. 5) 

~ 2mc' Jp by changing of the variable .J = )i;Ze ( o ~ S < oo ) is reduced 
to the Whittaker equation 

l 

[ L _j_+ l.+ 
d >" '-1 s 

t 

~ ]tli(:s) =0 s 2 T1 (2. 6) 
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with the parameters .A=_m2c~J U=~J..+(mt'-)l' 
tiw 'i ' 1 ~ \ ~w 

The general solution of equation (2.6) can be represented ~~ 

~(s)=c,M>-}5)+ cz~'L,-r(s), (2.7) 

where M x.~(S) is the Whittaker function, which is expressed 

through the confluent hypergeometric function as follows: 

p+t - d 
M>-is)= 5 e z cp(p+t-"- ,2~•1; s). (2.8) 

Since the :function T(a,~; 5) behaves at the origin like 
j_ U 1 ~ 1 ("'' L )2. > 0 a constant and 2- 1 =2- 'It m::; < , from (2.8) it 

follows that the solution (2.7) is regular at the origin only if 

C2.=0 ,The asymptotic behav_iour of the confluent hypergeometric 

function when S becomes large is given by 

-(>-+~+.!..) 5 
rh(J.. tIt -A. 2u+1' s'.:::: 1(2p+ 1) ( 2 e 
1 2 r • 1 , ') r(~·!->-) ..J . 

Therefore the requirement of regularity of the solution of 

equation (2,6) when :S ~ oo leads to the condition 

1 
rc~~~- ->-) = o i.e. ~+f-·>.=-n, 11=0,1,2, .... 

(2. 9) 

which gives the energy quantization rule for the relativistic 

oscillator under consideration: 

E'L- = mc\.h.J'l- =hw).. =tw(ht ~+ t) (2.10) 

Thus, the wave functions, corresponding to the energy levels 

(2.10), have in p-repr~sentation the form: 

~·i "5 

~'t (s; h.)= c. tv1 r· i. h ,~(s) = C\ 5 
2

e-
2 

p(-n ,2p+t; -s) . c2 .u) 

7 



where Crt are the normalization coefficients. The calculation 

of Cn is simplified if one expresses cf>C- 1l, 2 ~+ i; 5) 
through the generalized Laguerre polynomial: 

n Ill Ill 

rf-1(-n ,2~+ i; s) = 111 1(2p+1) L~(s) = f(2M+1)L Cn (-l.) 
'r r(2~+ nt1) n l "':O r(2r;rnt1) (2 .12) 

Now the coefficients Cn are easily calculated since 

oo <::1. r,;. { r(n+O(+ 1) 

~"Ycxlh(YJLJ~)e::~d~= --,! 

0 0 , 

11 =In 
(2.1) ) 

11 ~ tn 

Thus, the normalized wave functions in the p-representation 

are written in the form (2.11), and 
n. 1 

C =~ {lnc r(n+2~-t 1) }2: 
ll r(2~+1) t n1 

(2.14) 

The transition to the wave functions in the x-representation 
~ \'X n m m 

'tli(x ) - 2 r'(2~t1) (~w) "" (-2) c.. rc l '"')T"v ,n - fJi' c ch -;;ut ~ rcm•2r+1) p+z-+mt tx -

II 'I.X 

- 2. C\ ( tw) rc i ' "' E .L . ~ ,, -&"C -;;r p+2+1x)F-n,~+ 2 +o.;2~t1;2) 

(2.15) 

is performed with the help of formulae (1.2), (2.11) and the 

integral representation for the gamma-function 
00 -t ~-1 res) = j e t J t ' Re 5 >0. 
0 

When <:-oo the functions ~'1-(x;t\) and ~1 (s;n.) coincide 

With the corresponding wave jhntions of the nonrelativistic 

linear oscillator in the ooordinate and momentum representations 

( see Appendix I). 
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~~~!i§tes, For constructing the relativistic oscilla

tor c.s., we introduce the variable 't= R =cffiexp(tft) 
( 0 ~'\..::co ). ThEil equation (2.6) is rewritten in the form 

[ 
2_ i ..L] 

'\- d<tL + 'tL U1('\) =~>.Ll~(<t), (2.16) 

where '±'~c-s) = R ~('\), ~ = ~~}- ~ ~t + c:~Lf_ • The advantage 

of this form of equation (2.6) is that it allo•s one to use the 

analogy with the well-known quantum-mechanical singil.lar linear 

oscillator 1161 • 
We introduce the annihilation and creation operators 

a =J_ ("+ fL) if cA't ' 
a+= ..L("- L) 

~ ci'r 
(2.17) 

acting on the function U 1('1) and satisfying the commutation 

relation [a,a.+] = 1 • Then the total "Hamiltonian", which 

corresponds to equation (2.6), oan be represented as 

~ ( 't) = li <ol( '\) + ttJ = it~ (a+ a+ ~ + f;l) - (2.18) 

Using the commutation relation [a,ct]= 1 , it is easy to 

show that 

[ 
n (o) J ~ n a , H (<r) = 2 na, 

h ~~ n 
[ (ct) I~ (<t)]=- i\r n(ct) 1 

(2.19) 

i.e.,the operators C1 
+ and a are formally the integrals of 

motion of the system, which is described by the "Hamiltonian• 
(o) H ('f). However, in this oase the operators ( 2.17) have no direct 

.a_ (2mtt)2. 
physical meaning since the parameter 8 = 'i + lW" ,which 

characterizes the contribution of the singular term to (2.16), 

never vanishes for en.1 real ":> • 'l'herefore, the representation 

of the Hamiltonian ~(~) in the form (2.18) and the subsequent 

use of the operators (2.17) is only a mathematical method, which 

9 



allows us to construct the integrals of motion for the relati

vistic oscillator (2.2). 

As iS known 116/, for the total "Hamiltonian" H(<r) 

such invariants are quadratic in the operators (2.17) expressions 
r ~ ,l 

A, ) 1 J( ~ \ g t {2mc) 2 

~ '{ =- 2td Cl;- 2,.,)' f\=,r:::t.. 2. 20) AI )=...L{ "- j_} \-r 2/\ u. -2t' 

satisfyinL~ the follovrlnt; conunutatlon relations: 

[ 1 - -t · · - t] I 
A,H =hc-:A, lA,Hj=-LA"", lA,A =;;;-,H (2.21) 

'l'he fomulae (2.17) and (2.20) define the action of the 
+ 

operators A(<r) and A('d on the function Ll~(i") , Having 

derived the explicl t form of these integrals of motion, we can 

return to the initial function ljJ~(S)=fi='U1(r), Since 

d lp('r) 1 1 d. 1 } 
d. <r ff = 'W l c! t' - 2 -t lfl('r) , 

t 
the explicit form of the operators A , A and H ln the 

~(S)-functions space is obtained from formulae (2.18) and (2.20) 
'i- I i_ + t 1 I 

by replacing a by a- w " and a by a+ '2f2. ~? 

i. c.' 

A(s)~4(~) = * { "S ~ 5 + ~ S-~ H(s)}~i(:s), 

ACs)~(s) ~jd~ ~ 5 - tS+ ~wH(s)}q;Fs), 
i 

~ 2. J'2. 
~(S)lfJ'l(s) = tlws{ * + ( ~~) -h- ds~- }~1(s)' 
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( 2. 22 ) 

the same commutation relations (2.21) being satisfied. 

It is evident that the solution (2.11) of equation (2.6), 

whim w111 be denoted 'ey the symbol I n > , are the eieen:runouons 

of the Hamiltonian ~ 

H In) =En I n > , En=Kw(n+~+~) · ( 2. 23) 

Using the representation (2.12) and the recurrence relations for 

the generalized Laguerre polynomials, one can show that 

+ A I n. ) = b h I ll- 1) , A 1 r1 > = ~"" 1 n + 1 > c 2. 24) 

ln)=j.>rt(A+)nlo). ' 
I It 

~ , DO - hi r(2~t1) }l 
Here we have used the notation ~n=n(n+2~)~· ~n~\b,bi·t.~:A\ntr(h+lrtt) . 

Since f:>.·Jn= ~n- 1 , one can easily check that the functions 

00 h 

I~>= c6 _I_f-Jn~ In)' (2.25) 
n:o 

where c~ is an arbitrary constant, are the eigenfunctions of 

the operator ~ • In fact 

00 tl 00 h 

A I <r) = c:6 I~"~ bnin-1> =c. I ~n-to- 1 n-1)= ~I~> 
n ,..I h •I 

( 2. 26) 

Substituting into (2.25) the expression for the states lrt) 

through the generali~cd Laguerre polynomials, with the help 

of the generating function of these polynomials 
oo nldf,) d x 
""" )( n\, = (x s)-?: e J (2m) L rcn+ct+ n d , 
h=O 

we obtain the explicit form o! the eigenfunctions of the opera

tor A in the p-representation: 
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' :s 
.L t/\~- 2: 

I)(>= ( j me r(2M+1))}c ~ J (2Jd\)('S') (2• 27) 
u lt\ I 6(t6AY 2~ U· . 

( r. -1 
The constant ell= t\1 ~I) [1(2~+ 1) IQ~(21\I61)] :<. is defined from 

the no:rmnli?.aUon condition 
0o :1_ .j_OO 

2 ~ l<f;Cx)j dx = :c~) ~~~(cr)l =1 
- "'-' 0 

and is calculated by the formula <- -L/\.(~--) 
1.>0 ill -!b.. -<t ~ 

~ch- J2~(2e" W't)J2 ~(2 e \[Aft)<re = i e IQ~(2 Alcd) 
c 

Thus, the normalized eiGenfunctions of the operator A 
have in p-representation the form 

16 > = c J¥ N
6 
(- f )Ji e'"~-* ~ J2~ ( ;~_j t/\6 s'), (2.28) 

-1 
where N~={I2~(2/\I61)} 2

• Insofar as the states In) 
coinci.de when C---.= with the states of the nonrelativistic 

linear oscillator in 

bh.-fi1' fln-1/.r;;t 
the p-representation and the quantities 

the operators )\ 

, it follows from the relations (2.4) that 
+ 

and J\ go over in this limit to the anni-

hilation and creation operators of the nonrelativistic oscillator. 
-! lo12 

Sine e the normalization constant C ~ ,_. e when C. - oa 

( see Appendix II, forr.mla (A.B) ), it also follows fror.J the 

:representation (2.25) that the states 16) coincide in this ll

Init with the nonrelativistic linear oscillator c.s. 
+ 

The explicit form of the operators A !l.nd A in the 

x-representation can be obtained from (2.22) by means of the 

transformation (1.2): 

A, , - j_J rm~ __ l nc ,·} 
\X)- j2'1.~ 1\ X+ lmt\w I xj J 

12 

T \ 1 1'~ t ' A(x.J=~ 1-'-x-=n!x)j 
~2. ~~ h ~ltli.t...: \ ( 2. 29) 

Having used (2.28) and the transformation fo!"TTIula (1.2), in 

which the substitution of the variable }p by 't=JS=Aelf 
is made, we get the explicit form of the eigenfunctions 

of the operator A in the x-representation: 

I I jT -21.x 00 2t~-1 
o)x = T n A J 't' I~> d ~ = 

c p 

l~r > 

(2.30) 

( AI 1/ -{AI~I ~; = rmcN ~c 15 e 2, r(u·~·;.·x-)~(~·t-L-;:-,2 ... t1 2t"6). ~ JOf ~ r Z~+1) I 't' I 1 

The integration in (2.30) over the variable 't' has been perfor

med with the aid of the following formula for the Bessel function: 
00 l t t 

\ -~1 j-1 j_ (tl)(ci. )" - "\ l 

rC~·1) ~Jlei+)e t dt = 23r r ~ 2-6 e "6 <P(¥•1,rtt;~ ), c2 • 31 ) 

l 

Re ~ _> 0 , Re(~+ Jl > 0-

~ln~!£gl_~~trx~~E~ The utilization of the operators 

A and A+ , with the help of which we have constructed c.s. 

(2.28) and (2.30), makes also easier the problem of searching 

a dynamical symmetry Group of the relativistic oscillator 

(2.2) /l6 ,l7/ • In fact, if one introduces 

+ 
M+=/\A' M_=-;\A, M3=i:,t-1 

( 2. 32) 

and makes use the commutation relations ( 2. 21), then it can be 

verified that the operators tv'\+, tv1_ and tv'l::s define the Lie 

algebra 

[M+.M-]=2tv13, [M~.M±]=±M±, (2.33) 
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i.e.,they are the generators of the group 

<lirect calculation of the Casimir operator 

2.- 2. 1 f M · ) tv1 - M3 + :r\ I+M- + M_JV\+ 

S U ( 1 , 1) • The 

( 2. J4) 

both in the x- and in the p-re]'lresentatlon shows that it is 

equal to 

' L ;!_ • 

M " = ( ~ ) r == ( tA ~._ .L) r . 
\ li eel ' Y • 

( 2. J5) 

,(_ 

For the clpcnvaluc s of the irrvarlant operator M the notation 

S(S+ 1) in usually employed and a represcntatton of the group 

SU(l,l) is characterized by a number S • Jo'rom (2.J5) it 

follows that in this case s can take two values: S1 =-(~+~) 
~ u I 

and 02 = 1·- ?.:' • Since 
~( c.'-)-z > .L 

~ = 1" c \.. Rw ~ :4, , then ~2.. 3 0 

<:J.nd has to be discarded as the corresponding representation is 

S=-(u+l..) I r· ;). ([ctermlnes the nonu.'ll tary. 'rhe first value 

rc1Jrc sent..1. tic n D+ (- ~- ?i:) , which is characteri:~ed by the fact, 

that the elr,enV"aluos of the operator M 3=~H arc bour1ded 

below and CtJ.ual to -S1 +n=p+~+ll, n~o,1,2, 

'rhus, we obtain correct spectrum of the operator H= nwM 5 

and as in the nonrelatlvistic caGe the dynamical symmetry group 

of the relatLvistic linear oscillator (2.2) ls the Group SU(l,l). 

'rhe functions Ill) , being defined by (2.11) and (2.15), are the 

basis functions of the infinite-dimensional irreducible unitary 

representation D\-p-~) of the group SU(l,l) in p- and x-spacos 

respectively. 

II. In constructing tho second model the key role is 

nlaycd by the V<:J.ric1,ble kp= 2rnc :,~Jf , which han the clear 

14 

geometrical meaning x) anu coincides with nonrelativl~;tic 
e - .e. 

momentum when c ~ oo • The ener & of motion ~ = cr- nl( 
K 2 

in terms of Kr has the nonrelativistic form E' 1 = ~ · 

Therefore, it is natural to postulate the follovdng equation 

for the linear oscillator in the momentum representation: 
L L L 2 L 

( 
&_ _ mw h L _ -S..) Ill ( 1:::) = Q. 
2m ~ dK/ 2m 'f'l P 

(J.l) 

Thus, in the second model the quasipotential is the diffe

rential operator 

c2.L l.L 1 (l Jt~) __ mw~<i_=_iiw-----·LI:h- (J.2) 
V( Kr)- 2. ct~r' 2.mc' ell'-¥- JJP ~ JJr 

In this case we oan use the fact, that the solutionsof (J.l) 

are well known and expressed through ~Hermite polynomials 
k::l. 

\l/ c. -~ ( K ) 
1'n(Kr)=J2"n' e Hn ~~~~L o.J) 

i 

e h = t LA) ()) ~ t) I J\ = 01 1, ,2_ I ' I CO= (;llf(.)r 
while the func tiona tV n ( k: r) satisfy the following 

orthogonality and completeness conditions: 

00 jt 

_ld~er\fit~t (kr)~(Kr)=~mtt (3.4 ) 

00 il-

2 \fJn(Kr)~h(Kt) =t(Kr- kl) · ( J.5 ) 

n:o 

x) For the details see, for instanoe, /1B/ • 
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In the nonrelativistic limit the quasipotential (J.2), equation 

(J.l) and its solutions (J.J) go into the quasipotential, 

Schrodlnger equation and its solutions for the nonrelativistic 

linear oscillator, respectively. 

The quasipotential (J.2) in the x-representation is written 

(J. 6) 

as 
l t -R 

V( ~ ) 'ttw ( I { J ) (~ \ {I ; J )~ 
X' J; == 2m('- ell R d)< X t :i." rt ~ cG X ' 

where, by definition, 
d -R oo -oru1.<r(dtio<f!..r 

( ch~0( 7) =-LLm lch-e "'. K:=i,2, ... 
c..x t.-o ) 

(J. 7) 

For instance, the action of the operator (J.7) on an exponent 

is given by -K ±'.xJ -1:: ±ixJ 
(<:thtct~x) e = (~cxj) e . 

The finite difference analogue of equation (J.l) has in 

x-representation the fo11n 

[Ho-E'\;+ ;,_:: c vh~ ~.f(x + k tft~~. )>< ]~~(x) ==o, 
l J 3 

or, after multiplying from the left by ( ch 2 ~) , 

{ ( ch t ~ x)\ fio- ~ )+ ;:~.[Cx~~)~~ ~>: + ~{; ~~~ ~. J}~9,(x) = 0 . 

(J.s) 

(J.9 ) 

Equation (J.l) in the x-representation can also be written in the 

integral fo:rm 

(H E \,r.r \ ,";:'\-- 1\T ')'; 0 
1 - q}'-f}\X; -r- \ v\x,x _;l!J~x Oix = 
c ' lq, -io l~ 

(J,1 0) 

Accord::.ng to (1.5) a:ld (J.2), the fcllcw'lr:.e integral representa

tion fOr the quaS ipotential v~ X 1 X 
1

) iS Valid; 
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·) 
·) 

~~ 
·J 

- ··~' l L 00 ~ ><J L 1 - \X J 
Vex x') = tiw r e. _1_(~ -4-u:h ~l)e ciJ . (J.ll) 

' 4nc ) d..2:!: ''/ "- "- ') 
-CO ;/, 

Hence we obtain, after performing the integration, 

function V(x,x') is nonlocal and is equal to 

that the 

V( ')= tiw~ ~~ic;-x') 
x,x c s~JtCx-x') 

(J.l2) 

In the Appendix III it is Shown that in the nonrelativistic region 

the function (J.l2) takes the local form: 
2, Vex) '><

1
)----- m2w /Sex- x') 

<:-+<><> 

The comparison of two different forms (J.9) and (J.lO) of 

equation (J.l) in the x-representation leads to 

(J.lJ) 

r cit. _L d_)3Vi(x x')= t'w" ~(><~l)clt.Ld_ +§.~~s~i.. d_]5Cx- x'), CJ.l4) 
\. P- ch ' 2Mc'l' 2. 2<h 2. 2 ~. 

i.e., the quasipot ential (J.l2) satisfies the inhomogeneous 

difference equation. 

It is necessary to note, that since the formal action of the 

difference differentiation operators entering (J,l4) is accompa

nied 1tr the extension to the complex X- plane, the action of 

these operators on 0-- function of the real argument is &fined, 

as u:;ually, by the corresponrling revrese::ltation in the forrn 

of infinite seriLs. For instance, 

t fL. = . t1 (•) 
ch;;::: '' y t ~ / ,, e u(x-x )~L.-;t<) \X-X) 

(J.15) 

r.=-c 

!iow we fl:r ~ the waYe fur,ctic·n~; (J • .3) in the cc:_fi,:._;u..::atic .. ~2..1 

repreBentation. /: .. ccordinG tc (le?) :cr tl':e g.:-OU11G. ~ta~u \1ax0 

function 
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'>0 (_ ~ ..., 

\li ( ) lu tn C \ I • K ) C m c \ \ ( • < 11 t) ( loX "'~ 2 l1~-~ljexp\_txj--i±.-= ,Tri1:_tJ<"xp "f!\'>h:-5 J.l6) 

with the help of the integral representation for the Macdonald 

function 

we gflt 

eo -zchtt-~t 
K~(~)=t)e dt 

-00 

2. 
1\ 

lTJ 12' z- . ( 2 
1o(x) = fi~li eo me e K1>< ~ ) 

The excited state wave functions (h= 1 1 2 1 J, ••• ) 

tfl (x) = Come (d (~J-"\h't H (R sh:h) 
V2""Jlt n' J J e n \..:·J 2 A 2-n . -oo 

can be written in the form 
n 

lll(x)=i:JL H (42:1\s~l.d~)iTJ(x) l h ~ h R. dx 'f o J 

if one takes into account the foiiilula 

n l.xj n h ;-xj 
(s~~~~;)e =(-1)(sh.o~J)e . 

Then using the explicit form of' the Hermite polynomials 

H 
[~1 m n 2 

h(x)=hiL (-1) (:lx)- m 

m=o tn'(ll-21ll)\, ' 
[%]=1~ 

h-1 
~ 

~· even h 

~of' ocld n 

( J .17) 

(3.18) 

(J.l9) 

(J. 20) 

(J.21) 

(J.22) 

and the integral representation (J.l6) for the ~round state wave 

function ~0(x) , we obtain that 

II 

I. 
n 1\ [llj " ~ n-2• o-2< 2. 

~ (x) = (-1) ~ (' m e2 ~ (-t)(tA) \0tks K' (~) (J.2J) 
2L! ~m 0 c L., R\n·2•J' L n-2< n N . n. 1. K:::O c;.=o LX•Kt-S-Q 

From the orthogonality condition (J.4) for the wave funct-

ions in the p-represento.tion it folloVIs 1 that in the x-rcprec;enta-

tion they satisfy the fo llovling "nonlocal" orthogonality condi tlon 

1 d x t * (x) C h .i~c Sx ~ ( x) = '()n m -= n m . 
(J. 24) 

or 
00 

l\clxtT/(xJ[\T; (x-
2
'\i )+Lll(x+~h )]=5 

2.J Th 1m ml fm ~me hm 
--:X) 

(J.25) 

The nonunitarlty of the orthoeonallty condition for the funct.l<ltlfl 

lt(x) ls bound up with the fact that the (]_Uasipotent lal (J.:') 

is nonhermltian with respect to the scalar product, deflned by 

the volume element dUp= mccljp 

Let us also Vlrite the completeness condition (J.5) in 

the x-representution, which has the form 
00 

2 f: ( x ) C: kG~~ J lp n (x' ) = b ( x- x' ) 
n=o 

or 

t ~ lT / ( x ) [ \1, ( / + ~ ) t- \I I ( x'- t2t )1 = D ( x - x' ) 
L r n r n 2"'c 1 n me 
1\::C 

(1.26) 

( J. 27) 

It is easy to verify, that t
11
(x) have the correct non-

relativistic limit: 
m~ d. 

r I -7ii X 

l~(x)-~~e~ H(xf¥) 
1n V':2."n 1 n ~' 

I L 

( =(illW)~ 
0 2h . c J. 28 ) 
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Indeed, the nonrelativlstic limit of the ground state wave 

function (J,l8) is obtained with the aid of the asymptotic 

representation for the function 

kL{"(x) {Jf' exp(-~xl__•t'-s.o.s-cs:nf), .• .! ~ 
X - S' 

( J. 29) 

which is valid in the case X> r > 0 and .---+ 00 • To find the 

nonrelativistic limit of the excited state wave functions, it 

is more suitable to start from the representation (J,21), Taking 

into account that when C__,. eo the relation il/\sh~~il:'-t{t~x 
does hold, we get 

lf 
n 1 tnw 2 

(x)----- (-1)Co . T d - 21i x 
n V2."hl' Hh(t~fiMdx)e 

(J.JO) 

Now using (J.22) am the fonnula 
l 2. 

n x n - x 

H(x)-=(-1)e g__e 
h dx" 

c J, Jl) 

fo:r the Hermite polynomials, we obtain 
hlW 2. [¥-] 1 1 ( j m W ) 

~() t.nl~ -'SX '\' Nh-2< X ~ 
X ___. C., l 'In I e ~ 2 I< K I ( n-2K) I 

h ~e~u 

(J,J2) 

Since for the Hermite polynomials the following relation is 

valid (for a proof see Appendix IV) 

!'... [~} ( j mw) ~ 
22 1 "Y Hn-2K x n = H (x~~) 

n L.._, 2 '. 1<: I (n-2<.)! n li 

(J.JJ) 

1'.-=o 

from (J,J2) it follmvs (3,28), 

£2hir~~~~ For constructing the Cos. of the model 

under consideration (J,2), we introduce the annihilation and 

creation operators 

20 

_ m~c.; ~ _,_ _e1_ == m~w _&_ _ L J-----, I + ~ 
Q- ~ ( m~'-" ' dKr), a •)_ (lhtiw ~"/), (J.J4) 

satisfying the commutation relation [ 0, 0-t ]= 1 , Let us exprcsa 

them through the variable J 
. '\ 1 q 

0=1\sh~ + ~ T' 
1\ch:IZ "-] 

+ h~ 1 L Q = /\ s :t.2 - !\c'nf,; d.] 
- ;?. 

( J, J5) 

It is evident that when c~eo they go into the annihilation 

and creation operators of the nonrelativistic linear oscillator, 

respectively, 

We find the explicit form of the operators (J.J5) in 

the x-representation. Here, as in the case of the quasipotential 

(J,2), it is possible to write two forms: The first 
-1 

[ 
.I l J .\ ( L l J ) ~] Q~::-1\sn};~+/\ Clt2d;: x 

~ . d -1 

a=- (Ash~~- -k(chia;) X.] 
1 X 0\ ~ 1 

(J,J6) 

and the second oc.~, _ , d~ 1 

td trxHx)x 
a)(~(x)-=-/\shidx\='(x)-7\ .l ~h.:n(X-i(l) 1 

-Oo 

t 00 

Ox i='(x) =- /\o,h.L( \='(x)+ l_ \ /F(x')~~~ 
2.ch /\jc: ~ 

(J.J7) 

-00 

The anr1ihilation and creation operators (J,J6) and (J,J7) in the 

x-repre sentation satisfy the C'..Ommutation relation 

Ia)( 
L 

1'" -l 
, Q, I= 1 

J 

For the first form (~.36) this is easily 7er1fled and for 

the second one is proven in tl:e A:>pendix '/, 

The transition f:rcm one form (J,J6) to another (J,J7) is 

accom_]:!1Jill.£d with the aid of the relation x) 

Xj'The action of the orerator :~,-\;- ~ on the function 1/chJrx 
~ ~ (l .. 

-· h r t .' ' ~ \ C{ -'-is defined as a 1::.:-;d.t of '~ ··(':! \, - .... .~,, ;:- _ chJ'[; when E --0 
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Do 'C·- •')J 
i.LL 1 _j_hl_Lre d1 c- , 

cn.2.d•chn(x-•')-2Jlc. 2.cix) d~ J =o(x-x) 
-t>O 2 

(J,J8) 

We note that in the nonrelativistic limit 

Q;---t~(~x + miow x), 
+ . rf' ("' mw ) a.-- -t~m;;; --...:- Tx 

(J. J9) 

For the representation (J,J8) it is also evident and for the 

representation (J.J9) it is shown in-the Appendix III. 
+ 

J~ving defined the operators C1 and C1 , the o,s. 

are constructed in the standard way - as the eigenvalues of the 

operator C1 

Glcx)=ct\0{), (J,40) 

where ex is an arbitrary complex number. The state I ex) 1s 

connected with the ground state ~:IO) of the considered rela

tivistic oscillator by the Weyl unitary operator D( o() = 
+ ll- .j6/ 

=ex p(<>~Q- ol. Q) 'i.e., 

I ex)= DCO() I o> (J.41) 

From here the representation also follows, which actually is 

the expansion of ICX> in terms of the oscillator states, 

lct) = e--b:IO(l.?.~~ In), c3 ' 42 ) 

h:O 

where the Dirac notation ~n =In) for the state vector is 

used, 

The explicit form of the c.s. in the p- and x-representa

tions can be obtained with the help of the generating function 

of the Hermite polynomials 

22 

n 
e2xc-l]_ 

(J,O) 
Do '; z 
L n 1 ~n(x) 
ti:=.C 

In the p-represenlation they have the form 

Z."-rlo:> =~CJ,~>~) ""c,exf) {-H<X\I·xi')- 2:~;(,) +(>(J~ kr} (J,H) 

while ln the x-representatlon they are given by 

(><I 0() == ~(x ,ol) ~ex p ~-H}, k-\1 1
)- 2ud\ ">h_ ~ ~-d lt( ·d · 

( J. ·> ::>) 

Calculating ln the last formula the action of the fLnlte-rlLffe-

rence operator S~ I~;_ on \f'
0
(><) , we get 

I ( L ' L\ ·.>e fl 11 UJ - JT ~ 1\-u<-lo<lj'\' (-d../\) ___, ~ K r (x ,0()- .n Come e ~ nt- ~(-I)C" k ,;,K 

( 

( ~\-) 
" 7 ;;: -

(J,:~G ) 

It is easy to verify that the c, s, ln the x-reprcsentation 

are the eigenstates of the annihilation operator ax both in 

the fonn (J,J6) and in the form (J.J7), i,e,, 

ax lfCx: eX)= D( fCx leX) (J.47) 

On the other hand, if we make use of formula (J,J7), we obtain 

the follo?ll ng integral relation for the c, s, in the x-represen

tat ion: 
00 

-'~( I 1 ' r x. x; ~)GI x _ l J _J, ~JtCX-x') ==LA(t\s~2:CG:+cx)~(x,<X) 
( J, 48) 

In the particular case when d.= 0 from (J,48) we get for the 

ground state ~ 
0

( X): 
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~ I 2 . J l~ ( x:·w.cx')dx: = ( "sht dx J,Cx). 
j c.h cx-x') o 

-00 

(Jo49) 

With the aid of (Jo20) this relation can be rewritten in the 

form 
00 I (t:)J~i I t • L[ L l 1 
tx K,,. 2 x =~"2 5~i~K-~(~)=!.fl 1\-(/\2 )-K-1(6.) Oo5o) 
j c.h:T((i-x') ~dx " 2 :<. ••-t ••·· " · 

-co 

Formula (Jo50) is easily reduced to the Kontorowich-Lebedev 

transformation, which is often used in solving the boundary value 

problems: 

00 

~(t) = S i(<t) k,""(-t)olcr, 
0 

(Jo51 ) 

:\-(<t)"" !t "~ 5h.Jl"I gC~) k.ir(-t.) '\t 
~ 

As it follows from (J,50) and (Jo5l) in our case 

_, z x·Sn:nx , .!i_ =-~-"-sh.l.~K ~ 6... ·-1 l -1 2 . Al • I ( ~ 

:Hx) ci2nx+d2Jri(' ~ ( 2.) l.fshJt:i 2. t:Hc: " 2 ) · (Jo52) 

The CoSo (J,44) and (Jo45) form an overcomplete system 

of functions, but they are nonorthoeonal. The scalar product 

and the completeness condition for the coso in the p-represen

tation are written in the following form: 

1'-tl/( . )lli( . )ol ~ O('p-!(io~l\ lfl') 
-ooT }o{ I }f k.f e , 

CO j( I (Jo5J) 
1 ( ?· lii( . Ill('·) 'f)(j.-1) I 2 . i J"'e~.r Jr~~)r Jr,<~- ..::!L1 ='D(Kr-Kr), Jo{=ol~~dr~2 

-<>0 

In the x-representation the scalar product and the completeness 

condition for the OoSo, as well ae the orthogonality (Jo24) and 

completeness (J,26) conditions for the wave functions (Jo21), have 

the nonlocal form: 

24 

00 * -l ci x ~(x;o() c h ~~c ~x tf(x ,r)=e ~"f- t (ro<l'• ipr~) 
(3.54) 

Do 

1 5 11 /' I 1 ~ d II;( I r
2 

"' I 
J{ 'f (x,oi) Cit 2;e crx; 1 x;o<)V1()( = o( x- x.). 

-D<;> 

It is clear that the functions (J,44) and (3.45) in the p

and x-representations respectively, when c.--...... co go into the 

c.so of the nonrelativistic linear oscillator 

lf I(J' c:J.)__.'JI(p·~)=-1- -0 X pj_ Lf,;~ J~i')- ~ t ;;( /2' p} (J,55) 't' ' T ' (:tuntw)'h l 2\ 2o.t>.l fii$ , c--0o 

~ .l 

lp(x 1o{) ...._ ~(x;;()=(~~)4ex p { ~(~~ l<d)- ~~ x\ 1~ 2;w' (X x} (J. 56) 
c.-.oo ' 

"' 
where ex is given by 

d = L.rn ct = ~ -L~mw'-x 
~2lllliw ~I; 

(J,57) 

c-oo 

The dynamical symmetry group for the second model (Jo2) 

of relativistic oscillator, generating its energy spectrum, 

is also the group SU(l,l). This follows from the fact that the 

total Hamiltonian for this model is represented in the form 

' H = t w ( a\::t + t + ~~) 
(Jo58) 

both in the p- and x-representations, the corresponding expres-
+ sions for the annihilation a and creaction a operators 

being defined by formulae (JoJ4) and (JoJ6). The generators of 

the group SU(l,l), satisfying the commutation relations (2o29), 
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+ 
art: eX}Jcessed throueh the, Operators Q and Q in the 

standard way /lG,l 7/ : 
~ L 

M _ 1 ( + ) _ _L 2. ~A _ l. ( + l.) _ 1-1 - me . 
+--;r a , M_--2,a, n.~-2.\aa+2- 21;w 

(3.59) 

Calculating by formula (2.JO) the invariant Casimir opera-
2. 3 

tor, we obt!lin that M = s(::.t\):o-1 6 • Consequently, the repre-

sentations of the group SU(l,l) are characterized by two negati-
1 3 

ve numbers s, =-If and so!=- y '-to which there correspond 

the irrcdl<Cible unitary representations D+(- +) and D+(- ~). 
The eigenvalues of the operator M 3 are bounded below and equal 

to 
+ 

1) in the case of D(-~) representation:-51+n~~+n,1~.~=mc\tc..u(2n+~); 
2) in the case of D\-~) representation :-s{n='f+h,{e H=m,\tw(2n+1+!). 

The fUnctions In> ' which are defined by formulae (J.J) 

and (J.n), for n=2k:(K=0,1,;2., .. ) form the basis of the irre

ducible unitary representation D\--b-) whereas for '11.=2'-+ i 

(K=0,1,2., ... ) of the irreducible unitary representation D+(-~) 
of the grou:9 SU(l,l) in p- and x-spaces, respectively. 

We express our gratitude to V.G.Kadyshevsky, A.N.Leznov, 

' V.I.Manko, V.A.Matveev am A.N.Sissakian for valuable 

discussions. 
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JU>P~NDIX 

I. The direct calculation of the nonrelativistic L'.mit 

of the wave functions, defined by relations (2.10) and (?.11), is 

a rather complicated problem. Therefore, we will proceed as 

follows. Making use of the representation (2. 20) and the recurren

ce formula for the generalized Laguerre polynomials 
cj, o( U( 

(2-n+ 1+()(-x)Ln(x) =(n+t)LnJx)+ (nto)()Lh_,(x.) 

it is easy to show that 

J(lHt)(nd+2p) ~(s;ntt)=t(2~tf•2p-s)L~(s;n) t ~n(n+2~)~C>;n-1). (A.r) 
t . t t 

From (l.J) it fo.llows that Jr.::.~ as ~~eo , i.e •• the 
' } ' 

variable 'S = 
21;m~ e p"" Q"m~ {1+ £c+ .. ·} • Since the parameter 

~ 1 ("'' l·)'l' !n( L 

~"' 4+ W:: "' liW , the recurrence relation (A.l) when c-+ oo 

takes the fonn 
\.Oo) l'><>) {<>o) 

~l):;llfJ (s; 11+ 1)=Jhtl1 (s;n-1)-iJ2:~~ (s;n), (A.2) rt T~ t 

where the dimensionless quantity ~ is equal to ~ 

The solution of (A.2) is defined up to an arbitrary function of 

~ and is expressed through the Hermite polynomial 
(oo) . II 

1f1 (S;h.)=(-t)~nC?). 
T '1- 2n nl 

Sine e Ho(~) = 1 , from (A. J) it follows that the 

describes the asymptotic behaviour of the ground 

when C - Oo • Therefore, with the help of the 

I~ ( ~) ~ J 2{ ( ! ) z { i + 1 i, · ... } 

(A.J) 

fUnction a?(?) 

state ~/s;o) 
representation 

for the gamma function at large values of I 2\ , from (2.10) 

we obtain 
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- ~ 
l. 

(ooJ '1. e 2 
r,o( ) _1T1 (-s·o) = ~ --, 
<A ~ -'it ' IT r-..~-t"\1< 

'l'hus, when c~ Co the functions lf'{.(s, rt) really eo into 

the wave functions On(p) of the nonrelativistic linear osc:Lllator 

in the p-representation: -.i 11 
11/ooJ , m/ _ lllc' e 2 

(-\) fin(~) (A.4) 
l~ ( 5 I h)= 'IT' anCp)- -if (mntit.l)'l< ~ 

In the same way the nonrelativistic limit is obtained in the 

x-representaion: _ "S2. 

'li/""J 111 (rnw)-1; fMs)e ~ 
T~ (x; n) = 1n(x)-= "if ~ ' $ =Jmw' x " . 

(A.5) 

II. To find the nonrelativistic limit of the normalization 
r -·~ constant c~ =(f\lol) {r(2~+1) I2~(2Aiol)} ' it is necessary to 

know the asymptotic behaviour of the modified Bessel function 

of the first kind 2m ln~t~ 

Do (~) -

L,(z) = 1_ I'll' r(tn•HI) -

z~ oo (~) 

:2.0 r(") L m' v('l• 1)·· (Hm) 
(A. 6 ) 

m=-o m-:-o 

in the case when both the argument l =2/\llfl =2c~I~J 
" 2mt' 2. 

and the order ~ = "'~"" li"W= A tend to infinity. Since the ratio 

of the argument squared to the order remains fixed, from (A.6) 

it follows that L 2. 
Auo .Zm ''<>o 2m I (2Ax);;;;; (1\x) L (Ax) = (1\x) '\ X "' 

l r(l\2
) m~o 1!1 11\'(1\'• t) .. ·(A'.m) f(l\<) ~ tnl A1(1•kc) .. (1• ~)-

1\L 

:::.~ 
"-.0o r(A\1) 

oo 2m 

l ~~ 
tn~o 

l 2. 
1\ X 

~e. = r(/\l+ 1) 
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(A. 7) 

Therefore, when C ~ oo the normalization constant tends to 
1\ l _1. I ~I' 

c~ ~ ( Alol)2 {rcA'+ 1) I,/2/\lol)} ;<.:::: e- 2:" (A.8) 

III. Now we will show that the nonlocal quasipotential 

V(x,x') (J.l2), as well as the annihilation and creation operators 

(J.J7),have the correct nonrelativistic limit. For that it is 

sufficient to verify that the following formulae are valid: 

l 

t ~ tn Qcx X = s (X) , 
01.-"" :ShJl:OO( 

o, _<X_=b(x). 
tA. h1 ch:n:O( ~ ..... ""' 

In fact, firstly 
C>O l 

( 20( )(. ~ )( 
.) ~h .nc~.x 

(()(dX _ 1 
j c hJ{O( ~ 

- Oo 

(A.9) 

(A.lO) 

(A.ll) 

Besides, for an arbitrary infinitely-differentiable function 

= (ld n 

P(x) = L F (o) ~~ 
n=o · 

the relations do hold 

t{rn l !='(x) 2.0('><. clx = ~M t c<F(x) o~X = F'(O) 
j ShJW.X ) dJTO(X 

·::i~Oo - 00 li~....:.o ··oo 

since for any n~l 

tl f Qc/·/"'' ~X 
(): .... ~ -~ Sh.JtDIX 

00 2~ J 
I O(X C1X 

J ChJt()(x 
= hm 

C(....:., 0.0 -1>0 

I 
;(,0( X 

Thus, when r:J..-"> 00 the functions shJlO(X 

really coincide with the function '5 ( x) 

79 

=0. 

and 

(A.l2) 

(A.lJ) 

( A.l4) 

_ci._ 
c•:na:x 



IV. Here v1e will justify the summation formula for the 

Hermite polynomials, which bas been used in the text 

[!1.1 h-21<: n 
., ( r-') 2 ( 201 x J 1 2 ~ 01 X I<l - 4« 1 n._l "'cn-2 r-)IHn-nC )-( -)Hn ~ 

l<:=o 

To this end let us consider the expression 
~ 

·-()(X 

Lh(x) = Hn(i~Je _ 

(A.l5) 

~A.l6) 

and construct the generating function for Z n with the help 

of formula (J.4J) , 
~ • j "' co 11 -++2nT 

t -()(x 

lC+) = l ~~ Zn(x)=e " e 
h~o 

Then, after some transformation 

ICt) = exp{ 4~~L1 -(4<X-1)(~:_x1 +1t)z} 
Consequently ot ~ < l 

l . l .n ~ ~ ,/ -?.~ Zh( x) = cH" l( +) = l (4~-1) e ol'l" e = 2o/X 

t~o '1. ~ 

and taking n~1 into account (J.Jl), from (A.l7) we obtain 
~ N 2 

. n 2. ( 2 o( X ) - lAX 

ZnCx) =(-t)(4o1-1) H" {iJ~ e . 
On the other hand, with the aid of formula (3.22) and the 

definition (A.l6) of i:Cx), we have also 

(A.l7) 

(A.l8) 

n [j] ,..., n-il<: -0J./ 
Z (x)=(-[)h! \' (Z.Jct) H (xJct)e (A.l9) 

n L f\:1 (n-2~<:.)1 h-211:. 
t;::o 

30 

'l'he comparison of (A.l8) and (A.l9) eives us the sou~,;ht formula 

(11..19). ·:te note that when 01.-* 
[~) ( X) 

nl ~ Hn-2" T 
L "' (n-2~oJI 
~=C 

formula (A.l5) eoes L"lto 

n 
- X 

~ v. In this paraeraph we show that the operators ctx and ()x 

in the form'(J.J7) satisfy the standard commutation relation 

[ a., a: ] = i . (A, 20) 

'rhe di rectus e of formulae (J, ~7) leads to 

Oo,'"'i/"'-'f . I ~""' I I vi [ +] I"T ' ~ X 01 Xh. l cd_ nc I)_ 2' -h ~ \1_ (' >< F(x. )oi X O,p, r(x)=i2_t }c\.rr(x-x') ~ 2dx·t' X t S 2 dx j chJJ(x -x') -- -~ 

(A. 21) 

Let us prove that the right-hand side of (A.21) is equal to F'(x). 

To this end we substitute i='(x') in (A.21) by its Fourier-trans-

form = r;y 
F c x) = ~ ) e r:' c1 ) J J . (.A. 22) 

-<><> 

~' 
Then the integration over ~ gives for the commutator of the 

+ 
operators o. and a, the following expression: 

· Oo ixj 0o 1 I 1 

[a.,a:]~Cx)=JJmc):;J;; JJ iF0')(sh~-Sh~)~,'5~-J)~J. (A.2J) 
-eo 2 -oo 

I 
Performing now the integration in (A.2J) over J 
of formula 

00 

~ F(x')~x't.(x-x')dx' 
- <XJ 

cA F(x) 
dx 

with 'the help 

(A. 24) 

and taking again into ·account (A. 22), we come to the conclusion 

that the right-hand s:i.de of (A.2J) is really equal to f(x) 
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