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Quagipotential Models of the Relativistic Oscillator
fadl N . . A s " . [
Two exactly solvable one-dimensional models of the relati-
vistic harmonic oscillator are investigated in the framework
of the quasipotential approach in quantum field theory. The co-
herent states are constructed and the dynamical symmetry groups
are found for both the models.

The investigation has been performed at the Laboratory
of Theoretical Physics, JINR.
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The harmonic osclllator, belng one of a few exactly solvable
problems in the nonrelativistic quantum mechanics, has been
extensively used 1n the various fields of the theoretical physics -
statistical mechanics, theory of superconductivity, nuclear
physics, and so on. The interest to the harmonic oscillator was
revived after the appearance of the quark models, which has made
it possible to describe the basic features of hadronic structures.
The further development of the quark models has led to the
necessity of constructing the relativistic wave functions of
compound particles and, in particular, the relativistic harmonic-—
-oscillator models /1=%/

The characteristic feature of the harmonio oscillator is the
exlstenoe of a class of solutlions in the form of coherent states
(0es.). The utilization of the c.s. allows one to use the more
simple classical language for the description of quantum pheno-
mena. Originally the c.s. have been introduced for the quantum
states wilth quadratic Hamiltonilans, l.e.4for the systems, which
can be represented in the form of finite or infinite set of
harmonio osclllators. The c¢.8. of quadratic systems are defined
as the elgenstates of nonhermitean boson annihilation operators/G/
and are the Gaussian wave packets minimizing the coordinate and
momentum uncertalnty produot,the form of which 1is unchanged in time,
The definition of the c.s. for arbitrary quantum systems as the
elgenfunctions of the integrals of motlon has been suggested 1n/7/.

The c.S. representation turned out to be fruitful also for
the investigation of the hadronic interaction at high energies.,
For instance, 1n /8/ there has been considered the high~energy
model, in which the excited states of colliding hadrons have the



coherent character, while in /9/ on the basls of the c.s. method
the factorization of dual amplitude of semimultiperipheral-type
is obtained. The problems arising in the consistent formulation
of quantum field theory in the c.s. representation are studied
1in /107

We investipgate two exactly solvable one-dimensional models
of the relativistic harmonic oscillator in the framework of the
quasipotentlal approach in quantum field theory /11,12/ « The
coherent states are constructed amd the dynamical symmetry
groups are found for both the models.

The one-dimensional quasipotential equation for the
wave function in the p-representation in the case of equal masses

is written in the form
(Ep- Eq,)qu(P):JTS{V/CP'K"E«,)\P,,V(K)AQk , o

dQ, =4k

where & Vs is the lnvariant volume element in the
KYm'ct ~

p-representation, qu=cjmzcl+q,l and V(PK;E.;) is the

quaslpotential /12/ « The transition to the relativistic confi-

gurational x-representation /13/
i
\P( =F °LQ §(F x)\}/(P) (1.2)

1s performed by the expansion in terms of the matrix elements

of representations of the Lobachevsky space motion group

p-(Bsp) T Y

(1.3)

2
= - = Eprc
where EP mCCE}P, P—mCSh}F and j? %—ﬁ;ﬁ
1s the rapidity.
Equation (1.1) in the x-representatlion has the finite

difference fom:
(H-E q,)kl[)(x) V(xin)Llj(x)dx7 (1.4)

V(e = 8OV (pisE) S Rd 0. O

Here Ho(x) = mc Ch(m m) is the free Hamiltonian, the
function (1.3) being the elgenfunction of Ho(x):

Ho(x)g@’x):Erg(PX)- (1.6)

~

koA
The free particle momentum operator P, =-mc ﬁ‘( mC dx)

and Hamiltonian HQ(X) satisfy the following commutation rela-
tions with the relativistic coordinate x:

[, @ ]= & 000, [x HE]=59, .7

mc?
In the nonrelativistic limit, i.e., when €~ 00, H,(x)—

+ P(

—» mC o 9) _—> P d" dx and the funofé.on E(P,X)

k3
goes over to the one-dimensional plane wave e

l.In the case of the local quasipotential -\I(P K, E$)
‘V[(P()K) E ] /13,14/ y equation (1.4) takes the form

[HOO+ \/@){J%@):Q. (2.1)



We consider the model of the relativistic harmonic oscillator,
which corresponds to the interaction potential 715/
: (@) ] (2) (2.2)
M dod ik .
\/( ) T)( exP(de , X=X(X+m_c).

With such a cholce of the potential V(x) the followlng commu-—

tation relations for the relativistic coordinate X hold:

[ O] =5 [3,- o], [, 8- bvia] = e,

) (2.3)
| [ H60] o] = (heo) x,
N ~

Le..1in accordance with (1,7) [|(x)= P.- é‘» (x) can be called
the generalized momentum operator, and the double commutator in
(2.3) coincides with the equation of motion of the nonrelativis—
tic osclllator in the Schrodinger representation. Ip the non-
relativistic limit the potential V(x)—> mTwlxz-

The quasipotential equation (2.1) for this model with the
ald of the dimensionless quantity )\{ = l"is X 1s written in
the form

[ehf)+ £E) e By o

The corresponding to (2.4) equation in the p-representation

[CMP"E ‘;c) (d} d}> ch}dl{/(ﬁ) 0 (2.5)

Jp
by changing of the variable S= 2"‘°e (0< 5<00 ) 15 reduced
to the Whittaker equation

2

[ d+ %+ l‘%ﬂ%@#@ .6

. }\ l1_+ me®
with the parameters ﬁw ¢ jct v BENT m~

The general solution of equation (2.6) can be represented as

%(S)=C1M%,F(S)+ CzMx,—r<S), (2.7)

where M%,P(S) 1s the Whittaker functlon, which is expressed

through the confluent hypergeometric function as follows:

vy -3 .
Mx,r(s)z SF e CP(}H;——%,%«H;S) . (2.8)

Since the function CP(a,@;s) behaves at the origin like
1 282
a constant and %'H“E‘J?* = <O |, from (2.8) 1t
follows that the solution (2.7) 1s regular at the orlgin only if
C2=O »The asymptotic behaviour of the confluent hypergeometric
function when S becomes large is given by
{
-(tprs) 3
rept1) O g
1 ) ) ~ V2Pt
CP(Z =%, Pd 5 I'(pui-—,\)g e
Therefore the requirement of regularity of the solution of
equation (2,6) when 5—>00 1leads to the condition

1 :o, :Le P"'é—%’:-n? n=ol1:2/"'7

M- (2.9)
which gives the energy quantization rule for the relativistic

oscillator urder consideration:
2
ELL:“‘C chh=ﬁw>~=ﬁw(h+ M+ %) . (2.10)

Thus, the wave functions, corresponding to the energy levels

(2.10), bave in p-representation the fomm:

pt 3
%(S;n)=CnM,“§+n,r.(S)=Ch 5 e Penapts) . ey



where Cn are the normalization coefficlents. The calculation

of C, is simplified 1f one expresses @(—naQP+ 1;5)
through the generalized Laguerre polynomial:
£ _]‘(12 +i; n r(QEM - C (- 7_)
Pln2ps 55) = r(z,”m)‘— ORIC! 1)2 TGemy (2412

Now the coefficients C, are easily calculated since

oo o Mntos 1)

o £ =Y —7 7 N=m
Sy L.OL, e dy= ' (2.13)
’ O n#m

?
Thus, the normalized wave functions in the p-representation
are written in the form (2.11), and

el fme Fn+2p+1)

C““F(Qw){ Y }é

The transition to the we.ve functions in the x-representation

2 |-'( +
\P(X n) ZH 1) ( ) Z r((szQ::ﬂ F(H/f%*'hlf {;)z

|~

(2.14)

(2.15)

K
= 25 (88) Tt 0 OFE ok gt

i1s performed with the help of formulae (1.2), (2.11) and the
integral representation for the gamma-—function

O ~t 3~
['(3)= §& ¢ 'dt, Res>0

When C—> 0O the functions qja'(x}n) and q/(S‘n) coincide
1 )
with the corresponding wave Rinctions of the nonrelativistic

linear oscillator in the oo ordinate and momentum representations
( see Appendix I).

Goherent states, For constructing the relativistic osoilla-
tor c.8., we introduce the variable =% =CJ% EXP(J{JT)
(O< T <00 ), Them equation (2.6) 1is rewritten in the form

[~ L Lo =U,\U$(°r), (2.16)

2 -3 2mct
whe re ‘{J‘(S):FLL’(T), gzu[“ +( . The advantage
of this form of equation (2.6) is that it allows one to use the
analogy with the well-known guantum-mechanioal singular linear
oscillator 716/ .

We introduce the annihilation and creation operators
{ ( d ) +_ _1_( _d (2.17)
== T+ = = T
A=z(T+ &), A=-F\ "«

acting on the function uq’(‘l’) and satisfying the commutation
relation [ Q,a% ]=1 . Then the total "Hamiltonian", which

oorresponds to equation (2.6), oan be represented as

(o)
HE) = H 0+ m‘rl YA (aa+—+ _za;l (2.18)

+
Using the commutation relation [O,C( ]=1 , 1t 18 easy to
show that

[Ct n (‘T)] LnOt [(cf)n Hm@)]p“—z‘:’n(d)’ (2.19)

i,e.,the operators Cl  and Ol+ are formally the integrals of
motion of the system, which 1s described by the "Hamiltonian®
H(O)('T) However, in this case the operatora (2.17) ha.ve no direct
physical meaning since the parameter J= (2"‘( ,which
characterizes the contribution of the singular term to (2.16),
never vanishes for any real 00 . Therefore, the representation
of the Hamiltonian H®) in the form (2.18) and the subsequent

use of the operators (2,17) 1is only a mathematical method, which



allows us to construct the integrals
vistic oscillator (2.2),
As 18 known /16/, for the total

such irvariants are quadratic in the

of motion for the relati-

"Hamiltonian® H(T)

operators (2.17) expreq%ions

_ L 2 + ; s
A =gfa-Fa} | Al =-F{@)i- & e 20
satisfying the followling commutation relations:
[Ar]=heA, [a u]=-bun’ [AA |0 @2

The formulae (2.17) and (2.20) deflne the action ol the

+
operators A(Y) anda A(%) on the function ui(ﬂ « Having
derived the explicit form of these integrals of motlon, we can

return to the initial function LIJ%(S)=J?UQ(T) . Since

d 9o _ d 1
dv I \F{dr Qf}l?m,
+
the explicit form of the operators A A and H in the

lP\S)-functions space 1s obtalned from formulae (2,18) and (2.20)
+ {

by replacing O by Q- Q{_‘Jq: and (1 by Q+—ﬁ-;—,

i.c.,

A+(S)LP(S) =}\{S Fra j§5+-éTGH(S)}q/‘1(3), (222 )

the same commutation relations (2.21) being satisfied.

It is evident that the solution (2,11) of equation (2,6),
which will be denoted by the symbol |N D, are the eigenfunotions
of the Hamiltonian H .

Hind>=E.In> . E,,=’ﬁco(n+p+'5). (2.23)

Using the representation (2,12) and the recurrence relations for

the generalized Laguerre polynomials, one can show that
Aln)z%,‘\n%), A+In>=fon,,|n+1>’ (2.24)
In> = (A Y 0> ,/
Here we have used the notation %"=W’F,‘={&.a{an§;/\"{%f

Sinoce g),;PﬁPn_‘ , one can easily check that the functions
oo n (
= 2.25)
|5 CKAZ;FMS In>,
where Cx is an arbitrary constant, are the eigenfunctions of

the operator A » In fact
oo n oo h
A‘ U> =ngjz"n6 bn‘n'1>=chP"_|U In-1>=5|b’> . (2.26)

Substituting into (2.25) the expression for the states ll’l>
through the generalized Laguerre polynomials, with the help
of the generating function of these polynomia.ls

oo

1°G) _
_'?%;:a:{%— (X S E? Jd(QJQTE)

we obtain the explicit form of the eigenfunctions of the opera-

tor A in the p-representation:



1 {/\x--

|5 > = C{ r’(zrm)S} Ta; Jey (VA3 (2.27)

: -1
The constant C5=</\IK!)H[|‘(2F41) I,(2nle))] *  is aefined from

the normalization condtion

Aﬁ%mmx=mwdﬂ¢@n

and is calculated by the formula -t/\(ﬁ—zg)

(Qe R, (eé*m re - fe LR All).

Thus, the normalized eigenfunctions ol the operator A

have in p-representation the form

- £ a3
|6>=CJT?QN6(\_%>.&@AK Q,J-—S—‘J'lr(z U\GS), (2.28)

—

7

wher e NZ;:{IQP@/\'“)} . Insofar as the states fn>
coincide when C—>o< with the states of the nonrelativistic
linear oscillator in the p-representation and the quantities
6 “"F P /F , it follows from the relations (2.4) that
the operators A and A g0 over 1in this limit to the anni-
hilation and creation operators of the non-rel%tivistic oscillator.
Since the normalization constant CK'_'ez when C —00
( see Appendix II, formula (A.8) ), it also follows from the
representation (2.25) that the states [§» coincide in this 1i-
Init with the nonrelativistic linear oscillator c.s.

The explicit form of the operators A and A+ in the
x—-representation can be obtained from (2,22) by means of the

transformation (1.2):

Having used (2.28) and the transformation formula (1.2), in
which the substitution of the variable fp by =43 =j\e:£f
is made, we get the explicit form of the eigenfunctions 15>

of the operator A in the x~representation:

-RiX%° -t
¥, = \| fa |6> dv = (2.30)

C

(VP! o
—WNr&(rz(/z\r(if:)) e r(t“i\»\x)q)(}H ‘LX 2#11 21f\6>

The integration in (2.30) over the variable ?  has been perfor—

med with the aid of the following formula for the Bessel function:

- T
O I R e g 55), o)
Re 251>O , Re(ueg)>0-

Dynamical symmetry group, The utilization of the operators

A ana A+ , with the help of which we have constructed c.s.
(2.28) and (2.30), makes also easier the problem of searching
a dynamical symmetry group of the relativistic oscillator
(2.2) 726517/ | 1 ract, if one introduces

432)
M+:/\A+, M.=-AA, sz_ﬁLwH ¢

and makes use the commutatlon relations (2.21), then it can be

verified that the operators MMM_ and M5 define the Lie

algebra

[MeMo]=2Ms My ML ]=5M, (2.5



l.e., they are the generators of the group SU (1,1). The

dlrect calwulation of the Casimir operator

2 2
M™ =M + L (M.Mo+ MM (2.34)

both in the x— and in the p-revresentation shows that it is

equal to

UNCHINGOIE -

2

For the elgenvalues of the lnvarlant operator M the notation
S(S+1) 1is usually employed and a representation of the group
5U(1,1) 1s characterized by a number S . From (2.35) it

follows that in this case S can take two values: S ==(p 5

o 1 Tz
and 5, M- ¢ ¢ Since H‘—'ﬁ‘("ﬁt‘) =y y then 5,2C

and has to be dlscarded as the corresponding representation is

nonunitary. The first value S\ =~ (H* Jp?) datermlnes the
representation D+<'N_Jp:) y which 1s characterized by the fact,
that the elgenvalues of the operator MS:‘H\LH arc bounded
below and equal to ‘S1+n=}“‘i*“, n=0,12,.

Thus, we obtaln correct spectrum of the operator H‘ﬁwM;,
and as Lln the nonrelativistic case the dynamical symmetry group
of the relatlvistic linear oscillator (2.2) ls the group SU(1,1).
Phe functions | M) , belng defined by (2.11) and (2,15), are the
basls functions of the infinite—dimensional irreducible unitary
representation D+('H‘_15_) of the group SU(l,1) In p- and x-spaces
respectively,

II. In constructing the second model the key role is

vlayed by the variable KP:Q”‘CSH& » whicn has the clear

geometrical meaning ) and coincldes with nonrelativistic

— 2

momentum when C¢—>=o , The energy of motion e'ﬁtf'mc
2

K

in terms of KP has the nonrelativistic form @P= z‘nﬁ .

Therefore, it 1s natural to postulate the followling equation

for the linear oscillator in the momentum representation:

3 2. 2 t
K mwh d _ K - 0. (3.1)
Koo meb 4o - 50) 0= 0

Thus, in the second model the quasipotential is the diffe-

rentlal operator 5 4
g2 b Tt
hd - fw J__(i——‘—{h ——\) (3.2)
V()= ma e - B (i ).

In this case we can use the fact, that the solutlonsof (3.1)
are well known and expressed through theHermite polynomials

KZ
. =
Yxp=g=e ™ Hd(E) -

R
enztw(h*ji): n=0142,., G = m)?

while the funotions l}/n (k) satisfy the following
orthogonality and completéness conditions:

_Zd"rq'l:(Kf)LH(Kf)zgmn (3.4)

i \P:(KP)LP,,(KQ =B(k;mKy) . ( 3.5)

h=D

x) For the detalls see, for instanoe, /18/ R



In the nonrelativistic limit the quasipotential (3.2), equation
(3.1) and its solutions (3.3) go into the quasipotential,
Schrodinger equation and its solutions for the nonrelativistic
linear oscillator, respectively.

The quasipotential (3.2) in the x-representation is written

as

V(x, & J\%J—) <x+ FhEH)X, (3.6)

- QM(

where, by definition,
-K oo —"ruvr(clmx )
4 A A 3.
(chiad) =-ilim (dre Cok=t2,. D
X

d g0
0

For instance, the action of the operator (3.7) on an exponent
is given by -K i({} CA -K tix}

((')\m(d) ( je

The finite difference analogue of equation (3.1) has in

X=representation the fomm

[H E +§:l de) ("*l' 'lid‘>; %(")zO, (3.8)

NN
cry, after multiplying from the left by (OL%'H’)»

[(oh ) () B ek 2 Y@ -0 2

Equatlion (3.1) in the x-representation can also be written in the

integral fom

T (HoE +°&°w D=0 (3.10)

According to (1.5) and (3.2), the fcllewing integral representa-

- 3 o
tion for the quasipotential \/\X,X J is valid:

~

, .i:»°° {xy 2 | _ka
\/(x,x)=“—n—c_§°e cé%(%fi:h}dﬁe dy . G

Hence we obtain, after performing the integration, that the

function \JQX,X')is nonlocal and is equal to
)=t 25650 G2
¢ shX(X-X)
In the Appendix III it is shown that in tﬁe nonrelativistic region
the function (3.,12) takes the local form:

N Gox) e B 28w ©e22)

The comparison of two different forms (3.9) and (3.10) of

equation (3.1) in the x—representation leads to
+3; id M (3.14
(C/k m) V(x,x')= Q,,,(L[(x 2) 2d‘ 3ixshy g ]S(X ) )

i.esythe quasipotential (3.,12) satisfies the inhomogeneous
difference equation.

It 18 necessary to note, that slnce the formal action of the
difference differentiation operators entering (3,14) is accompa-—
nied Y4 the extension to the complex X~ plane, the action of
these cperaters on Sw—function of the real argument is &fined,
as usually, by the corresponding representaticn in the form
of infinite serie¢s, For ;nstance, R

- ~
™ s O N (3.15)
5<x—x’>-=~2— (= x)

Rz

,4

o

\4-

tens {3.2) in the cerfiguzatic.a?

Now we fir? the wave furg
representation, itcording to (1.2} for the grouud ctate viave

functicn



LP(X 32'_;% djex‘)\txj th“) CmcS JWXPMJ /\Sn }—) (3.16)

with the help of the integral representation for the Macdonald

function ht "
oo - 2ZC + 9
Ko(z) - 1E Be dt (3.1
we get

Iy :
2 2 )
l‘P(X)z J%ECche K{;(%— ) . (3'18)
[+]
The exclted state wave functions (N= 1,2,3y.4.)

LP ( cme °S° ’ ei?j«/\sh‘}i Hn(ﬁ/\s}‘}i) (3.19)

2""11&

oan be written in the form
LP <X "-n', h(‘r‘/\. Shl— —)&I/ ( ) (3.20)

if one takes into account the fomula
noUx n R i?{}
(Shiu i‘ﬁ)e I (”1)<5h°(])e ' (3.21)

Then using the explicit form of the Hermite polynomials

(%] r-am {or even n

n
(1)(2X) A1) ? .
Hn(x) Z mt(n-2m)l [2] 1 dor odd n (3.22)

and the integral representation (3.16) for the ground state wave
function ‘{J(x) , Wwe obtain that
']

2
LP( "T c,me (,(1.)\&221\), Z(1 Wm n(’\)‘(a.?_s)

a

From the orthogonality condition (3.4) for the wave funct=—
lons in the p-representation it follows, that in the x~recpresenta—

tion they satisfy the following ™nonlocal® orthogonality conditlon
T € Uk d
i ~
gcle[J (x)chz—mca—xqf(ﬁronm (3.24)
oo n m .

or

%}lxk}/:@)[%’x-— +1P(x+“h ]:Shm. (3.25)

The nonunitarlty of the orthogonallty condition for the functians
lyﬂ(x) s bound up with the fact that the quasipotential (3.2)
is nonhermitlan with respect to the scalar product, defined by
the volume element dQP=anle

Let us also write the completeness condition (3.%) in

the x—representation, which has the form

2‘{/ () eh(s 2mcd )P(x) o(x-x"), (3.26)

) ZLP Yy (s ik +L+/n<xl_2mt)1=6(x'x/) (3.27)

It is easy to verify, that \{/(X) have the correct non-—
n

relativistic limit:

7 -

P—et e " H B =) s
in < N




Indeed, the nonrelativistic limit of the ground state wave
function (3.18) is obtalned with the aid of the asymptotic

representation for the function
(3.29)
KH,(X) V———QXF(JX Ffosaresans )

which is valid in the case X>F > O and v—©< | To find the
nonrelativistic 1imit of the excited state wave functions, it

is more suitable to start from the representation (3.21). Teking
into account that when C—>©© the relation J—'/\Shg d~—"~r

does hold, we get

2
mw
~ 5% X (3.30)
(“)C i d
W () —= s H, (58
Now using (3.22) and the formula ,
ld” -x (3.31)

F{ (X = ) < Ax" e

for the Hermite polynomials, we obtain

_ hhw 2-[2. i nw
5 M2 0 5) 3.32)
q/n(x)—“’co‘ e ® Z ARECES I (

Since for the Hermite polynomials the following relation is

valid ( for a proof see Appendix IV )

5 ] Hn- 2K(XJ 2k) ma (3.33)
R0 2 gy = )

from (3.32) it follows (3.28),

Coherent states. For constructing the c.s. of the model

under consideration (3.2), we introduce the annihilation and

creation operators

20

o= (A gy ol - i), 00w

B +
satisfying the commutation relation LCX,C{ 1= ! « Let us express
them through the varilable } :

, d_ .

It is evident that when C—>o0c they go into the annihilation
and creation operators of the nonrelativistic linear oscillator,
respectively,

We find the explicit form of the operators (3.35) in
the x-representation. Here, as in the case of the quasipotential

(3.2), 1t 1is possible to write two forms: The first

1
Q= [Ashb e S(chgh)x] | Q= [Ashs s - whih jx] G0
and the second

TR F)
QL FO) =-Ashz 5z FeI -7 § *M(

(3.37)

= ,\skgd‘r()

The annihilation and creation operators (3.36) and (3.27) in the
x-representation satisfy the commutation relation

=

iQX,Q,J

For the first form (2.36) thils is easily verified and Tor
the second one is preven in the Anpendix V.

The transition from one form {3.36) to another (3.27) is

accomplished with the aid of ‘he relation )

X3
x"I‘he action of the orerator on the function /Qhﬂx

" i £ -
is defined as a limit of < S when & —>~0

21



oo ;(l-ll)j
l { 1 0‘ e d / .
chs & mmrcn = M ) S =50 2:39)

We note that in the nonrelativistic limit
: d . mw + J? ol__m_w> (3.39)
a *—’"J:%(UTI* Tx), A —=-yma\a ™ Y
X

For the representation (3.38) it is also evident and for the
representation (3.39) it is shown in-the Appendix III.

Having defined the operators (1 and Ol+, the o.s.
are construoted in the standard way - as the eigenvalues of the

operator a .

Aoy = ooy, 40

where ™\ 1s an arbitrary complex number. The state |°‘> is
connected with the ground state l{J |O> of the considered rela-
tivistic oscillator by the Weyl unitary opecrator (0() =

6/
=X P(u(f— o(*CLf ,ilee0y

Jod> =DE)|0) - 42

From here the representation also follows, which aotually is
the expansion of \0(> 1n terms of the oscillator states,
lo(l (3.42)
ja> = Z
where the Dirac notation l{) El") for the state vector is
n
used.,
The explicit form of the c¢.s. in the p~ and x-representa-
tions can be obtalned with the help of the generating function

of the Hermite polynomials
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a|m
=
W
D

(3.43)
h=C
In the p-~representation they have the form
. ( \
R | P . \3.4—4/
<»\r1o<>;LP(j,u)-—-C'ot—xP{—§(\ dl) —"—*W\fmm Ki" )
while In the x-rcpresentatlion they are given by
(3.49)

IR L}/(x,uk e,xP{-ﬁ(o(z» I'xll)—Qq/\3|1§§(§}LP:(*)

Calculating in the la:st formula the action of the flnite~diffe—
rence opcrator Sh :l‘ on LP(“) » We pet
t

L[JO(,O()':J?CQNCQ L(R-u- )& _%L'\)Z(_l;c:}( - i\_.) (3.46 )

' LXEK -

It i1s easy to verify that the c.s. in the x—-reprcsentation
are the eigenstates of the annihilation operator Clx both in
the form (3.36) and in the form (3.37), i.c.,

QXLP(X;D()=0(L}/(X,O<) ) (3.47)

On the other hand, if we make use of formula (3.37), we obtain
the following integral relation for the c.S. in the x-represen-—
tation:
o d ¢ N
('(x «d X 3.48)
= [0

& R (x-%) LA(ASHRTXMM(X‘ )

- OO0
In the particular case when A=Q  from (3.48) we get for the
ground state LP(Y)
[
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[ o] ; ‘
XYoDdx R id _ 3.4
_Lcki(;-i') - (I\SM“LK(X) 242

With the aid of (3.20) this relatlon can be rewritten in the

form

TRl il (8- B (3)- Ko 00

"_'\’/
A ch - %)
Formula (3.50) is easily reduced to the Kontorowich-Lebedev

transformation, which is often used in solving the boundary value

problems:

900 = S K, (D4, o
() =%°\’ shnq-osog(*) Kiz (1) d’ci

As 1t follows from (3.50) and (3 51) in our case

iy ~/

j(i’)=72—;%° %( ) usmu 2dx Ku( ) (3.52)
The ces. (3.44) and (3.45) form an overcomplete system

of functions, but they are nonorthogonal, The scalar product

and the completeness condition for the c.s. in the p-represen—

tation are written in the following form:

_Iw‘q.-.wq.;mkf IRISICULD

?

(3.53)

%dek}/(},,d)q/()r,o() 7 "‘33 = (k- K) do=cloda,

-0

In the x-representation the scalar produot and the completeness
condition for the o0.8., as well as the orthogonality (3.24) and
completeness (3.26) conditions for the wave functions (3.21), have

the nonlocal fomm:
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o % * z
. y ik d N SO
A Ploe)eh i mYoop=e™! R

5 Pl eh G =B 0.

It 1s clear that the functions (3.44) anmd (3.45) in the p=
and x-representations respectively, when C-—>oo go into the

c«8s of the nonrelativistic linear oscillator

LP(] d)c:q/(P;&F(n’TMS‘hexPt"%(g‘i’g”t)—%ﬁ W2 pj G

W(X)“)-*@(X;&) )exP{ (0( |d|)_m_wx+1 2'"“’0()(}, (3.56)

where & is given by

~ _p _ P i [aw= (3.57)
o = Et:“ X Tk W X .

The dynamical symmetry group for the second model (3.2)

of relativistic oscillator, generating its energy spectrun,
is also the group SU(1,1). This follows from the fact that the
total Hamiltonian for this model is represented in the form

H=fw(aos£+28)

(3.958)

both in the p- and x-representations, the corresponding exXpres—
sions for the annihilation Cl and creaction C1+ operators
being defined by formulae (3.34) amd (3,36). The generators of

the group SU(1,1), satisfying the commutation relations (2.29),
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+
arc expressed through the, operators A ana Cl. in the

standard way 716,17/ :

2 L e
(@, Me-gat Moplachy)-tiE 0

Calculating by formula (2,30) the invariant Casimir opera-
2 3
tor, we obtain that M = s(st1)=- 75 . Consequently, the repre—
sentations of the group SU(1,1l) are characterized by two negati-
i
ve numbers S,=‘T.( and S,=- % y to which there correspond
N ) o4 D-2)
the irreducible unitary representations D (‘ ‘1) and ( q ).
The eigenvalues of the operator Ms are bounded below and equal
to + | ) . . L % 0
1) in the case of D(‘W) representation:—5,+n=q+n‘1»e~H="‘°+ w(ﬁn*g),

+ . 3
2) in the case of D(‘%) representation :-52*n=i-+h,4e H’"‘“K‘”(Q"‘“%)-

The functions |h> s which are defined by formulae (3.3)
and (3.23), for MN=2Kk (K=O,1,2,..) form the basis of the irre-
ducible unitary representation D+(‘(E) whereas for TN =2k+ 1
(K=O.1.?~|--.) of the irreducible unitary representation D+(‘ %)
of the group SU(1,1) in p~- and x-3spaces, respectively.

We express our gratitude to V,G.Kadyshevsky, A.N.Lleznov,
V.I.Marzko, Vi.AJHMatveev and A,N.Sissakian for valuable

discussions.
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APPRNDIX

I. The direct calculation of the nonrelativistic limit
o the wave functions, defined by relations (2.10) and (2.11), is
a rather complicated problem, Therefore, we will proceed as
follows. Making use of the representation (2.20) and the recurren—

ce formula for the generallzed La.guerre polynoml:xls
(2n+ 1400~ x)l_ (x) (h+1)L,.,.(X)+ (Md)L....(")
it is easy to show that

\Jﬁhu)(miﬂ’ly k}/(s Nt '1(2m1+2r4 S)LP(S n)t \}n(n+2r4 \F(S n- 1) (A1)

From (1.3) 1t follows that Y, =3t as ¢ —>o0  , i,e..the
-2 Ip
variable mc Frd Sl 2"“{1‘*;& } « Since the parameter
T
H *(':(w );(w y the recurrence relation (4.1) when ¢— oo

takes the fomm
) (o) (o=}
IRV AGTTDER TN I ERVFS (3:n) (1.2)
v ¥ Y,

where the dimensionless quantity Q_ is equal to ﬁ%‘
The solution of (A.2) is defined up to an arbitrary function of

IZ and 13 expressed through the Hermite polynomial
(o)

LP (5,n)= ae(z)H Q) (4.3)
"t

since Ho(Q)=1 , from (4.3) 1t follows that the function %(})
describes the asymptotic behaviour of the ground state q/q(S',O)

when C—> 0o | Therefore, with the help of the representation
z
(=) =J?(€> {te s}

for the gamma function at large values of | 2| , from (2.10)
we obtain
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e
®()= q/ (3 0)= F I L

Thus, when C—> ©° the functions LPQ'(S;TO really go into

Nl”~

2

the wave functions OH(P) of the nonrelativistic linear oscillator

in the p—representation: ll—l

- f
(°°) e 2 (‘l) Hn('{) ( .
qjﬂ () =3 i Q)= 5 G e P

In the same way the nonrelativistic limit is obtained in the

x—representaion: i
wyt Hi(B)e ®
‘%n po=(m REE S .

II. To find the nonrelativistic limit of the normalization
) =1f2
cons tant C5=(/\\6|) {r@ﬂ”)IzﬂQ/\lN)} y 1t is necessary to
know the asymptotic behaviour of the modified Bessel function

of the first kind 2med om

(% s (%) . 6
I (Z) Z m'r()mwu) = 2"Zr(o) ZAO m'.v(\)ei;)--‘ (®+m) (A )

L [ 2m

in the case when both the argument Z =anixl "'QQJ SRy

and the order V=2 = 2'“‘, = A" tend to infinity. Since the ratio
of the argument squared to the order remains fixed, from (A.6)

it follows that .

I(Q/\x)=(’\")A§ (A" _(/\X)Aloo X
,\Z

C(A) oo mNCAY ) (Nom) — TCAY) &0 miN (e ) (e

2m

2

A oo m A )
:M X (/\X X
WG T e € am)

28

Therefore, when (—> 00  the normalization consta,nt tends to
m

¢, =(A|Jl)%{P(A+1)I (zAm)} C e

III. Now we will show that the nonlocal quasipotential
V(x,x') (3.12), as well as the annihilation and creation operators
(3.37),have the correct nonrelativistic limit. For that it is
sufficient to verify that the following formulae are wvalid:

{im Boix_ =d(x) ,

dew oo ShIOIX (A9
R S TV (A.10)
g"m chatax 0
o~ o
In fact, firstly
DD
T_Q“zx.p{x o (xdx {. (A.11)
_ sh Jtolx _ooCkJ(o(x

Besides, for an arbitrary infinitely-differentiable function
(=)
(r) n
— X
FOJ =2IF (935 (4.12)
n=0 ’

the relations do hold
Lim TF(X) 2%y S————O( PO Jfx = F(0) (4.13)
d>oo -

Sh Jtol X ch

Aroo - o

since for any n21

) co 2n
G nggxzmlo‘x b S X dx -0 . ( A.14)
Yoo - Sh T X d—"%-oo Ch TN x
2 o

Thus, when {—> ©© the functions ST and  Chnax

really coincide with the function E(X) »



1V. Here we willl Justify the summation formula for the

Hermite polynomials, which has been used in the text

25( RolX
nl Z e Hn2K<xJo() (Hou H (m L a1

To this end let us consider the expression
J - x
Zh(x) = Hh(‘oﬁ)e -

and construct the generating function for Zn with the help

{A.16)

of formula (3. 43) N

-++21{0( - &x

1(+)—2n.Z(x) e Le

Then, after some transformation

I({) GXP{ clx - = (ot~ 1)( LX +i‘c>a}.

Consequently 0“ z
~| A
Z.(x)=< =1 (te- 1) e’ “e 2o
l US

and taking now into account (3.31), from (A.17) we obtain
2

Z (X) =(t (ud 1) H (42“ ) - ‘ (A.18)

On the other hand, with the aid of formula (3.22) and the

(A.17)

definition (A.16) of Eﬁ( ), we have also

_dxl
Z (X) ( h‘ Z E?é(:)gk)l h—2n(xm)e . (A.19)

The comparison of (A.18) and (4.19) gives us the sought formula

. 1
(A.19). e note that when O —> T formula (4.1%) goesinto

(2] )

| Hn~ K(E_) n
n Hnael 3/ _

' Z Ki(n2ep %

+.
Ve In this paragraph we show that the operators Qx and QX

in the form® (3,37) satisfy the standard commutation relation
: +
[cl,al]=t. , (4. 20)

The direct use of formulae (3.37) leads to

[ 0L JFe-2 R shs ) sy & LT ca

—_——
Let uS Prove that the right-hand side of (A.21) is equal to F(x),
To this end we substitute P(X') in (A.21) by its Fourler-trans—

form . T
— m¢ T 1xj d ( )
(%) = 2~ N (e 22
Feo =518 TRGHy
. — 0o : '

Then the integration over 'SZ/ gives for the commutator of the -

operators Qx and Qt the following expression:
© % 4Kp ee I ,
[a..a [Fe)=(Z "ﬂ%g Iy i F -shgg)’;?%g-f)dj’ - (23)

/
Performing now the integration in (A.23) over j with the help

of formula

I A Fix (A.24)
PO RS0 xeln” = - 230

and taking again into account (A.22), we come to the conclusion

that the right-hand side of (A.23) is really equal to E(X)
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