ОбъедИненный институт ЯдерНых исследований

дубна

A-90
E2-12367
N.M.Atakishiyev, R.M.Mir-Kasimov, Sh.M.Nagiyev

QUASIPOTENTIAL MODELS
OF THE RELATIVISTIC OSCILLATOR

E2 - 12367

N.M.Atakishiyev, R.M.Mir-Kasimov, Sh.M.Nagiyev

QUASIPOTENTIAL MODELS OF THE RELATIVISTIC OSCILLATOR

Submitted to TM历
Атакишиєв Н.м., Мир-Касимов Р.М., Нагиев Ш.М.

Квазипотенциальные модели релятивистского осциллятора
В рамках квазипотенциального подхода в квантовой теории пол исследованы две точно решаемые одномерные модели релятивистского осциллятора, для которых построены когерентные состояния и найдены дичамические группы симметрии.

Работа выполнена в Лаборатории теоретической физики оияи.

Препринт Объединенного институга ядерных исследований, Дубна 1979
Atakishiyev N.M., Mir-Kasimov R.M., Nagiyev Sh.M. E2"- 12367
Quasipotential Models of the Relativistic Oscillator

Two exactly solvable one-dimensional models of the relati vistic harmonic oscillator are investigated in the framework of the quasipotential approach in quantum field theory. The coherent states are constructed and the dynamical symmetry groups are found for both the models.

The investigation has been performed at the Laboratory of Theoretical Physics, JINR.

The harmonic oscillator, being one of a few exactly solvable problems in the nonrelativistic quantum mechanics, has been extensively used in the various fields of the theoretical physics statistical mechanics, theory of superconductivity, nuclear physics, and so on. The interest to the harmonic oscillator was revived after the appearance of the quark models, which has made It possible to describe the basic features of hadronic structures. The further development of the quark models has led to the necessity of constructing the relativistic wave functions of compound particles and, in particular, the relativistic harmonic--oscillator models/1-5/.

The characteristic feature of the harmonio oscillator is the existenoe of a class of solutions in the form of coherent states (o.s.). The utilization of the c.s. allows one to use the more simple classical language for the description of quantum phenomena. Originally the c.s. have been Introduced for the quantum states with quadratic Hamiltonians, 1.e., for the systems, which can be represented in the form of finite or infinite set of harmonio oscillators. The c.s. of quadratic systems are defined as the eigenstates of nonhermitean boson annihilation operators $/ 6 /$ and are the Gaussian wave packets minimizing the coordinate and momentum uncertainty produot, the form of which is unchanged in time. The definition of the c.s. for arbitrary quantum systems as the eigenfunctions of the integrals of motion has been suggested in $/ 7 /$. The c.s. representation turned out to be fruitful also for the investigation of the hadronic interaction at high energies. For instance, in /8/ there has been considered the high-energy model, in which the excited states of colliding hadrons have the
coherent character, while in $/ 9 /$ on the basis of the c.s. method the factorization of dual amplitude of semimultiperipheral-type is obtained. The problems arising in the consistent formulation of quantum field theory in the c.s. representation are studied in /10/.

We investigate two exactly solvable one-dimensional models of the relativistic harmonic oscillator in the framework of the quasipotential approach in quantum field theory /ll,12/. The coherent states are constructed and the dynamical symmetry groups are found for both the models.

The one-dimensional quasipotential cquation for the wave function in the p-representation in the case of equal masses is written in the form

$$
\begin{equation*}
\left(E_{p}-E_{q}\right) \Psi_{q}(p)=\frac{1}{2 \pi} \int \tilde{V}\left(p, k ; E_{q}\right) \Psi_{q}(k) d \Omega_{k} \tag{1.1}
\end{equation*}
$$

where $d \Omega_{k}=\frac{d k}{\sqrt{1+k^{2} / m^{2} c^{2}}} \quad$ is the invariant volume element in the p-representation, $\quad E_{q}=c \sqrt{m^{2} c^{2}+q^{2}}$ and $\widetilde{V}\left(p, K ; E_{q}\right)$ is the quasipotential $/ 12 /$. The transition to t he relativistic configurational x-representation /13/

$$
\begin{equation*}
\Psi_{q}(x)=\frac{1}{\sqrt{2 \pi}} \int d \Omega_{p} \xi(p, x) \Psi_{q}(p) \tag{1.2}
\end{equation*}
$$

13 performed by the expansion in terms of the matrix elements of representations of the Lobachevsky space motion group

$$
\begin{equation*}
\xi(p, x)=\left(\frac{E_{p}-c p}{m c^{2}}\right)^{-i \frac{m c}{\hbar x}} \equiv e^{i \frac{m c}{\hbar} x y_{p}}, \tag{1.3}
\end{equation*}
$$

where $E_{p}=m c^{2} c h x_{p}, \quad p=m c \operatorname{ch} x_{p}$ and $x_{p}=\ln \frac{E_{p}+c p}{m c^{2}}$ is the rapidity.

Equation (1.1) in the x-representation has the finite difference form:

$$
\begin{gather*}
\left(H_{0}-E_{q}\right) \psi_{q}(x)=\int_{-\infty}^{\infty} V\left(x, x^{\prime} ; E_{q}\right) \Psi_{q}\left(x^{\prime}\right) d x^{\prime} \tag{1.4}\\
V\left(x, x^{\prime} ; E_{q}\right)=\int \xi(p, x) \widetilde{V}\left(p, k ; E_{q}\right) \xi^{*}\left(k, x^{\prime}\right) d \Omega_{p} d \Omega_{k} \tag{1.5}
\end{gather*}
$$

Here $\quad H_{0}(x)=m c^{2} c h\left(\frac{i \hbar}{m c} \frac{d}{d x}\right)$ is the free Hamiltonian, the function (1.3) being the eigenfunction of $H_{0}(x)$:

$$
\begin{equation*}
H_{0}(x) \xi(p, x)=E_{p} \xi(p, x) \tag{1.6}
\end{equation*}
$$

The free particle momentum operator $\hat{\Phi}_{x}=-m c \operatorname{sh}\left(\frac{i \hbar}{m c} \frac{d}{d x}\right)$ and Homiltonian $H_{0}(x)$ satisfy the following commutation relations with the relativistic coordinate x :

$$
\begin{equation*}
\left[x, \hat{\mathscr{P}}_{x}\right]=\frac{i \hbar}{m c^{2}} H_{c}(x), \quad\left[x, H_{c}(x)\right]=\frac{i \hbar}{m} \hat{\mathscr{P}}_{x} \tag{1.7}
\end{equation*}
$$

In the nonrelativistic limit, i.e., when $c \longrightarrow \infty, H_{c}(x) \longrightarrow$ $\rightarrow m c^{2}+\frac{\hat{P}_{x}^{2}}{2 m}, \quad \hat{\rho}_{x} \rightarrow \hat{P}_{x}=-i \hbar \frac{d}{d x}$ and the funotion $\xi(p, x)$ goes over to the one-dimensional plane wave $e^{i \frac{x}{\hbar} f_{x}}$.
1.In the case of the local quasipotential $\widetilde{V}\left(p, K ; E_{q}\right)=$ $=\tilde{V}\left[(p(-) k)^{2} ; E_{q}\right] \quad / 13,14 /$, equation (1.4) takes the form

$$
\begin{equation*}
\left[H_{0}(x)+V(x)-E_{q}\right] \Psi_{q}(x)=0 \tag{2.1}
\end{equation*}
$$

We consider the model of the relativistic harmonic oscillator, which corresponds to the interaction potential /15/

$$
\begin{equation*}
V(x)=\frac{m \omega^{2}}{2} x^{(2)} \exp \left(\frac{i \hbar}{m c} \frac{d}{d x}\right), \quad x^{(2)}=x\left(x+\frac{i \hbar}{m c}\right) \tag{2.2}
\end{equation*}
$$

With such a choice of the potential $V(x)$ the following commutation relations for the relativistic coordinate X hold:

$$
\begin{gather*}
{[x, H(x)]=\frac{i \hbar}{m}\left[\hat{\varphi}_{x}-\frac{1}{c} V(x)\right],\left[x, \hat{\mathcal{P}}_{x}-\frac{i}{c} V(x)\right]=\frac{i \hbar}{m c^{2}} H(x)} \\
{[[x, H(x)], H(x)]=(\hbar \omega)^{2} x} \tag{2.3}
\end{gather*}
$$

1.e. in accordance with (1.7) $\hat{\Gamma}(x)=\hat{P}_{x}-\frac{1}{c} V(x) \quad$ can be called the generalized momentum operator, and the double commutator in (2.3) coincides with the equation of motion of the nonrelativistic oscillator in the Schrodinger representation. In the nonrelativistic limit the potential $V(x) \longrightarrow \frac{m \omega^{2}}{2} x^{2}$.

The quasipotential equation (2.1) for this model with the aid of the dimensionless quantity $\quad \tilde{x}=\frac{m c}{\hbar} x$ is written in the form

$$
\begin{equation*}
\left[\operatorname{ch}\left(i \frac{d}{d \tilde{x}}\right)+\frac{1}{2}\left(\frac{\hbar \omega}{m c^{2}}\right)^{2} \check{x}(\tilde{x}+i) \exp \left(i \frac{d}{d \tilde{x}}\right)\right] \Psi_{q}(\tilde{x})=\operatorname{ch} x_{q} \psi_{q}(\tilde{x}) \tag{2.4}
\end{equation*}
$$

The corresponding to (2.4) equation in the p-representation

$$
\begin{equation*}
\left[c h y_{p}-\frac{1}{2}\left(\frac{\hbar \omega}{m c^{2}}\right)^{2} e^{-x_{p}}\left(\frac{d^{2}}{d y_{p}^{2}}-\frac{d}{d y_{p}}\right)-c h y_{q}\right] \Psi_{q}\left(y_{p}\right)=0 \tag{2.5}
\end{equation*}
$$

by changing of the varlable $\zeta=\frac{2 m c^{2}}{\hbar \omega} e^{x_{p}}(0 \leqslant \zeta<\infty)$ is reduced to the Whittaker equation

$$
\begin{equation*}
\left[\frac{d^{2}}{d 5^{c}}-\frac{1}{4}+\frac{\lambda}{5}+\frac{1 / v-\mu^{2}}{s^{2}}\right] \Psi_{q}(5)=0 \tag{2.6}
\end{equation*}
$$

with the parameters $\quad \lambda=\frac{m c^{2}}{\hbar \omega}$ ch $\gamma_{q}, \mu=\sqrt{\frac{1}{4}+\left(\frac{m c^{2}}{\hbar \omega}\right)^{2}}$
The general solution of equation (2.6) can be represented as

$$
\begin{equation*}
\Psi_{q}(5)=c_{1} M_{\lambda, \mu}(5)+c_{2} M_{\lambda,-\mu}(5) \tag{2.7}
\end{equation*}
$$

where $M_{\lambda, \mu}(5)$ is the Whittaker function, which is expressed through the confluent hypergeometric function as follows:

$$
\begin{equation*}
M_{\lambda, \mu}(\zeta)=\zeta^{\mu+\frac{1}{2}} e^{-\frac{5}{2}} \Phi\left(\mu+\frac{1}{2}-\lambda, 2 \mu+1 ; \zeta\right) \tag{2.8}
\end{equation*}
$$

Since the function $\Phi(a, b ; 5)$ behaves at the origin like a constant and $\frac{1}{2}-\mu=\frac{1}{2}-\sqrt{\frac{1}{4}+\left(\frac{m c^{2}}{\hbar \omega}\right)^{2}}<0$, from (2.8) it follows that the solution (2.7) is regular at the origin only if $C_{2}=O$. The asymptotic behaviour of the confluent hypergeometric function when ζ becomes large is given by

$$
\Phi\left(\frac{1}{2}+\mu-\lambda, 2 \mu+1 ; 5\right)=\frac{\Gamma(2 \mu+1)}{\Gamma\left(\mu+\frac{1}{2}-\lambda\right)} \zeta^{-\left(\lambda+\mu+\frac{1}{2}\right)} e^{5}
$$

Ther efore the requirement of regularity of the solution of equation (2.6) when $3 \longrightarrow \infty$ leads to the condition

$$
\begin{equation*}
\frac{1}{\Gamma\left(\mu+\frac{1}{2}-\lambda\right)}=0, \quad \text { ie. } \quad \mu+\frac{1}{2}-\lambda=-r, \quad n=0,1,2, \ldots, \tag{2.9}
\end{equation*}
$$

which gives the energy quantization rule for the relativistic oscillator under consideration:

$$
\begin{equation*}
E_{q}=m c^{2} c h y_{q}=\hbar \omega \lambda=\hbar \omega\left(n+\mu+\frac{1}{2}\right) \tag{2.10}
\end{equation*}
$$

Thus, the wave functions, corresponding to the energy levels (2.10), have in p-representation the form:

$$
\begin{equation*}
\Psi_{q}(5 ; n)=c_{n} M_{\mu+\frac{1}{2}+n, \mu}(\zeta)=c_{n} S^{\mu+\frac{1}{2}} e^{-\frac{5}{2}} \Phi(-n, 2 \mu+1 ; \zeta) \tag{2.11}
\end{equation*}
$$

where C_{n} are the normalization coefficients. The calculation of C_{n} is simplified if one expresses $\Phi(-n, 2 \mu+1 ; 5)$
through the generalized Laguerre polynomial:

$$
\begin{equation*}
\Phi(-n, 2 \mu+1 ; 5)=\frac{n^{\prime}!\Gamma(2 \mu+1)}{\Gamma(2 \mu+n+1)} L_{n}^{2 \mu}(5)=\Gamma(2 \mu+1) \sum_{m=0}^{n} \frac{c_{n}^{m}(-z)^{m}}{\Gamma(2 \mu+m+1)} \tag{2.12}
\end{equation*}
$$

Now the coefficients C_{n} are easily calculated since

$$
\int_{0}^{\infty} y^{\alpha} L_{n}^{\alpha}(y) L_{m}^{\alpha}(y) e^{-y} d y=\left\{\begin{array}{cl}
\frac{\Gamma(n+\alpha+1)}{n!}, & n=m \tag{2.13}\\
0, n \neq m
\end{array}\right.
$$

Thus, the normalized wave functions in the p-representation are written in the form (2.11), and

$$
\begin{equation*}
C_{n}=\frac{c i^{n}}{\Gamma(2 \mu+1)}\left\{\frac{m c \Gamma(n+2 \mu+1)}{\hbar n!}\right\}^{\frac{1}{2}} \tag{2.14}
\end{equation*}
$$

The transition to the wave functions in the x-representation

$$
\begin{align*}
\Psi_{q}(x, n) & =\frac{2^{H} \Gamma(2 \mu+1)}{\sqrt{\pi} c} c_{n}\left(\frac{\hbar \omega}{m c^{2}}\right)^{i \tilde{x}} \sum_{m=0}^{n} \frac{(-2)^{m} c_{n}^{m}}{\Gamma(m+2 \mu+1)} \Gamma\left(\mu+\frac{1}{2}+m+i \tilde{x}\right)= \tag{2.15}\\
& =\frac{2^{H} c_{n}}{\sqrt{\pi} c}\left(\frac{\hbar \omega}{m c^{2}}\right)^{i \tilde{x}} \Gamma\left(\mu+\frac{1}{2}+i \tilde{x}\right) F\left(-n, \mu+\frac{1}{2}+i \tilde{x} ; 2 \mu+1 ; 2\right)
\end{align*}
$$

is performed with the help of formulae (1.2), (2.11) and the integral representation for the gamma-function

$$
\Gamma(\zeta)=\int_{0}^{\infty} e^{-t} t^{\zeta-1} d t, \quad \operatorname{Re} s>0
$$

When $c \rightarrow \infty$ the functions $\Psi_{q}(x ; n)$ and $\Psi_{q}(5 ; n)$ coincide With the corresponding wave functions of the nonrelativistic linear oscillator in the ∞ ordinate and momentum representations (see Appendix I).

Coherent states, For constructing the relativistic osoillator c.s., we introduce the variable $\quad \tau=\sqrt{5}=c \sqrt{\frac{2 m}{\hbar \omega}} \exp \left(\frac{1}{2} \mathrm{f}\right)$ $(0 \leq q<\infty)$. Then equation (2.6) is rewritten in the form

$$
\begin{equation*}
\left[q^{2}-\frac{d^{2}}{d \tau^{2}}+\frac{g}{q^{2}}\right] U_{q}(q)=4 \lambda U_{q}(q) \tag{2.16}
\end{equation*}
$$

Where $\Psi_{q}(5)=\sqrt{q} U_{q}(9), g=4 \mu^{2}-\frac{1}{4}=\frac{3}{4}+\left(\frac{2 m c^{2}}{\hbar \omega}\right)^{2}$. The advantage of this form of equation (2.6) is that it allows one to use the analogy with the well-known quantum-mechanioal singilar linear oscillator ${ }^{/ 16 /}$.

We introduce the anninilation and oreation operators

$$
\begin{equation*}
a=\frac{1}{\sqrt{2}}\left(\tau+\frac{d}{d \tau}\right), \quad a^{+}=\frac{1}{\sqrt{2}}\left(\tau-\frac{d}{d \tau}\right) \tag{2.17}
\end{equation*}
$$

acting on the function $U_{q}(9)$ and satisfying the commutation relation $\left[a, a^{+}\right]=1$. Then the total "Hamiltonian", which oorresponds to equation (2.6), oan be represented as

$$
\begin{equation*}
H(\tau)=H^{(0)}(q)+\frac{\hbar \omega g}{4 q^{2}}=\frac{\hbar \omega}{2}\left(a^{+} a+\frac{1}{2}+\frac{g}{2 \tau^{2}}\right) \tag{2.18}
\end{equation*}
$$

Using the commutation relation $\left[a, a^{+}\right]=1$, it is easy to show that

$$
\begin{equation*}
\left[a^{n}, H^{(0)}(q)\right]=\frac{\hbar \omega}{2} n a^{n},\left[\left(a^{+}\right)^{n}, H^{(0)}(q)\right]=-\frac{\hbar \omega}{2} n\left(a^{+}\right)^{n} \tag{2.19}
\end{equation*}
$$

1.e., the operators a and a^{+}are formally the integrals of motion of the system, which is described by the "Familtonian" $H^{(0)}(9)$. However, in this case the operators (2.17) have no direct physical meaning since the parameter $g=\frac{3}{4}+\left(\frac{2 m c^{2}}{\hbar \omega}\right)^{2}$ characterizes the contribution of the singular term to (2.16), never vanishes for any real $\underset{\sim}{\omega}$. Therefore, the representation of the Hamiltonian $H(9)$ in the form (2.18) and the subsequent use of the operators (2.17) 1s only a mathematical method, which
allows us to construct the integrals of motion for the relativistic oscillator (2.2).

$$
\text { As } 15 \text { known } / 16 / \text {, for the total "Hamiltonian" } H(\Psi)
$$

such invariants are quadratic in the operators (2.17) expressions

$$
\begin{equation*}
A(\tau)=\frac{i}{2 \Lambda}\left\{a^{2}-\frac{g}{2 \tau^{2}}\right\}, \quad A^{+}(\tau)=-\frac{i}{2 \Lambda}\left\{\left(l^{+}\right)^{2}-\frac{g}{2 r^{2}}\right\}, A=\left(\frac{2 m^{2}}{k \omega}\right)^{\frac{1}{2}}{ }^{\frac{1}{2}} . \tag{2}
\end{equation*}
$$

satisfying the following commutation relations:

$$
\begin{equation*}
[A, H]=\hbar \omega A, \quad\left[A^{+}, H\right]=-\hbar \omega A^{+},\left[A, A^{+}\right]=\frac{1}{m c^{2}} H . \tag{2.21}
\end{equation*}
$$

The formulae (2.17) and (2.20) define the action of the operators $A(T)$ and $A^{+}(T)$ on the function $U_{q}(T)$. Having derived the explicit form of these integrals of motion, we can return to the initial function $\psi_{q}(\zeta)=\sqrt{F} U_{q}(\tau)$. Since

$$
\frac{d}{d \tau} \frac{\varphi(\tau)}{\sqrt{\tau}}=\frac{1}{\sqrt{\tau}}\left\{\frac{d}{d \tau}-\frac{1}{2 \tau}\right\} \varphi(\tau)
$$

the explicit form of the operators A, A^{+}and H in the $\Psi_{4}(3)$-functions space is obtained from formulae (2.18) and (2.20) by replacing a by $a-\frac{1}{2 \sqrt{2}} \cdot \frac{1}{\tau}$ and a^{+}by $a^{+}+\frac{1}{2 \sqrt{2}} \cdot \frac{1}{\tau}$, 1.c.,

$$
\begin{aligned}
& A(\zeta) \Psi_{q}(\zeta)=\frac{i}{\Lambda}\left\{\zeta \frac{d}{d \zeta}+\frac{1}{2} \zeta-\frac{1}{\hbar \omega} H(\zeta)\right\} \Psi_{q}(\zeta) \\
& A^{+}(\zeta) \Psi_{q}(\zeta)=\frac{i}{\Lambda}\left\{\zeta \frac{d}{d \zeta}-\frac{1}{2} \zeta+\frac{1}{\hbar \omega} H(\zeta)\right\} \Psi_{q}(\zeta) \\
& H(\zeta) \Psi_{q}(\zeta)=\hbar \omega \zeta\left\{\frac{1}{4}+\left(\frac{m c^{2}}{\hbar \omega}\right)^{2} \frac{1}{J^{2}}-\frac{d^{2}}{d J^{2}}\right\} \Psi_{q}(\zeta)
\end{aligned}
$$

the same commutation relations (2.21) being satisfied.
It is evident that the solution (2.11) of equation (2.6), which wll be denoted by the symbol $|n\rangle$, are the eigenfunotions of the llamiltonian H :

$$
\begin{equation*}
H|n\rangle=E_{n}|n\rangle, \quad E_{n}=\hbar \omega\left(n+\mu+\frac{1}{2}\right) \tag{2.23}
\end{equation*}
$$

Using the representation (2.12) and the recurrence relations for the generalized Laguerre polynomials, one can show that

$$
\begin{gather*}
A|n\rangle=b_{n}|n-1\rangle, \quad A^{+}|n\rangle=b_{n+1}|n+1\rangle \tag{2.24}\\
|n\rangle=\beta_{n}\left(A^{+}\right)^{n}|0\rangle
\end{gather*}
$$

Here we have used the notation $b_{n}=\sqrt{n(n+2 \mu) \frac{\hbar \omega}{2 m n^{2}}}, \beta_{n}=\left\{b_{1} b_{2} \ell_{n}\right\}^{-1}=\Lambda^{n}\left\{\frac{\Gamma(2 \mu+1)}{n!\Gamma(n+2 \mu+1)}\right\}^{1 / 2}$. Sinoe $B_{n}^{\prime} \beta_{n}=\beta_{n-1}$, one can easily check that the functions

$$
\begin{equation*}
|\gamma\rangle=C_{\gamma} \sum_{n=0}^{\infty} \beta_{n} \gamma^{n}|n\rangle \tag{2.25}
\end{equation*}
$$

where C_{γ} is an arbitrary constant, are the eigenfunctions of the operator A. In fact

$$
\begin{equation*}
A|\gamma\rangle=C_{\gamma} \sum_{n=1}^{\infty} \beta_{n} \gamma^{n} B_{n}|n-1\rangle=C_{\gamma} \sum_{n=1}^{\infty} \beta_{n-1} \gamma^{n}|n-1\rangle=\gamma|\gamma\rangle . \tag{2.26}
\end{equation*}
$$

Substituting into (2.25) the expression for the states $|n\rangle$ through the generalised Laguerre polynomials, with the help of the generating function of the se polynomials

$$
\sum_{n=0}^{\infty} \frac{x^{n} L_{n}^{d}(5)}{\Gamma(n+d+1)}=(x 5)^{-\frac{d}{2}} e^{x} J_{\alpha}(2 \sqrt{\times 5}),
$$

We obtain the explicit form of the eigenfunctions of the operator A in the p-representation:

$$
\begin{equation*}
|\gamma\rangle=c\left\{\frac{m c}{\hbar} \Gamma(2 \mu+1) \zeta\right\}^{\frac{1}{2}} c_{\gamma} \frac{e^{i \wedge \gamma-\frac{5}{2}}}{(1 \gamma \wedge)^{k}} J_{2 \mu}(2 \sqrt{1 \wedge \gamma \zeta}) \tag{2.27}
\end{equation*}
$$

The constant $C_{\gamma}=(\Lambda|\gamma|)^{\mu}\left[\Gamma(2 \mu+1) I_{2 \mu}(2 \Lambda|\gamma|)\right]^{-\frac{1}{2}}$ is defined from the nommalization condetion

$$
\int_{-\infty}^{\infty}|\Psi(x)|^{2} d x=\frac{2 \hbar}{m c^{3}} \int_{0}^{\infty} \frac{d \tau}{q}|\Psi(\tau)|^{2}=1
$$

$$
\begin{aligned}
& \text { and is calculated by the formula } \\
& \int_{0}^{\infty} d q J_{2 \mu}\left(2 e^{\frac{r_{1}}{4}} \sqrt{\Lambda_{\gamma}} \tau\right) J_{2 \mu}\left(2 e^{-\frac{\pi_{1}}{4}} \sqrt{\Lambda \bar{\gamma}} \tau\right) q e^{-q^{2}}=\frac{1}{2} e^{-i \Lambda(\gamma-\bar{\gamma})} I_{2 \mu}(2 \Lambda|\gamma|) .
\end{aligned}
$$

Thus, the normalized eigenfunctions or the operator A
have in p-representation the form

$$
|\gamma\rangle=c \sqrt{\frac{m c}{\hbar}} N_{\gamma}\left(-\frac{\bar{\gamma}}{\gamma}\right)^{\frac{k}{2}} e^{i \wedge \gamma-\frac{5}{2}} \sqrt{5} J_{2 \mu}(2 \sqrt{i n \gamma 5})
$$

where $N_{\gamma}=\left\{I_{2 \mu}(2 N|\gamma|)\right\}^{-\frac{1}{2}}$. Insofar as the states $|n\rangle$
coincide when $C \rightarrow \infty$ with the states of the nonrelativistic
linear oscillator in the p-representation and the quantities $B_{n} \rightarrow \sqrt{n}, \beta_{n} \rightarrow 1 / \sqrt{n!}$, it follows from the relations (2.4) that the operators A and A^{+}go over in this limit to the annihilation and creation operators of the nonrelativistic oscillator. Since the normalization constant $\quad C_{\gamma} \leftrightarrow e^{-\frac{1}{2}|\gamma|^{2}}$ when $c \longrightarrow \infty$ (see Appendix II, formula (A.8)), it also follows from the representation (2.25) that the states $|\gamma\rangle$ coincide in this liinit with the nonrelativistic linear osciliator c.s.

The explicit form of the operators A and A^{+}in the x-representation can be obtained from (2.22) by means of the transformation (1.2):

$$
\begin{equation*}
A(x)=\frac{1}{\sqrt{2}}\left\{\sqrt{\frac{m \omega}{\hbar}} x+\frac{i}{\sqrt{m \hbar \omega}} \Pi(x)\right\}, \quad \stackrel{+}{ }(x)=\frac{1}{\sqrt{2}}\left\{\sqrt{\frac{m \omega}{\hbar}} x-\frac{1}{\sqrt{m \hbar \omega}} \Pi(x)\right\} \tag{2.29}
\end{equation*}
$$

Having used (2.28) and the transformation formula (1.2), in which the substitution of the variable y_{p} by $\tau=\sqrt{5}=\Lambda e^{j^{2}}$ is made, we get the explicit form of the eigenfunctions $|\gamma\rangle$ of the operator A in the x-representation:

$$
\begin{gather*}
|\gamma\rangle_{x}=\frac{1}{c} \sqrt{\frac{2}{\pi}} \Lambda^{-2 i \tilde{x}} \int_{c}^{\infty} q^{2 i \tilde{x}-1}|\gamma\rangle_{p} d q= \tag{2.30}\\
=\sqrt{\frac{m c}{\pi \hbar}} N_{\mu} \frac{(2 \Lambda|\gamma|)^{\mu}}{\mu(2 \mu+1)} e^{-i \Lambda|\gamma|} 2^{i \tilde{x}} \Gamma\left(\mu+\frac{1}{2}+i \tilde{x}\right) \Phi\left(\mu+\frac{1}{2}-i \tilde{x}_{1} 2 \mu+1 ; 2 i \wedge \gamma\right) .
\end{gather*}
$$

The integration in (2.30) over the variable q has been performed with the aid of the following formula for the Bessel function:

$$
\begin{gather*}
\Gamma(\mu+1) \int_{0}^{\infty} J_{\mu}(\alpha t) e^{-\gamma^{2} t^{2}} t^{\rho-1} d t=\frac{1}{2 \gamma^{\gamma}} \Gamma\left(\frac{\mu+\rho}{2}\right)\left(\frac{\alpha}{2 \gamma}\right)^{\mu} e^{-\frac{\alpha^{2}}{4 \gamma^{2}}} \Phi\left(\frac{\mu-\rho}{2}+1, \mu+1 ; \frac{\alpha^{2}}{4 y^{2}}\right), \tag{2.31}\\
\operatorname{Re} \gamma^{2}>0, \quad \operatorname{Re}(\mu+\rho)>0
\end{gather*}
$$

Dynamical symmetry croun. The utilization of the operators
A and A^{+}, with the help of which we have constructed c.s. (2.28) and (2.30), makes also easier the problem of searching a dynamical symmetry group of the relativistic oscillator $(2,2)^{/ 16,17 /}$. In fact, if one introduces

$$
\begin{equation*}
M_{+}=\Lambda A^{+}, M_{-}=-\Lambda A, \quad M_{3}=\frac{1}{\hbar \omega} H \tag{2.32}
\end{equation*}
$$

and makes use the commutation relations (2.21), then it can be verified that the operators M_{+}, M_{-}and M_{3} define the Lie algebra

$$
\begin{equation*}
\left[M_{+}, M_{-}\right]=2 M_{3}, \quad\left[M_{3}, M_{ \pm}\right]= \pm M_{ \pm} \tag{2.33}
\end{equation*}
$$

1.e.. they are the generators of the group $S U(1,1)$. The alrect calculation of the Casimir operator

$$
\begin{equation*}
M^{2}=M_{3}^{2}+\frac{1}{2}\left(M_{+} M_{-}+M_{-} M_{+}\right) \tag{2.34}
\end{equation*}
$$

both in the x - and in the p-regresentation shows that it is equal to

$$
\begin{equation*}
M^{2}=\left(\frac{m c^{2}}{\hbar \omega}\right)^{2} I=\left(\mu^{2}-\frac{1}{4}\right) I \tag{2.35}
\end{equation*}
$$

For the eipervaluos of the invariant operator M^{2} the notation $S(5+1)$ is usually employed and a representation of the group $S U(1,1)$ is characterized by a number S. From (2.35) it follows that in this case S can take two values: $S_{1}=-\left(\mu+\frac{1}{2}\right)$ and $S_{2}=\mu-\frac{1}{2}$. Since $\mu=\sqrt{\frac{1}{4}+\left(\frac{m c^{2}}{\hbar \omega}\right)^{2}} \geqslant \frac{1}{2}$, then $S_{2} \geqslant 0$ and has to be discarded as the corresponding representation is nonunitary. The first value $S_{i}=-\left(\mu+\frac{1}{2}\right)$ determines the reprosentation $D^{+}\left(-\mu-\frac{1}{2}\right)$, which is characterized by the fact, that the elgenvalues of the operator $M_{3}=\frac{1}{\hbar \omega} H$ are bounded below and equal to $-S_{1}+n=\mu+\frac{1}{2}+n, \quad n=0,1,2$,

Thus, we obtain correct spectrum of the operator $H=\hbar \omega M_{5}$ and as in the nonrelativistic case tho dynamical symmetry group of the relativistic linear oscillator (2.2) is the Eroup $S U(1,1)$. The functions $|\Omega\rangle$, being defined by (2.11) and (2.15), are the basis functions of the infinite-dimensional irreducible unitary representation $D^{+}\left(-\mu-\frac{1}{2}\right)$ of the group $S U(1,1)$ in p - and x-spaces respectively.
II. In constructing the second nodel the key role is played by the variable $K_{p}=2 m \cos \frac{f_{p}}{2}$, which has the clear
geometrical meaning x) and coincides with nonrelativistic m omentum when $c \rightarrow \infty$. The energy of motion $e_{p}=E_{p}-m c^{2}$ In terms of K_{p} has the nonrelativistic form $e_{p}=\frac{K_{p}^{2}}{2 n}$. Therefore, it is natural to postulate the following equation for the linear oscillator in the momentum representation:

$$
\begin{equation*}
\left(\frac{K_{p}^{2}}{2 m}-\frac{m w^{2} \hbar^{2}}{2} \frac{d^{2}}{c k_{p}^{2}}-\frac{K_{q}^{2}}{2 m}\right) \Psi_{q}\left(k_{p}\right)=0 \tag{3.1}
\end{equation*}
$$

Thus, in the second model the quasipotential is the diffe-

$$
\begin{align*}
& \text { rential operator } \\
& \qquad V\left(k_{p}\right)=-\frac{m \omega^{2} \hbar^{2}}{2} \frac{d^{2}}{d{r_{p}^{2}}_{2}}=-\frac{\hbar^{2} \omega^{2}}{2 m c^{2}} \frac{1}{c^{2} \frac{y p}{p}_{2}}\left(\frac{d^{2}}{d y_{p}^{2}}-\frac{1}{2} t h \frac{y_{p}}{2} \frac{d}{d y_{p}}\right) . \tag{3.2}
\end{align*}
$$

In this case we can use the fact, that the solutions of (3.1) are well known and expressed through the Hermite polynomials

$$
\begin{align*}
& \Psi_{n}\left(K_{p}\right)=\frac{c_{0}}{\sqrt{2^{n} n!}} e^{-\frac{K_{p}^{2}}{2 m \omega}} H_{n}\left(\frac{K_{p}}{\sqrt{m \hbar \omega}}\right) \tag{3.3}\\
& e_{n}=\hbar \omega\left(n+\frac{1}{2}\right), \quad n=0,1,2, \ldots, c_{0}=\left(\frac{\hbar}{\pi m \omega}\right)^{\frac{1}{4}}
\end{align*}
$$

while the funotions $\Psi_{n}\left(K_{p}\right)$ satisfy the following orthogonality and completeness conditions:

$$
\begin{align*}
& \int_{-\infty}^{\infty} d k_{p} \Psi_{m}^{*}\left(k_{p}\right) \Psi_{n}\left(k_{p}\right)=\delta_{m n} \tag{3.4}\\
& \sum_{n=0}^{\infty} \Psi_{n}^{*}\left(k_{p}\right) \Psi_{n}\left(k_{q}\right)=\delta\left(k_{p}-k_{q}\right) \tag{3.5}
\end{align*}
$$

x) For the details see, for instanoo, $/ 1^{8 /}$.

In the nonrelativistic limit the quasipotential (3.2), equation (3.1) and its solutions (3.3) go into the quasipotential, Schrödinger equation and its solutions for the nonrelativistic linear oscillator, respectively.

The quasipotential (3.2) in the x-representation is written as

$$
\begin{equation*}
V\left(x, \frac{d}{d x}\right)=\frac{\hbar^{2} \omega^{2}}{2 m c^{2}}\left(\operatorname{ch} \frac{i}{2} \frac{d}{d \tilde{x}}\right)^{-2}\left(\tilde{x}+\frac{i}{2} \operatorname{th} \frac{i}{2} \frac{d}{d \tilde{x}}\right)^{2} \tilde{x} \tag{3.6}
\end{equation*}
$$

$$
\begin{align*}
& \text { where, by definition, } \\
& \qquad\left(\operatorname{chi} \alpha \frac{d}{d x}\right)^{-k}=-i \lim _{\varepsilon \rightarrow 0} \int_{0}^{\infty} d q e^{-\tau \varepsilon+i q\left(\operatorname{ch} i \alpha \frac{d}{d x}\right)^{k}}, k=4,2, \ldots \tag{3.7}
\end{align*}
$$

For instance, the action of the operator (3.7) on an exponent

is given by

$$
\left(\operatorname{chi} \alpha \frac{d}{d x}\right)^{-k} e^{ \pm i x y}=(\operatorname{ch} \alpha y)^{-k} e^{ \pm i x y}
$$

The finite difference analogue of equation (3.1) has in x-representation the fom

$$
\begin{equation*}
\left[H_{0}-E_{q}+\frac{\hbar^{2} \omega^{2}}{2 m c^{2}}\left(\operatorname{ch} \frac{i}{2} \frac{d}{d \tilde{x}}\right)^{-2}\left(\tilde{x}+\frac{i}{2} \operatorname{th} \frac{i}{2} \frac{d}{d \tilde{x}}\right) \tilde{x}\right] U_{q}(\tilde{x})=0 \tag{3.8}
\end{equation*}
$$

or, after multiplying from the left by $\left(\operatorname{ch} \frac{i}{2} \frac{d}{d \bar{x}}\right)^{3}$,

$$
\begin{equation*}
\left\{\left(\operatorname{ch} \frac{i}{2} \frac{d}{d \tilde{x}}\right)^{3}\left(H_{0}-E_{q}\right)+\frac{\hbar^{2} u^{2}}{2 m^{2}}\left[\left(\dot{x}^{2}-\frac{1}{2}\right) \operatorname{ch} \frac{i}{2} \frac{d}{d \bar{x}}+\frac{3}{2} i x \operatorname{sh} \frac{i}{2} \frac{d}{d \tilde{x}}\right]\right\} \Psi_{q}(\tilde{x})=0 \tag{3.9}
\end{equation*}
$$

Equation (3.1) in the x-representation can also be written in the integral fom

$$
\begin{equation*}
\left(H_{0}-E_{q}\right) \Psi_{q}(x)+\int_{-\infty}^{\infty} V\left(x, x^{\prime}\right) \Psi_{q}\left(x^{\prime}\right) d x^{\prime}=0 \tag{3,10}
\end{equation*}
$$

According to (1.5) and (3.2), the following integral representation for the quasipotential $V\left(x, x^{\prime}\right)$ is valid:

$$
\begin{equation*}
V\left(x, x^{\prime}\right)=\frac{\hbar^{2} \omega^{2}}{4 \pi c} \int_{-\infty}^{\infty} e^{i \tilde{x} y} \frac{1}{c^{2} f_{2}}\left(\frac{d^{2}}{d y^{2}}-\frac{1}{2} \operatorname{th} \frac{y}{2} \frac{d}{d y}\right) e^{-i \tilde{x}^{\prime} y} d x \tag{3.11}
\end{equation*}
$$

Hence we obtain, after performing the integration, that the function $V\left(x, x^{\prime}\right)$ is nonlocal and is equal to

$$
\begin{equation*}
V\left(x, x^{\prime}\right)=\frac{\hbar \omega^{2}}{c} \frac{x^{\prime} \tilde{x}^{\prime}\left(\tilde{x}-\tilde{x}^{\prime}\right)}{\operatorname{sh} \pi\left(\tilde{x}-\tilde{x}^{\prime}\right)} \tag{3.12}
\end{equation*}
$$

In the Appendix III it is shown that in the nonrelativistic region the function (3.12) takes the local form:

$$
\begin{equation*}
V\left(x, x^{\prime}\right) \underset{c \rightarrow \infty}{\longrightarrow} \frac{m \omega^{2}}{2} x^{2} \delta\left(x-x^{\prime}\right) \tag{3.13}
\end{equation*}
$$

The comparison of two different forms (3.9) and (3.10) of equation (3.1) in the x-representation leads to

$$
\begin{equation*}
\left(\operatorname{ch} \frac{i}{2} \frac{d}{d \tilde{x}}\right)^{3} V\left(x, x^{\prime}\right)=\frac{\hbar^{2} \omega^{2}}{2 m c^{2}}\left[\left(\tilde{x}^{2}-\frac{1}{2}\right) \operatorname{ch} \frac{i}{2} \frac{d}{d x}+\frac{3}{2} i \tilde{x} \operatorname{sh} \frac{i}{2} \frac{d}{d x}\right] \delta\left(\tilde{x}-\tilde{x}^{\prime}\right) \tag{3.14}
\end{equation*}
$$

i.e., the quasipotential (3.12) satisfies the inhomogeneous difference equation.

It is necessary to note, that since the formal action of the difference differentiation operators entering (3,14) is accompanied w the extengion to the complex X-plane, the action of these operators on δ-function of the real argument is dfined, as usually, by tie corresponding representation in the fom of infinite series. For instance,

$$
\begin{equation*}
e^{i \frac{d}{d x}} \delta\left(x-x^{\prime}\right)=\sum_{n=0}^{\infty} \frac{i^{n}}{n!} \delta^{(n)}\left(x-x^{\prime}\right) \tag{3.15}
\end{equation*}
$$

Now we firt the vave furoticno (3.3) In the corfisuratic.a? representation, docording to (I, ?) for the ground atese yave function

$$
\begin{equation*}
\Psi_{0}(x)=\frac{c_{u} m c}{\sqrt{2 \pi \hbar}} \int_{-\infty}^{\infty} d y \exp \left(1 \tilde{x}_{j}-\frac{k_{p}^{2}}{2 m \hbar \omega_{0}}\right)=\frac{c_{1} m c}{\sqrt{2 \pi \hbar}} \int_{-\infty}^{\infty} d y \in x p\left(i x^{2} y-\Lambda^{2} \operatorname{sh}^{2} x_{2}\right) \tag{3.16}
\end{equation*}
$$

with the help of the integral representation for the Macdonald function

$$
\begin{equation*}
K_{\nu}(z)=\frac{1}{2} \int_{-\infty}^{\infty} e^{-z \operatorname{cht}+\nu t} d t \tag{3.17}
\end{equation*}
$$

we get

$$
\begin{equation*}
\Psi_{0}(x)=\sqrt{\frac{2}{\pi \hbar}} c_{0} m c e^{\frac{\Lambda^{2}}{2}} K_{i \bar{x}}\left(\frac{\Lambda^{2}}{2}\right) \tag{3.18}
\end{equation*}
$$

The excited state wave functions ($n=1,2,3, \ldots$)

$$
\begin{equation*}
\Psi_{n}(x)=\frac{c_{0} m c}{\sqrt{2^{n+T} T h n!}} \int_{-\infty}^{\infty} d x e^{i \tilde{x} y-\Lambda^{2} \operatorname{sh}^{2} \frac{y}{2}} H_{n}\left(\sqrt{2} \Lambda \operatorname{sh} \frac{x}{2}\right) \tag{3.19}
\end{equation*}
$$

can be written in the form

$$
\begin{equation*}
\Psi_{n}(x)=\frac{(-1)^{n}}{\sqrt{2^{n} \cdot n!}} H_{n}\left(\sqrt{2} \Lambda \operatorname{sh} \frac{i}{2} \frac{d}{d \check{x}}\right) \Psi_{0}(x) \tag{3.20}
\end{equation*}
$$

if one takes into account the formula

$$
\begin{equation*}
\left(\operatorname{shi} \alpha \frac{d}{d \tilde{x}}\right)^{n} e^{i \tilde{x} y}=(-1)^{n}(\operatorname{sh} \alpha y)^{n} e^{i \tilde{x} y} \tag{3.21}
\end{equation*}
$$

Then using the explicit form of the Hemite polynomials

$$
H_{n}(x)=n \left\lvert\, \sum_{m=0}^{\left[\frac{n}{2}\right]} \frac{(-1)^{m}(2 x)^{n-2 m}}{m!(n-2 m)!}\right., \quad\left[\frac{n}{2}\right]=\left\{\begin{array}{l}
\frac{n}{2} \text { for even } n \tag{3.22}\\
\frac{n-1}{2} \text { for odd } n
\end{array}\right.
$$

and the integral representation (3.16) for the ground state wave function $\Psi_{0}(x)$, we obtain that

$$
\Psi_{n}(x)=\frac{(-1)^{n}}{2^{\frac{n}{2}}} \sqrt{\frac{n!}{\pi \hbar}} c_{0} m c e^{\frac{\Lambda^{2}}{2}} \sum_{k=0}^{\left[\frac{n}{2}\right]} \frac{(-1)^{k}\left(2^{\frac{3}{2}} \Lambda\right)^{n-2 k}(n-2 k)!}{n} \sum_{s=0}^{n-2 k}(-1) C_{n-2 k}^{s} K_{i x+k+s \cdot \frac{n}{2}}\left(\frac{\Lambda^{2}}{2}\right)(3.23)
$$

From the orthogonallty condition (3.4) for the wave functlons in the p-representation it follows, that in the x-representation they satisfy the following "nonlocal" orthogonality condition

$$
\begin{equation*}
\int_{-\infty}^{\infty} d x \psi_{n}^{*}(x) \operatorname{ch} \frac{i \hbar}{2 m c} \frac{d}{d x} \Psi_{m}(x)=\hat{\delta}_{n m} \tag{3.24}
\end{equation*}
$$

or

$$
\begin{equation*}
\frac{1}{2} \int_{-\infty}^{\infty} d x \Psi_{n}^{*}(x)\left[\Psi_{-m}\left(x-\frac{i \hbar}{2 m c}\right)+\psi_{m}\left(x+\frac{i \hbar}{2 m c}\right)\right]=\delta_{n m} \tag{3.25}
\end{equation*}
$$

The nonunitarlty of the orthogonallty condition for the functions $\psi_{n}(x)$ Is bound up with the fact that the quasipotential (3.a) is nonhermitian with respect to the scalar product, depined by the volume element $d \Omega_{p}=\operatorname{mcd} y_{p}$

Let us al so write the completeness condition (3.5) in the x-representation, which has the form

$$
\begin{equation*}
\sum_{n=0}^{\infty} \Psi_{n}^{*}(x) \operatorname{ch}\left(\frac{i \hbar}{2 m c} \frac{d}{d x^{\prime}}\right) \psi_{n}\left(x^{\prime}\right)=\delta\left(x-x^{\prime}\right), \tag{3.26}
\end{equation*}
$$

or

$$
\begin{equation*}
\frac{1}{2} \sum_{n=c}^{\infty} \Psi_{n}^{*}(x)\left[\psi_{n}\left(x^{\prime}+\frac{1 \hbar}{2 m c}\right)+\psi_{n}\left(x^{\prime}-\frac{i \hbar}{2 m c}\right)\right]=\delta\left(x-x^{\prime}\right) \tag{3.27}
\end{equation*}
$$

It is easy to verify, that $\Psi_{n}(x)$ have the correot non-

$$
\begin{align*}
& \text { relativistic limit: } \\
& \qquad \psi_{n}^{\prime}(x)-\frac{C_{0}}{\sqrt{2^{a} \cdot n!}} e^{-\frac{m \omega}{2 \hbar} x^{2}} H_{n}\left(x \sqrt{\frac{m \omega}{\hbar}}\right), C_{0}^{\prime}=\left(\frac{m \omega}{2 \hbar}\right)^{4} \tag{3.23}
\end{align*}
$$

Indeed, the nonrelativistic limit of the ground state wave function (3.18) is obtained with the aid of the asymptotic representation for the function

$$
\begin{equation*}
K_{i r}(x)=\frac{\sqrt{\pi}}{\sqrt[4]{x^{2}-r^{2}}} \exp \left(-\sqrt{x^{2}-r^{2}}-5 \cdot \arcsin \frac{5}{x}\right) \tag{3.29}
\end{equation*}
$$

which is valid in the case $X>5>0$ and $v \rightarrow \infty$. To find the nonrelativistic limit of the excited state wave functions, it is more suitable to start from the representation (3.21). Taking into account that when $c \rightarrow \infty$ the relation $\sqrt{2} \wedge \operatorname{sh} \frac{i}{2} \frac{d}{d x} \rightarrow i \sqrt{\frac{\hbar}{m u c}} \frac{d}{d x}$ does hold, we get

$$
\begin{equation*}
\Psi_{n}(x) \rightarrow \frac{(-1)^{n} C_{0}^{\prime}}{\sqrt{2^{n} n!}} H_{n}\left(i \sqrt{\frac{\hbar}{m \omega}} \frac{d}{d x}\right) e^{-\frac{m \omega}{2 \hbar} x^{2}} \tag{3.30}
\end{equation*}
$$

Now using (3.22) and the fomula

$$
\begin{equation*}
H_{n}(x)=(-1)^{n} e^{x^{2}} \frac{d^{n}}{d x^{n}} e^{-x^{2}} \tag{3.31}
\end{equation*}
$$

$$
\begin{align*}
& \text { for the Ilermite polynomials, we obtain } \\
& \qquad \Psi_{n}(x) \longrightarrow c_{0}^{\prime} i^{n} \sqrt{n!} e^{-\frac{m \omega}{2 \hbar} x^{2}} \sum_{k=0}^{\left[\frac{n}{2}\right]} \frac{H n-2 k\left(x \sqrt{\frac{m \omega}{2 \hbar}}\right)}{2^{k} \cdot k!(n-2 k)!} \tag{3.32}
\end{align*}
$$

Since for the llemite polynomials the following relation is valid (for a proof see Appendix IV)

$$
\begin{equation*}
2^{\frac{n}{2}} n!\sum_{k=0}^{\left[\frac{n}{2}\right]} \frac{H_{n-2 k}\left(x \sqrt{\frac{m \omega}{2 \hbar}}\right)}{2^{k} \cdot k!(n-2 k)!}=H_{n}\left(x \sqrt{\frac{m u}{\hbar}}\right) \tag{3.33}
\end{equation*}
$$

from (3.32) it follows (3.28).
Coherent states. For constructing the cos. of the model under consideration (3.2), we introduce the annihilation and creation operators

$$
\begin{equation*}
a=\sqrt{\frac{m \hbar \omega}{2}}\left(\frac{k_{p}}{m \hbar \omega}+\frac{d}{d k_{p}}\right), \quad a^{+}=\sqrt{\frac{m \hbar \omega}{2}}\left(\frac{K_{p}}{m \hbar \omega}-\frac{d}{d k_{p}}\right) \tag{3.34}
\end{equation*}
$$

satisfying the commutation relation $\left[a, a^{+}\right]=1$. Let us express them through the variable y :

$$
\begin{equation*}
a=\Lambda \operatorname{sh} \frac{x}{2}+\frac{1}{\Lambda \operatorname{ch} \frac{x_{2}}{2}} \frac{d}{d x}, \quad a^{+}=\Lambda \operatorname{sh} \frac{x}{2}-\frac{1}{\Lambda \operatorname{ch} \frac{d}{2}} \frac{d}{d x} \tag{3.35}
\end{equation*}
$$

It is evident that when $C \longrightarrow \infty$ they go into the annihilation and creation operators of the nonrelativistic linear oscillator, respectively,

We find the explicit form of the operators (3.35) in
the x-representation. Here, as in the case of the quasipotential (3.2), it is possible to write two forms: The first $a_{x}=-\left[\Lambda \operatorname{sh} \frac{i}{2} \frac{d}{d x}+\frac{1}{\Lambda}\left(\operatorname{ch} \frac{1}{2} \frac{d}{d \tilde{x}}\right)^{-1} \tilde{x}\right], \quad a_{x}^{+}=-\left[\Lambda \operatorname{sh} \frac{1}{2} \frac{d}{d \tilde{x}}-\frac{i}{\Lambda}\left(\operatorname{ch}_{\frac{1}{2}}^{2} \frac{d}{d \tilde{x}}\right)^{-1} \tilde{x}\right]$,
and the second

$$
\begin{align*}
& a_{x} F(x)=-\Lambda \operatorname{sh} \frac{i}{2} \frac{d}{d \tilde{x}} F(x)-\frac{i}{\Lambda} \int_{-\infty}^{\infty} \frac{\tilde{x}^{\prime} F\left(x^{\prime}\right) d \tilde{x}^{\prime}}{\operatorname{ch} \pi\left(\bar{x}-\bar{x}^{\prime}\right)}, \\
& a_{x}^{+} F(x)=-\Lambda \operatorname{sh} \frac{1}{2} \frac{d}{d x} F(x)+\frac{i}{\Lambda} \int_{-\infty}^{\infty} \frac{x^{\prime} F\left(x^{\prime}\right) d x^{\prime}}{\operatorname{chJ}\left(\tilde{x}-\bar{x}^{\prime}\right)} \tag{3.37}
\end{align*}
$$

The annibilation and creation operators (3.36) and (3.37) in the x-representation satisfy the commutation relation

$$
\left[a_{x}, a_{x}^{+}\right]=1
$$

For the first form (2.36) this is easily verified and for the second one $1 s$ proven in the Appendix V.

The transition from one form (3.36) to another (3.37) is accomplished with the aid of the relation x)
\bar{x} The action of the operator ch $\frac{i}{2} \frac{d}{d x}$ on the function $1 / 4 \pi x^{x}$ is defined as a limit of $c h\left\{\frac{1}{2}(i-\varepsilon) \frac{d}{d x}\right\} \frac{1}{\operatorname{ch} \pi \bar{x}}$ when $\varepsilon \rightarrow+0$

$$
\begin{equation*}
\operatorname{ch} \frac{i}{2} \frac{d}{d x} \frac{1}{\operatorname{ch} \pi\left(x-x^{\prime}\right)}=\frac{1}{2 \pi} \operatorname{ch} \frac{1}{2} \frac{d}{d x} \int_{-\infty}^{\infty} \frac{e^{i\left(x-x^{\prime}\right) y} d x}{\operatorname{ch} \frac{1}{2}} d y=\delta\left(x-x^{\prime}\right) \tag{3.38}
\end{equation*}
$$

We note that in the nonrelativistic limit

$$
\begin{equation*}
a_{x} \longrightarrow-i \sqrt{\frac{\hbar}{m \omega}}\left(\frac{d}{d x}+\frac{m \omega}{\hbar} x\right), \quad a_{x}^{+} \rightarrow-i \sqrt{\frac{\hbar}{m \omega}}\left(\frac{d}{d x}-\frac{m \omega}{\hbar} x\right) . \tag{3.39}
\end{equation*}
$$

For the representation (3.38) it is also evident and for the representation (3.39) it is shown in the Appendix III.

Having defined the operators Cl and a^{+}, the o.s. are construoted in the standard way - as the eigenvalues of the operator C :

$$
\begin{equation*}
a|\alpha\rangle=\alpha|\alpha\rangle \tag{3.40}
\end{equation*}
$$

where α is an arbitrary complex number. The state $|\alpha\rangle$ is connected with the ground state $\Psi_{0} \bar{x}|O\rangle$ of the considered relativistic oscillator by the Weyl unitary operator $D(\alpha)=$ $=\exp \left(\alpha a^{+}-\alpha^{*} a\right)^{6 /}, 1 . e .$,

$$
\begin{equation*}
|\alpha\rangle=D(\alpha)|0\rangle \tag{3.41}
\end{equation*}
$$

From here the representation also follows, which aotually is the expansion of $|\alpha\rangle$ in terms of the oscillator states,

$$
\begin{equation*}
|\alpha\rangle=e^{-\frac{1}{2}|\alpha|^{2}} \sum_{n=0}^{\infty} \frac{\alpha^{n}}{\sqrt{n!}}|n\rangle \tag{3.42}
\end{equation*}
$$

where the Dirac notation $\Psi_{n} \equiv|n\rangle$ for the state vector is used.

The explicit form of the c.s. In the p - and x-representations can be obtained with the help of the generating function of the Hermite polynomials

$$
\begin{equation*}
\sum_{n=0}^{\infty} \frac{z^{n}}{n!} H_{n}(x)=e^{2 x z-z^{2}} \tag{3.43}
\end{equation*}
$$

In the p-representation they have the form
$\left\langle k_{p} \mid \alpha\right\rangle \equiv \Psi(y, \alpha)=c_{0} \exp \left\{-\frac{1}{2}\left(\alpha^{2}+|x|^{2}\right)-\frac{k_{p}^{2}}{2 m \hbar \omega}+\alpha \sqrt{\frac{2}{m \hbar \omega}} k_{p}\right\}$,

$\langle x \mid \alpha\rangle \equiv \Psi(x, \alpha)=\exp \left\{-\frac{1}{2}\left(\alpha^{2}+|\alpha|^{2}\right)-2 \alpha \Delta \operatorname{sh} \frac{1}{2} \frac{d}{d x}\right\} \psi_{0}(x)$.
Calculating in the last formula the action of the flnite-difforence operator $\operatorname{sh} \frac{1}{2} \frac{d}{d x}$ on $\Psi_{0}(x)$, we get
$\Psi(x, \alpha)=\sqrt{\frac{\tilde{j}}{\pi}} c_{0} m c e^{\frac{1}{2}\left(\Lambda^{2}-\alpha-|\alpha|^{2}\right)} \sum_{n=0}^{\infty} \frac{(-\alpha \Lambda)^{n}}{n!} \sum_{k=0}^{n}(-1)^{k} C_{n}^{k} K_{i x+k \cdot \frac{n}{2}}\left(\frac{\Lambda^{2}}{2}\right)$

It is easy to vorify that the c.s. in the x-reprosentation are the efgenstates of the annihilation operator \mathcal{C}_{x} both in the form (3.36) and in the form (3.37), 1.0.,

$$
\begin{equation*}
Q_{x} \Psi(x ; \alpha)=\alpha \Psi(x, \alpha) \tag{3,47}
\end{equation*}
$$

On the other hand, if we make use of formula (3.37), we obtain the following integral relation for the c.s. in the x-representat ion:

$$
\begin{equation*}
\int_{-\infty}^{\infty} \frac{\tilde{x}^{\prime} \psi\left(x^{\prime} ; \alpha\right) d \ddot{x}^{\prime}}{\operatorname{ch} \pi\left(\bar{x}-\bar{x}^{\prime}\right)}=i \Lambda\left(\Lambda \operatorname{sh} \frac{i}{2} \frac{d}{d \tilde{x}}+\alpha\right) \psi(x, \alpha) \tag{3.48}
\end{equation*}
$$

In the particular case when $\alpha=0$ from (3.48) we get for the ground state $\Psi_{0}(x)$:

$$
\begin{equation*}
\int_{-\infty}^{\infty} \frac{\tilde{x}^{\prime} \psi_{0}\left(x^{\prime}\right) d \tilde{x}^{\prime}}{\operatorname{ch} d\left(\tilde{x}-\bar{x}^{\prime}\right)}=i \Lambda^{2} \operatorname{sh} \frac{i}{2} \frac{d}{d \tilde{x}} \Psi_{0}(x) . \tag{3.49}
\end{equation*}
$$

With the aid of (3.20) this relation can be rewritten in the form

$$
\int_{-\infty}^{\infty} \frac{\bar{x}^{\prime} K_{i x^{\prime}}\left(\frac{\Lambda^{2}}{2}\right) d \tilde{x}^{\prime}}{\operatorname{ch} J\left(\tilde{x}-\bar{x}^{\prime}\right)}=i \Lambda^{2} \operatorname{sh} \frac{i}{2} \frac{d}{d \tilde{x}} K_{i i}\left(\frac{\Lambda^{2}}{2}\right)=\frac{i \Lambda^{2}}{2}\left[K_{i x-\frac{1}{2}}\left(\frac{\Lambda^{2}}{2}\right)-K_{i \tilde{x}+\frac{1}{2}}\left(\frac{\Lambda^{2}}{2}\right)\right] .(3.50)
$$

Formula (3.50) is easily reduced to the Kontorowich-Lebedev transformation, which is often used in solving the boundary value problems:

$$
\begin{array}{r}
g(t)=\int_{0}^{\infty} f(q) K_{i q}(t) d q, \tag{3.51}\\
f(q)=\frac{2}{\pi^{2}} \tau \operatorname{sh} \pi q \int_{0}^{\infty} g(t) K_{i \tau}(t) \frac{d t}{t} .
\end{array}
$$

As it follows from (3.50) and (3.51) in our case

$$
\begin{equation*}
f\left(\bar{x}^{\prime}\right)=\frac{\tilde{x}^{\prime} \cdot \operatorname{sh} \pi \tilde{x}^{\prime}}{\operatorname{ch} 2 \pi \bar{x}+\operatorname{ch} 2 \pi \bar{x}^{\prime}}, \quad g\left(\frac{\Lambda^{2}}{2}\right)=\frac{i \Lambda^{2}}{4 \sin \pi \bar{x}} \operatorname{sh} \frac{i}{2} \frac{d}{d \bar{x}} K_{i x}\left(\frac{\Lambda^{2}}{2}\right) \tag{3.52}
\end{equation*}
$$

The c.s. (3.44) and (3.45) form an overcomplete system of functions, but they are nonorthogonal. The scalar product and the completeness condition for the c.s. in the p-representation are written in the following form:

$$
\int_{-\infty}^{\infty} \psi^{*}\left(y_{1}, \alpha\right) \psi\left(y_{p}, \beta\right) d k_{p}=e^{\alpha^{*} \beta-\frac{1}{2}\left(|\alpha|^{2}+|\beta|^{2}\right)}
$$

$$
\begin{equation*}
\frac{1}{\pi} \int_{-\infty}^{\infty} d^{2} \alpha \psi\left(x_{p} ; \alpha\right) \Psi\left(y_{p}^{\prime} ; \alpha\right)=\frac{\delta\left(x_{p}-x_{p}^{\prime}\right)}{m c c h \frac{f_{2}}{*}}=\delta\left(k_{p}-k_{p}^{\prime}\right), \quad d^{2} \alpha=d \alpha_{1} d \alpha_{2} \tag{3.53}
\end{equation*}
$$

In the x-representation the scalar produot and the completeness condition for the 0.s., as well as the orthogonality (3.24) and completeness (3.26) conditions for the wave functions (3.21), have the nonlocal form:

$$
\begin{align*}
& \int_{-\infty}^{\infty} d x \psi^{*}(x ; \alpha) \operatorname{ch} \frac{i \hbar}{2 m c} \frac{d}{d x} \psi(x ; \beta)=e^{\alpha^{*} \beta-\frac{1}{2}\left(|\alpha|^{2}+|\beta|^{2}\right)} \tag{3.54}\\
& \frac{1}{\pi} \int_{-\infty}^{\infty} \psi^{*}(x ; \alpha) \operatorname{ch} \frac{1 \hbar}{2 m c} \frac{d}{d x^{\prime}} \psi\left(x^{\prime} ; \alpha\right) d^{2} \alpha=\delta\left(x-x^{\prime}\right)
\end{align*}
$$

It is clear that the functions (3.44) and (3.45) in the pand $x-r e p r e s e n t a t i o n s$ respectively, when $c \rightarrow \infty$ go into the c.s. of the nonrelativistic linear oscillator

$$
\begin{align*}
& \Psi(y ; \alpha) \underset{c \rightarrow \infty}{\rightarrow} \widetilde{\Psi}(\rho ; \tilde{\alpha})=\frac{1}{(\pi m \hbar \omega) / h} \exp \left\{-\frac{1}{2}\left(\tilde{\alpha}^{2}+|\tilde{\alpha}|^{\prime}\right)-\frac{p^{2}}{2 m \hbar \omega}+\tilde{\alpha} \sqrt{\frac{2}{m \hbar \omega}} p\right\}, \tag{3.55}\\
& \Psi(x ; \alpha) \rightarrow \tilde{\tilde{U}} \boldsymbol{\Psi}(x ; \tilde{\alpha})=\left(\frac{m \omega}{2 \hbar}\right)^{\frac{1}{4}} \exp \left\{\frac{1}{2}\left(\tilde{\alpha}^{2}-|\alpha|^{2}\right)-\frac{m \omega}{2 \hbar} x^{2}+i \sqrt{\frac{2 m \omega}{\hbar}} \tilde{\alpha} x\right\},
\end{align*}
$$

where $\tilde{\alpha}$

$$
\begin{equation*}
\widetilde{\alpha}=\lim _{c \rightarrow \infty} \alpha=\frac{\bar{P}}{\sqrt{2 m \hbar \omega}}-i \sqrt{\frac{m \omega}{2 \hbar}} \bar{x} \tag{3.57}
\end{equation*}
$$

The dynamical symmetry group for the second model (3.2) of relativistic oscillator, generating its energy spectrum, is also the group $\operatorname{SU}(1,1)$. This follows from the fact that the total Hamiltonian for this model is represented in the form

$$
\begin{equation*}
H=\hbar \omega\left(a^{+} a+\frac{1}{2}+\frac{m c^{2}}{\hbar \omega}\right) \tag{3.58}
\end{equation*}
$$

both in the $p-$ and x-representations, the corresponding expressions for the annihilation C and creaction C^{+}operators being defined by formulae (3.34) and (3.36). The generators of the group $S U(1,1)$, satisfying the commutation relations (2.29),
are expressed through the, operators Q and a^{+}in the standard way $/ 16,17 /$:

$$
\begin{equation*}
M_{+}=\frac{1}{2}\left(a^{+}\right)^{2}, \quad M_{-}=-\frac{1}{2} a^{2}, M_{3}=\frac{1}{2}\left(c a^{+}+\frac{1}{2}\right)=\frac{H-m c^{2}}{2 \hbar \omega} \tag{3.59}
\end{equation*}
$$

Calculating by formula (2.30) the invariant Casimir operator, we obtain that $M^{2}=s(s+1)=-\frac{3}{16}$. Consequently, the representations of the group $\operatorname{SU}(1,1)$ are characterized by two negative numbers $S_{1}=-\frac{1}{4}$ and $S_{2}=-\frac{3}{4}$, to which there correspond the irreducible unitary representations $D^{+}\left(-\frac{1}{4}\right)$ and $D^{+}\left(-\frac{3}{4}\right)$. The eigenvalues of the operator M_{3} are bounded below and equal to

1) in the case of $D^{+}\left(-\frac{1}{4}\right)$ representation: $-s_{1}+n=\frac{1}{4}+n$, i.e. $H=m c^{2}+\hbar \omega\left(2 n+\frac{1}{2}\right)$;
2) in the case of $D^{+}\left(-\frac{3}{4}\right)$ representation $:-s_{2}^{s}+n=\frac{3}{4}+n, i e H=m c^{2}+\hbar \omega\left(2 n+1+\frac{1}{2}\right)$.

The functions $|n\rangle$, which are defined by formulae (3.3) and (3.23), for $n=2 k(k=0,1,2, \ldots)$ form the basis of the irreducible unitary representation $D^{+}\left(-\frac{1}{4}\right)$ whereas for $n=2 k+1$ ($k=0,1,2, \ldots$) of the irreducible unitary representation $D^{+}\left(-\frac{3}{4}\right)$ of the group $\mathrm{SU}(1,1)$ in p - and x-spaces, respectively.

IIe express our gratitude to V.G.Kadyshevsky, A.N.Leznov, V.I.Manko, V.A.Natveev and A.N.Sissakian for valuable discussions.

APPETDIX

I. The direct calculation of the nonrelativistic limit of the wave functions, defined by relations (2.10) and (2.11), is a rather complicated problem. Therefore, we will proceed as follows. Making use of the representation (2.20) and the recurrence formula for the generalized Laguerre polynomials

$$
(2 n+1+\alpha-x) L_{n}^{\alpha}(x)=(n+1) L_{n+1}^{\alpha}(x)+(n+\alpha) L_{n-1}^{\alpha}(x)
$$

it is easy to show that

$$
\begin{equation*}
\sqrt{(n+1)(n+1+2 \mu)} \psi_{q}(5 ; n+1)=i(2 n+1+2 \mu-5) \Psi_{q}(5 ; n)+\sqrt{n(n+2 \mu)} \psi_{q}(5 ; n-1) \tag{A.I}
\end{equation*}
$$

From (1.3) it follows that $y_{p}=\frac{p}{m c}$ as $c \rightarrow \infty$, i.e..the variable $\quad S=\frac{2 m c^{2}}{\hbar \omega} e^{y_{p}}=\frac{2 m c^{2}}{\hbar \omega}\left\{1+\frac{p}{\hbar c}+\cdots\right\}$. Since the parameter $\mu=\sqrt{\frac{1}{4}+\left(\frac{m^{2}}{\hbar \omega}\right)^{2}}=\frac{m c^{2}}{\hbar \omega}$, the recurrence relation (A.1) when $c \rightarrow \infty$ takes the form

$$
\begin{equation*}
\sqrt{n+1} \Psi_{q}^{(\infty)}(5 ; n+1)=\sqrt{n} \psi_{q}^{(\infty)}(5 ; n-1)-i \sqrt{2} \eta \Psi_{q}^{(\infty)}(5 ; n) \tag{1.2}
\end{equation*}
$$

where the dimensionless quantity η is equal to $\frac{P}{\sqrt{m \hbar}}$ The solution of (A.2) is defined up to an arbitrary function of η and is expressed through the Hermite polynomial

$$
\begin{equation*}
\Psi_{q}^{(\infty)}(\zeta ; n)=\frac{(-i)^{n} \nsim(\eta) H_{n}(\eta)}{\sqrt{2^{n} n!}} \tag{1,3}
\end{equation*}
$$

Since $H_{0}(\eta)=1$, from (A.3) it follows that the function $\mathscr{P}(\eta)$ describes the asymptotic behariour of the ground state $\Psi_{q}(5 ; 0)$ when $c \rightarrow \infty$. Therefore, with the help of the representation

$$
\Gamma(z)=\sqrt{\frac{2 \pi}{z}}\left(\frac{z}{e}\right)^{z}\left\{1+\frac{1}{12 z}+\cdots\right\}
$$

for the gamma function at large values of $|z|$, fron (2.10) we obtain

$$
x(\eta)=\Psi_{-q}^{(\infty)}(5 ; 0)=\frac{m^{2}}{\sqrt{\hbar}} \frac{e^{-\frac{\eta^{2}}{2}}}{(\pi m \hbar \omega)^{1 / 4}}
$$

Thus, when $c \rightarrow \infty$ the functions $\Psi_{q}(5 ; n)$ really go into the wave functions $A_{n}(p)$ of the nonrelativistic linear oscillator

$$
\begin{align*}
& \text { In the p-representation: } \\
& \qquad \Psi_{q}^{(\infty)}(5 ; n)=\frac{m c^{2}}{\sqrt{\hbar}} a_{n}(p)=\frac{m c^{2}}{\sqrt{\hbar}} \frac{e^{-\frac{n^{2}}{2}}}{(\pi m \hbar \omega)^{1 / 4}} \frac{(-i)^{n} H_{n}(\eta)}{\sqrt{2^{n} \cdot n!}} . \tag{A.4}
\end{align*}
$$

In the same way the nonrelativistic limit is obtained in the

$$
\begin{align*}
& \text { x-representaion: } \\
& \qquad \Psi_{q}^{(\infty)}(x ; n)=\Psi_{n}(x)=\left(\frac{m \omega}{\pi \hbar}\right)^{\frac{1}{4}} \frac{H_{n}(\xi) e^{-\frac{\xi^{2}}{2}}}{\sqrt{2^{n} \cdot n!}}, \quad \xi=\sqrt{\frac{m \omega}{\hbar}} x \tag{A.5}
\end{align*}
$$

II. To find the nonrelativistic limit of the normalization constant $C_{\gamma}=(\Lambda|\gamma|)^{\mu}\left\{\Gamma(2 \mu+1) I_{2 \mu}(2 \Lambda|\gamma|)\right\}^{-1 / 2}$, it is necessary to know the asymptotic behaviour of the modified Bessel function

$$
\begin{align*}
& \text { of the first kind } \\
& \qquad I_{\nu}(z)=\sum_{m=0}^{\infty} \frac{\left(\frac{z}{2}\right)^{2 m+\nu}}{m!\Gamma(m+\nu+1)}=\frac{z^{\nu}}{2^{\nu} \Gamma(\nu)} \sum_{m=0}^{\infty} \frac{\left(\frac{z}{2}\right)^{2 m}}{m!\nu(\nu+1) \cdots(\nu+m)} \tag{A.6}
\end{align*}
$$

in the case when both the argument $Z=2 \wedge|\gamma|=2 c \sqrt{\frac{2 m}{\hbar \omega}}|\gamma|$ and the order $\nu=2 \mu \cong \frac{2 m c^{2}}{\hbar \omega}=\Lambda^{2}$ tend to infinity. Since the ratio of the argument squared to the order remains fixed, from (1.6) it follows that

$$
\begin{align*}
& I_{\Lambda^{2}}(2 \Lambda x)=\frac{(\Lambda x)^{\Lambda^{2}}}{\Gamma\left(\Lambda^{2}\right)} \sum_{m=0}^{\infty} \frac{(\Lambda x)^{2 m}}{m^{2} \Lambda^{2}\left(\Lambda^{2}+1\right) \cdots\left(\Lambda^{2}+m\right)}=\frac{(\Lambda x)^{\Lambda^{2}}}{\Gamma\left(\Lambda^{2}\right)} \sum_{m=0}^{\infty} \frac{x^{2 m}}{m!\Lambda^{2}\left(1+\frac{1}{\left.\Lambda^{2}\right)}\right)\left(1+\frac{m}{\Lambda^{2}}\right)} \simeq \\
& \quad \simeq \frac{(\Lambda x)^{\Lambda^{2}}}{\Gamma\left(\Lambda^{2}+1\right)} \sum_{m=0}^{\infty} \frac{x^{2 m}}{m!}=\frac{(\Lambda x)^{\Lambda^{2}}}{\Gamma\left(\Lambda^{2}+1\right)} e^{x^{2}} . \tag{A.7}
\end{align*}
$$

Therefore, when $C \longrightarrow \infty$ the normalization constant tends to

$$
\begin{equation*}
C_{\gamma} \simeq(\Lambda|\gamma|)^{\frac{\Lambda^{2}}{2}}\left\{\Gamma\left(\Lambda^{2}+1\right) I_{\Lambda^{2}}(2 \Lambda|\gamma|)\right\}^{-\frac{1}{2}} \simeq e^{-\frac{|\gamma|^{2}}{2}} \tag{A.B}
\end{equation*}
$$

III. Now we will show that the nonlocal quasipotential $V\left(x, x^{\prime}\right)(3.12)$, as well as the annihilation and creation operators (3.37), have the correct nonrelativistic limit. For that it is sufficient to verify that the following formulae are valid:

$$
\begin{align*}
& \lim _{\alpha \rightarrow \infty} \frac{2 \alpha^{2} x}{\operatorname{sh} \pi \alpha x}=\delta(x), \tag{1.9}\\
& \lim _{\alpha \rightarrow \infty} \frac{\alpha}{\operatorname{ch} \pi \alpha x}=\delta(x) . \tag{A,10}
\end{align*}
$$

In fact, firstly

$$
\begin{equation*}
\int_{-\infty}^{\infty} \frac{2 \alpha^{2} x}{\sin \pi \alpha x} d x=\int_{-\infty}^{\infty} \frac{\alpha d x}{\operatorname{ch} \pi \alpha x}=1 \tag{A.11}
\end{equation*}
$$

Besides, for an arbitrary infinitely-differentiable function

$$
\begin{equation*}
F(x)=\sum_{n=0}^{\infty} F^{(n)}(0) \frac{x^{n}}{n!} \tag{A.12}
\end{equation*}
$$

the relations do hold

$$
\begin{equation*}
\lim _{\alpha \rightarrow \infty} \int_{-\infty}^{\infty} F(x) \frac{2 \alpha^{2} x}{\operatorname{sh} \pi \alpha x} d x=\lim _{\alpha \rightarrow \infty} \int_{-\infty}^{\infty} \frac{\alpha F(x)}{\operatorname{ch} \pi \alpha x} d x=F(0) \tag{1.13}
\end{equation*}
$$

since for any $\mathrm{n} \geqslant 1$

$$
\begin{equation*}
\lim _{\alpha \rightarrow \infty} \int_{-\infty}^{\infty} \frac{2 \alpha^{2} x^{2 n+1} d x}{\operatorname{sh} \pi \alpha x}=\lim _{\alpha \rightarrow \infty} \int_{-\infty}^{\infty} \frac{\alpha x^{2 n} d x}{\operatorname{ch} \pi \alpha x}=0 \tag{A.14}
\end{equation*}
$$

Thus, when $\alpha \rightarrow \infty$ the functions $\frac{2 \alpha^{2} x}{\sin \pi \alpha x}$ and $\frac{\alpha}{\operatorname{ch} \pi \alpha x}$ really coincide with the function $\delta(x)$
IV. Here we will justify the sumation formula for the Hermite polynomials, which has been used in the text

$$
\begin{equation*}
n!\sum_{k=0}^{\left[\frac{n}{2}\right]} \frac{(2 \sqrt{\alpha})^{n-2 k}}{k!(n-2 k)!} H_{n-2 k}(x \sqrt{\alpha})=(4 \alpha-1)^{\frac{n}{2}} H_{n}\left(\frac{2 \alpha x}{\sqrt{4 \alpha-1}}\right) \tag{A.15}
\end{equation*}
$$

To this end let us consider the expression

$$
\begin{equation*}
Z_{n}(x)=H_{n}\left(i \frac{d}{d x}\right) e^{-\alpha x^{2}} \tag{A.16}
\end{equation*}
$$

and construct the generating function for Z_{n} with the help of formula (3.43)

$$
I(t)=\sum_{n=0}^{\infty} \frac{t^{n}}{n!} z_{n}(x)=e^{-t^{2}+2 i t \frac{d}{d x}} \cdot e^{-\alpha x^{2}}
$$

Then, after some transformation

$$
I(t)=e \times p\left\{\frac{\alpha x^{2}}{4 \alpha-1}-(4 \alpha-1)\left(\frac{2 \alpha x}{4 \alpha-1}+i t\right)^{2}\right\}
$$

$$
\begin{align*}
& \text { consequently } \\
& \qquad Z_{n}(x)=\frac{d^{n}}{d t^{n}}\left[\left.(t)\right|_{t=0}=\left.i^{n}(4 \alpha-1)^{\frac{n}{2}} e^{\frac{\alpha x^{2}}{4 \alpha-1}} \frac{d^{n}}{d \eta^{n}} e^{-\eta^{2}}\right|_{\eta=\frac{2 \alpha x}{\sqrt{4 \alpha-1}}}\right. \tag{A.17}
\end{align*}
$$

and taking now into account (3.31), from (A.17) we obtain

$$
\begin{equation*}
7_{n}(x)=(-i)^{n}(4 \alpha-1)^{\frac{n}{2}} H_{n}\left(\frac{2 \alpha x}{\sqrt{4 \alpha-1}}\right) e^{-\alpha x^{2}} \tag{A.18}
\end{equation*}
$$

On the other hand, with the aid of formula (3.22) and the definition (A.16) of $Z_{n}(x)$, we have also

$$
\begin{equation*}
Z_{n}(x)=(-i)^{n} n!\sum_{k=0}^{\left[\frac{n}{2}\right]} \frac{(2 \sqrt{\alpha})^{n-2 k}}{k!(n-2 k)!} H_{n-2 k}(x \sqrt{\alpha}) e^{-\alpha x^{2}} \tag{A,19}
\end{equation*}
$$

The comparison of (A.18) and (A.19) gives us the sought formula (1.19). We note that when $\alpha \rightarrow \frac{1}{4}$ formula (A.15) goes into

$$
n!\sum_{k=0}^{\left[\frac{n}{2}\right]} \frac{H_{n-2 \pi}\left(\frac{x}{2}\right)}{k!(n-2 k)!}=x^{n}
$$

V. In this paragraph we show that the operators α_{x} and a_{x}^{+} in the form: (3.37) satisfy the standard commutation relation

$$
\begin{equation*}
\left[a_{x}, a_{x}^{+}\right]=1 \tag{A.20}
\end{equation*}
$$

The direct use of formulae (3.37) leads to
$\left[a_{x} a_{x}^{+}\right] F(x)=2 i \int_{-\infty}^{\infty} \frac{\tilde{x}^{\prime} d \tilde{x}^{\prime}}{\operatorname{ch} \pi\left(\tilde{x}-\tilde{x}^{\prime}\right)} \operatorname{sh} \frac{i}{2} \frac{d}{d \tilde{x}^{\prime}} F\left(x^{\prime}\right)-2 i \operatorname{sh} \frac{1}{2} \frac{d}{d \tilde{x}} \int_{-\infty}^{\infty} \frac{\tilde{x}^{\prime} F\left(x^{\prime}\right) d \tilde{x}^{\prime}}{\operatorname{ch} \pi\left(\tilde{x}-\tilde{x}^{\prime}\right)}$
Let us prove that the right-hand side of (A.21) is equal to $F(x)$. To this end we substitute $F\left(x^{\prime}\right)$ in (A.21) by its Fourier-transform

$$
\begin{equation*}
F(x)=\frac{m c}{\sqrt{2 \pi}} \int_{-\infty}^{\infty} e^{i \tilde{x} y} F(y) d x \tag{1.22}
\end{equation*}
$$

Then the integration over \bar{x}^{\prime} gives for the commatator of the operators a_{x} and C_{x}^{+}the following expression:

$$
\begin{equation*}
\left[a_{x}, a_{x}^{+}\right] F(x)=\sqrt{\frac{2}{\pi}} m c \int_{-\infty}^{\infty} \frac{e^{i \tilde{x} y}}{\operatorname{ch} \frac{f}{2}} d y \int_{-\infty}^{\infty} F\left(y^{\prime}\right)\left(\operatorname{sh} \frac{y}{2}-\operatorname{sh} \frac{y^{\prime}}{2}\right) \frac{\partial}{\partial x^{\prime}} \delta\left(x-y^{\prime}\right) d y^{\prime} \tag{A.23}
\end{equation*}
$$

Performing now the integration in (A.23) over y^{\prime} with the help of formula

$$
\begin{equation*}
\int_{-\infty}^{\infty} F\left(x^{\prime}\right) \frac{\partial}{\partial x^{\prime}} \delta\left(x-x^{\prime}\right) d x^{\prime}=-\frac{d F(x)}{d x} \tag{A.24}
\end{equation*}
$$

and taking again into account (A.22), we come to the conclusion that the right-hand side of (A.23) is really equal to $F(x)$

1. H. Yukawa. Phys. Rev-; 91, 415 (1953).
2. M. A. Miarkov. Nuovo Cim., 10, 760 (1956).
3. П. Н. Воголобов, В.А. петвеев, В.В.Струмиискии. Мрепринт (ОНЈ P-2442, $170 \mathrm{~m}, ~ I 965$.
4. R.P.Feynman, MoKislinger and F.Ravndal. Phys.Rev., D3, 2706 (1971).
5. Y.S.Kim and M.E.Noz. Phys.Rev., D8, 3521 (1973); D15, 335 (1977) Y.S.Kim. Phys.Rev., D14, 273 (1976).
6. R.J.Glauber. Phys.Rev.Letters, 10, 84 (1963); Phys.Rev., 130, 2529 (1963) ; 131, 2766 (1963).

7. V.A.Matveev and A.N.Tavkhelidze. JINR preprint E2-5141, Dubna, 1970.
 10.I.V.Polubarinov. JINR preprint E2-9392, Dubna, 1975. 11. A. A.Logunov and A.N.Tavkhelidze. Nuovo Cim., 29, 380 (1963). 12. V.G.Kadyshevsky. Nucl. Phys., B6, 125 (196B);
V. G.Kadyshevsky and M.D.Matecv. Nuovo Cimento, 55A, 275 (1968).
13.V.G.Kadyshevsky, R.M.Mir-Kasimov and N.B.Skachkov. Nwovo Cimento, 55A, 233 (1968). 14.M.Freemen, M.D.Mateev and R.M.Mir-Kasimov. Nucl.Phys., Bl2, 24 (1969) .
 THI 8, 6I (I97I).
8. V. V.Dodonov, I.A.Malkin and V.I.Manko. Physica, 72, 597 (1974). 17. A.0. Barut. Phys.Rev., 139B, 1433 (1965).
9. І. А. черников. пеждународная школа теоретической физики при OHJH, т. 3, ISI, , уонa, 1964.

Received by Publishing Department on March 29 1979.

