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OSp(1, 4 -cynepnonA B KupanbHOM NpPegCTaBfeHnu

U3ayueH cBoOWCTBRA 0Sp(1, 49 -cynepnonest B pacwenneHHon /Kkupans-
Ho#/ napameTpusauum cynepnpocTpancTtaa O8p(1,4)/0(1,3). Hakpena cBA3b
MEXAY ACHCTBUTENbHBM M KWPaNbHuM 6a3ncamu 8 cynNepnpocTpaHcTee
W NOCTPOEHHM KOBAPMAHTHBIE MPOM3BOAHHE U MHBAPUAHTHBIE MEPH WHTErpu-
poBaHMA B KupanebHux Gaanmcax. AeTansHo wccnepoBaHa pynnosan
CTPYKTypPa KupanbHeix npeactasnenui OSp(1, 4). MocTpoens npocTedwme
OSp(1, 4) -wuHBapwaHTHwe Moaenw: OSp(l, 4) -aHanor mogenu Becca-
3yMUHO M 0O8p(1.4) ~pacuvpenve KanuBpEBOUHLIX Teopwii. O06cyw-
AAETCA CBA3b ONMUCAHHOrO GOpPMAnMaMa C CyneprpasuMTauuen.

Pa6ora suwnonHewa B JlaBopatopuu Teopetuueckon dmauxkm OUAHU.

Coo6menne O6beaHHEeHHOrO MHCTHTYTA siNepHsIX Hcclegobakuit. [y6ua 1878

Ivanov E.A., Sorin A.S. E2 - 12364
O8p(1,4)-Superfields in Chiral Representation

The properties of OSp(1,4) -superfields in splitting {chiral)
parametrization of the superspace OSp(1,4)/0(1,3) are studied.
We find the connection between the real and chiral bases in super-
space and construct covariant derivatives and invariant integra-
tion measures in chiral bases. The group structure of chiral re-
presentations of OSp(l, 4) is examined in detail. The simplest
linear O (1, 4) -invariant models are presented: the OSp(1.4) -~ana-
log of the Wess-Zumino model and OSp(1, 4) ~extension of the Yang-
Mills theory.We discuss also the relation of the described forma-
lism to supergravity.

The investigation has been performed at the Laboratory
of Theoretical Physics, JINR.
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I. The present paper is the continuation of the paper
where the 0Sp(1,4)-superfield formalism in the symmetrically
paranetrized superspace has been described., Here we pass to the
non-gymmetric, splitting parametrization of  the superspace
05p(1,4)/0(1,3). The basic property of this parametrization is
that the right- and left~handed components of corresponding Grass-
mann coordinate enter into superfield transformation rules in
eggentially different ways. Just as in the usual supersymmetry,
the splitting bases appear in many cases more convenient and
advantageous than the symmetric one,

The paper is planned as follows., In Sec , 2, we describe in
detail the connection between symmetric and splitting parametri-
zations of superspace and construct covariant superfields deri-
vatives and invariant integration measures for splitting paramet-
rization, In Sec , 3 the simplest linear 0Sp(1,4)-invariant mo-
dels are set up: the 05p(1,4)-analog of the Wess-Zumino model and
0Sp(1,4 )~extension of the Yang-Mills theory. Relation to super-
gravity is briefly explained at the end of Sec . 2 and in Sec .4.
Appendix A contains explicit expressions for 0Sp(1,4)-generators
in the non-symmetric parametrization., In App. B we construct the
complete set of representations of 0Sp(1,4) induced by the Lo~
rentz supergroups (see Sec , 2) in invariant spaces of the lo-
rentz group.

In what follows, the paper/1/ will be cited ag I,
Respectively, formulas from I will be referred to as (I.n), n being
the number of given formula in I, Notatioreare the same as in 1.

2. To shed morelight on the results of paper I and, especially,
to clarify the meaning of the restrictions (I.35+) (which seem,
at first sight, quite mysterious) we adopt here a more general
point of view on the relation between the real superspace and
chiral ones. Namely, we pursue to show that the variable change
(I.41) and its right-handed analog naturally emerge within the




coordinate transformations to the following new complex para-
metrizations of cosets 0Sp(1,4)/0(1,3):
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Hereé;(x,@) is an element of the coset 0Sp(1,4)/0(1,3) in the
gymmetric parametrization (I.16),Q:= #Q are the left-
and right-handed components of spinor 0Sp(1,4)-generator which
form, together with the lorentz generators P1ﬁv ,two complex
conjugated graded subalgebras of 05Sp(1,4), S+°C(M).,\,, Q_t )z

[y Qe 460, {Qe, Q= TO™ £ M0 o
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(we call them, resp., left- and right-handed Lorentz superalgebras).
Cumbersome calculations utilizing the Baker-Hausdorf for-

mula, structure relations (I,1) and (2), and the Grassmann nature

of coordinates Bx indicete that G(x,B) admits a representation

in the two equivalent forms
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X;(X,Q)'Q;(X,Q) and X:(X,Q),QS(X,Q) being just the functions
given by relations (I.41) and by those arising from (I.41) after
the change 9_,_‘-' 6__ while 'ZR and QL are expreesed as

"('z(x,9)=6_+-§";Lrnzf-9l¥)-x19+=(14-%59)6'2 )
R-(%,0)= 0.+ %Lmzﬁg'x59_= (1+280)8",

In what follows, the bases XL, GL, Pl’* and XR‘ gt N VzL asgocia~
ted with coset parametrizations (1+) and (1_) will be referred
to as left- and right-handed, respectively.,

It is clear now that X;,Q; and XJE , 9: are nothing but coor-

dinates of the homogeneous spaces 0Sp(1,4)/S_ and OSp(1,4)S+.
The invariance of these superspaces with respect to the realiza-
tions of 05p(1,4) as left multiplications of elements G;+ and

G is now evident and follows directly from the structure of

Gf,Gf . It may be verified, in particular, that under the

G(x,8)=

multiplication of G¥ byG,= e¥Q coordinates X,f.‘ and 8
transform according to the law (I,42). The coordinates Q“ and
QL supplement the invariant subspaces XL,QL and Xg,en'to
the whole superspace 0Sp(1,4)/0(1,3) and have the clear neaning:
they label "points" of purely Grassmannian coset spaces S_/0(1,3)
and S+/O(1,3). Under the action of 0Sp(1,4) variables QR’ QL
transform accordirg to the left realizations of supergroups
S_, S+ on these cosets, with constant parameters if an 0Sp(1,4)-trars—
formation belorgs to S_ or S_ and, otherwise, with parameters
dependent onXL,QL or )(R,g'L , respectively. To illustrate this
point we trace in detail how 0Sp(1,4) operates, say on elements
G At .A nR
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Here Sf is an element of the right-handed I;g_}'entz’vsupergroup.
1t G, € S, then S2(6.,x 8")=tonst = Go ana W=W["(6.,0*%).
Further in this sgection we shall have to do orly with the
parametrization (1+) keeping in mind that the transition to the
basis associated with (1_) can be performed at any stage by
means of trivial interchanges Le>R “'; s L, AzlYs
Transformation properties of superfields in the left-
handed basis are defined in entire analogy to (I;l9):
~ ~ [ LMY
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where Jnv are,as in I, matrices of generators of the Lorentz
group. The transformation law (6) corresponds to a successive
inducirg: transformations belonging to S_ are induced bythe sub-
group 0(1,3) as a little group (under the action of S5_ super-
fields transform as in 0(1,3) but with parameters which are in
general functions of Qa' and constant parameters of S_) and the
remaining OSp(1;4)-transformations are induced, in turn, by
supergroup S_ (the constant group parameters in the S_ trarsfor-

L
* matior rule are replaced by suitable functions both of X~ , 8

and new group parameters determined from the composition law (5)).
The relation of superfields q’.‘(xl',el','ln) to those in the real
basis q&(xpe) (see paper I) is mot 80 simple as in the usual
supersymmetry:

?ﬁ[x‘(x,e),e‘(x,e),q'(x,O)]=(EXP{‘ZT.m%J 100t Peix®) .




Here XL;GL,nn‘ are assumed to be expressed in terms of X,8
through (I.41) and (4). Note the presence of the matrix Lorentz
factor in (7). It reflects the fact that the coset representa~
tives G(X 8) and G—(X 8, Q ) » 88 seen from the relation (3 ),
are not identical but differ by the Lorentz rotation

imix
ex -"—:-'-' GX’XSBX“M\»}} . One can be convinced that the interwining
property of this matrix:

exp{5WI6.558,7% T} exp{- By 5,05, } =
= exP{-‘—q— é’gfxse'x“’l,} exp {5 W (60,%,0) D}

(where VVrV(Gb,X,G) is defined by formula (I,18)) guarantees
for superfields ¢ defined by (7) the transfomation rule (6).
The connection (7) is, of course, invertible because {F and G«
can always be expressed in terms ofxr’gd,Q* upon inverting
eqs. (I.41) and (4).

Covariant derivatives of superfields in the left-handed ba~
8is can be found either starting from their expressions (I.26),
(I.27) in the symmetric basis and then performing the transfor-
mation (7) or directly, with the help of relevant Cartan forms
(defined by the decomposition of (G*) CL G*  in 0Sp(1,4)-gene-

rators), Without going into details of derivation, we quote the
result:

9+ ._(4+ '? vz ) m(GWV(R)va
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In the contraction limit expressions (8)-(10) become covariant
derivatives of the usual supersymmetry in the left-handed chiral
basis, The form of the derivativefb+ is so simple because it is
nothing else than the covariant der;vative of the realization of
S_ on the coset space S_/0(1,3)= e ? Its covariance with respect
to the whole supergroup 0Sp(1,4) follows from the above-mentioned
fact that the general transformation law (6) may be obtained from
the transformation law for superfields @K(X", 9",'{‘) in super-

group S_ (it corresponds to the choice qfﬁx&ﬂ%GbGS-,q')) by chan-
ging constant parameters of S_ to certain functions of coordlnates
XL and 9 (these functions are still constants relative to 7 -
differentiation),

Now it becomes clear what is the origin of the constraints
(I.35+). The condition (I.34+) in the splitting parametrization
takes the form:

(D @(xeq)) =0 (11,)
Expanding (11 ) in powers of QI(Q Q Q O)it can be observed that
for all superflelds on which the covariant derivative (8) has
nonzero, matrix part equation (11 ) permits only the trivial solu~-
tions @ O . If matrix part is zero equation (11+) goes over to
the condltlon:9 —~ L e g

-a—:né,‘()(,g,q )=0 (12)
which simply means the absence of Q -dependence, The only class
of the lorentz group representations on which the second term of
(8) vanishes is the class (I. 35 ). For scalar superfields the
matrix part is absent at all, whlle for superfields with indices
it is nullified due to the presence of projectors _::§§ in the
generators of representatlons (1. 35 ) (and the algebraic property
(L~lﬂ;ﬂv (4*“‘6;v) The constralnts (I.35_) have the analo-
gous 1nterpretat10n (1n the basis (1_)).

The restrictions (I. 35 ) can also be understood based on pure
group~-theoretical con51deraflons. So far as X 0" anda x* GR are
coordinates of the homogeneous spaces OSp(1 4)/S and OSp(1 4)/S
the superfields dependent only onx 9 or onx ea should trans—
form in 0Sp(1,4) according to representations induced by the cor-
respording little groups, 5_ or I . In other words, they should
form,ir external indices,linear multiplets of these supergroups.
In Appendix B we list all linear representations of S_ and S+
realized in spaces of finite~dimensional representations of the
Lorentz group, As follows from our analysis, some Lorentz irre~
ducible multiplet is an invariant space of the supergroup S_(S+)
only provided it transforms in the Lorentz group according to one
of the representations (I.35+) ((1.35_)) (the generator Q.. (Q+)
is zero on such a multiplet), In all other cases several different
Lorentz multiplets are needed for composing an irreducible linear
multiplet of S_ or S+. In the superfield language, this effective-
ly comes out as appearance of dependence on?“(?‘).
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It is instructive to compare the situation with tbat one
taking place in the usual supersymmetry, chiral representations
of which are induced in complex invariant spaces of contracted
veraions of supergroups S_, 5, viz, 5_(m=0), S_ (m=0), In
the contraction limit, the r.h.s. of (2a) vanish;s so that one
may set Q(m= 0) (Qy (M=0 )) zero on any given Lorentz
multiplet without conflict with the structure relations of S_
(m=0 ) (S (m=0 )) (this multiplet should be complex, other-
wise one arrives at the trivial result Q(m=0)=0 ), Thus, any
irreducible complex multiplet of the Lorentz group can be taken
as an invariant space of the supergroup S_ (m=0 ) (S ,(m=0))
and hence as a carrier of a certain representation of Ihe whole
supergroup realized on cosets over S_(m=0 ) or S (n1 © ). This
is the reason why in the usual supersymmetry chiral superfields
with an arbitrary external Lorentz index are permissible,

Note that the purely chiral repreasentations of the conformal
superalgebra are also restricted to the classes (I. 35 )/2/. This
seems natural in the 1light of +the property of the
conformal superalgebra to be a closure of two superalgebras
05p(1,4) generated by orthogonal combinations of superconformal
spinor charges and having the common 0O(2 3)-suba1gebra( Actually
05p(1,4) plays the crucial role in forming linear representation;
of the conformal superalgebra: in the forthcoming paper we show
that all they can be induced by a simple procedure in invariant
spaces of irreducible representations of 0Sp(1,4).

Now we obtain the 0Sp(1,4 )~invariant integration measures
in left- and right-handed chiral superspaces, Performing the
variable change (I.41) and (4) in the measure (I.31) we get the

invariant measure of the superspace 0Sp(1,4)/0(1,3) in the para~
metrization (1 )'

DM-= ' A ) (1r EmBE Y1+ R ") (13

(this measure could also be obtained straightforwardly as outer
product of the relevant Cartan forms). The invariant measure in
the subspaceX 8- may now be found by integrating (13) over
tmdip*

D= d%'d’9 ) (1+$mE'G") . (14)
The latter coincides with the measure we have derived earlier /8/
The measure in the superspace xR , 8% follows from (14)

through irvolution:

DTN = dYR 20Rx®) (1+ 5 mB°E").

ve conclude this Sectior with several commerts concerring

(15)

the relation of tne proup structure presented here to the funda-
sertal crniral structure of supergravity revealed recently by
Ogievetsky and Sokatcnev/a/
1t is rot hard to see tnat tne realization of 05p(1,4) i
the symmetric basis considered in 1 can be empedded into & very
reneral supergroup consisting both of arbitrary tra:slations of
X,g ard gauge lLorentz rotatiors of external superfield indices.
However, the group really relevart to supergravity ig in fact
much smaller: it is given by a direct product of yoreral coordi-
rate groups in conjugated chiral superspaces X ,9 anrd xg ek /4/.
This group is realized so that all local Lorentz rotationu appear
ir the theory not independently but turn out to te induced by
transformations of superspace coordinates (like Lorertz rotations
ir 0sp(1, 4) transformatlo‘ rules (I.19), (€)), The real part of
XL and X (X ) ig identified in the Ogievetsky-Sokatchev
approach with the usual space~time coordinate while the imaginary
part is postulated to be a function of the remaining variables.
The latter is the axial superfield, the fundamental object, in
terms of which all geometrical characteristics of superspace
(supercurvature, supertorsion, etc, ) and all transformation laws
can be expreesed, It is interesting to compare our results dedu-
ced following a quite different procedure with this general
picture,
Our starting point will be the observation that the realiza-
tionsof 0Sp(1,4) given by the rule (I.42) and its conjugate lie
in the above-mentioned general coordinate groups (just as chiral
realizations of usual supersymmetry). With this in mind, we may,
step by step, establish the correaspondence with the Ogievetsky-
Sokatchev formalesm. lee them we might choose coordinates (X
6", 8% ),(X , , Q") to represent left- and right-handed spllt-
ting bases instead of using for this purpose coordinate sets
(X g GL Q ) (XR gr , 7 ). Indeedi eq,(4) indicates that
b?" Q are canonically related toe 9 . Likewise, we miLght.
a55001ate w1th the symmetric basis the coordinates &ﬂ O&.*{h),
= 9 + 9 instead of {ﬁ ,G&. The explicit form of the equi-
valence mapping between these two sets of variables can immediate~




ly be found with the help of the relations (I,41) and their
right-~handed counterparts:

Fpu= [+ 3z (890°] s

T =6-206U+r3imxy)e,
In terms of‘i},2£ the transitions to the shifted bases are extre-
mely simple and have almost the same form as in the usual super-
symmetry

5\ (% 5By pBa®) [0

(16)

L ﬁ;

~ ~ ~N -1~
| \ZGu+ 10 p8a'®m), | of \8

So, only the shift of the boson coordinate is emsential and unre-

movable whereas shifts of Grassmann variables can be absorbed into

the equivalence redefinition of coordinates, This agrees with the

basic concepts of Ogievetsky and Sokatchev1 . It i8 clear now

what plays the role of "axial ‘superfield" for the superapace

OSQ(1.4)/0(1,3). Namely, this is 2}1"‘}- —XF);‘T‘;‘a‘Xﬂys"é'a:’(;):

=4 5&‘&9 a’(x) . It should be expected that all OSp(1,4)-

covariant objects and 0Sp(1,4)-transformation rules found in the

present paper admit reexpression in terms &f this fundamental

geometrical characteristic (and its derivatives).

117)

3, We construct now 0Sp(1,4)-snalogsof the simplest theories
with global Poincare supersymmetry: Wess-Zumino model and
supersymmetric Yang-Mills theory/7/.

3a, The 0Sp(1,4)-invariant superfield action for the self-
interacting mcalar 0Sp(1,4)-multiplet with the overall mass M
and dimensionless coupling constant g can be written as

S=Sx +Sr1+sa = IQTH @,_(X,G)qD_(x’g) +%M[I1)m'~rr+l(xl;9;)+

8)
B2 Z e 3 R3S g om
Hom* T-Gkeh)+ S9[RM T e+ fam* T " 0 )] .
L 14
The invariant integration measures Qm, @Tn and @m are
defined by formules (I,31), (14) and (15). Chiral superfields in
- *

the symmetric basis, @, and ?ﬁ.—(‘f’,_) are related to "trun-
cated" superfields 1,* and 1":(11*rt a8 in (I.37+).
T ) we aunn -

We suspect that coordinates Xm,@a (which are both shifted
when transitions to chiral bases are performed) correspond to the
Siegel's formulation of superspace supergravity /5/. This formula-

tion seems to be basically equivalent to the Ogievetsky~-Sokatchev
approach,
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Using the rules for changing variables in Grassmann integrals
and the connection (I.41) together with its conjugate we have che-
cked that the second and third pieces in (18) do not change their
form under replacementsx).:,xjf—'x N e 8 , 9“—"9_. Then, integrat-

ing (18) overd 8, going to real components 4,8,F,G :
1 . .
At=E(AtLB) , Ft=r_.-jz(Fta.G-)

and finally eliminating the auxiliary fields F
equations of motion

F=—(m+M)H-3(A‘—B‘) , 6&=(M-m)B +294B (19)
we are left with the action which includes only the physical compo-
nents QQX),H(X), B(x)
de Sitter space:

S=fam {$(VAT% 4+ vBREB+iFYUY)V, (481 o

Here V? andsD?rk are, resp,, 0(2,3)-covariant derivative and
0(2,3)~invariant integration measure for anti de Sitter space gi-
ven by (I.12) and (I.15) (in fact, the matrix part of V,-.‘f' makes
no contribution to ( 20) because of the Majorana spinor property

Y(x) Yp¥(x)=0 ). The potential Vi(4B,¥) has the form
Vi (4,8, %)= 3 (Mem)(M-2m) A%+ 2 (M-mY(M+2m) B>+ (21)

G MPY L (4% BY +gMAUN™B) +g P (A-Bpa) ¥
Expressions (20) and (21) coincide with those we have obtained
earlier by a different method 8 . In the contraction limit they
reduce to the standard Wess-Zumino/G/ action, For more details
see/e/ where the vacuum structure associated with the potential
(21) was studied,

and & by their

and is expressed solely in terms of anti

3b, OSpﬂ1,4)—invariant gauge theories are constructed analo-
gously to the usual supérsymmetric ones,

We prefer to work in the left-handed basis (1+). Let Ii be
matrices of generators of some group of internal symmetry G .
Introduce the real Lie algebra valued gauge superfield:

L.L R, _ * R L ’

VIx,0,m =V (x84 0% = Vix,e n®) I: (22)
and postulate for it the following law of local G -tranaforma-~
tions: + LR Ll R . L oL

29ViX;8in®) A8 n") 29V, 8,0%) iAx,67) (23)
e =e e e

1




where 8 is a corstant and A, At are two corjurated superfunctiors
with values in the same algebra and subject to tne conditions:
DE DEAT = (24)
@4_ A =6:D+. AT=0
( 55: and 55; are defined by formulae (8) ard (9)). Thix ic left
handed (with respsct to the Lorentz index) spinor superfield
ézsvsADf, e’-jV' . ;razsiﬁrms i: \(;f LAas haL A
2V 21, g e P e P e Doe (25)
A complication in comparison with the usual supersymmetry ari-
ses only at the stage oﬁr90q§truction of covariart superfield
strengths, The operatorﬂmﬁgbf beirng applied to the superiield
(25), does not produce the covariant quantity because ir the
0Sp(1,4)-case it does not annihilate the inhomogeneous term irv
(25). The correct generalization of the standard procedure implies
the use of the projection operator
— A )
N 4 (@2 D2 - 2m) i)
which singles out of the left-handed Spi?or OSpS},4)-superfield
the pure chiral part dependent only on X and 8 (see Appendix B).
As is shown irn Appendix B, such a superfield divides in general
into two pieces each closed under the actior of 0Sp(1,4). Ore of
them is a pure chiral superfield, the other a non-chiral super-
field, F- and A- components in the expangion of which in QR are
related as F (x" 8 )=-mAx(x", 8") (formulae (B.1?), (B.ﬂ)).
With making use of the explicit form (9) for the covariant deriva-
tive ﬁS: it can be established that the inhomogeneous term in (25)
is just a superfield of the second type. Therefore tge action of
the projection operator (26) on that term gives zero™’, As a Te-
sult, the left-handed chiral spinor superfield:

- V. Rg A B —23VAL © 29V
¢/2,0) ZSVAL 23 _ RAR e (27)
W+‘=—[2m”_ e %4_8 ]{"(m+$¢ QmL € ﬂ)-o-P
transforms in G homogeneously.A
- A - (28)
W+“" e W+¢l e
and can serve as the covariant strength, In the limit M-=20 it
becomes the covariant superfield strength of the conventional
supersymmetric Yang-Mills theory.
The invariant action for the gauge guperfield is set up in

the standard manner

7Y This Tact can be verified straightforwardly, using the al-
gebra of covariant derivatives (I.28).
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S=k[DM T(W,W,) + h.c.

(29)
and in the Wess-Zumino gauge has the form
S:Sd"xa."(x) ToLE%'IEJ‘..;EJ’“’+%ng‘5f,A+ 1 0%], (30)
where —
Foo= W -W UL + ig LV, 03] (31)
Dpd= VA + ig[ U, A] _ (32)

The action (30) describes the Yang-NMills field IYF in anti de .
Sitter space minimally coupled to the massgless Majorana spinor}ld
belonging to the regular representation of the group G'. Trans-

-formations of 0Sp(1,4)-symmetry in the Wess~Zumino gauge are as
follows :

SUL=if¥A , §D=if YYDy o)
. _~ 3
SR =‘%Grv9 F v +x5p D ’
where p:(‘,-zmxrxﬁ)‘['a‘sfx)e = A)e.
We emphasize that ;E; action (30) in itself produces no new
consequences since upon the Weyl transformation:

U (), A0, D= ) =a eV ), Xt = B A3, D=0 D(x) (34)
it reduces to the ordinary action of the corresponding supersym-
metric Yang-Mills theory in Minkowski space. This is because the
action (30) is conformally invariant and, hence, Weyl-covariant,
Moreover, the component transformations (34) can be extended to
the Weyl superfield transformation which takes the action (29)
into the superfield action of the related gauge theory in the usual
superspace (for brevity, we do not give it explicitly; it is simi~
lar to Weyl transformation of chiral superfields defined in 8 ).
This reflects the generalized Weyl covariance of supersymmetric
Yang-Mills theories caused by their superconformal invariance.

A nontrivial novel theory may be set. up, e.g.’by coupling the
gauge superfield to massive scalar O0Sp(1,4)-multiplet belonging
to a unitary representation of group [as (such interactions are
introduced in the same way as in the usual supersymmetry), Models
of this type possess no superconformal invariance (and Weyl cova-
riance) and therefore allow no transition to Minkowski space, We
intend to explore them in the future.

For completness, we finally quote general expressions for
component Lagrangian densities belonging to scalar and vectér
0Sp(1,4 )-multiplets:

13



L =a’*m[Fe) + 3m Aw) (35)
Zg(x)=a."(x)[ D) +12 m*Ax)+12 m F(x)] (36)

. 3?f andjff have the positive parity and change by a divergence
under 0Sp(1,4)-transformations,

4, In the present and preceding/1/ papers we have described
the superfield approach to supersymmetry in anti de Sitter space
and constructed the simple linear globally 0Sp(1,4)-invariant
models, We hope that the methods elaborated here can be genera-
1ized to accomodate the case of 0Sp(N,4)-supersymmetry. The const-
ruction and study of models with global 0Sp(N,4)-symmetry is an
interesting and urgent task since such models describe the "flat"
1imit of O(N)-extended supergravity a -self-contained superfield

formulation of which

Our approach is
theoretical methods,
in the text, all the
tained by a limitirg

is as yet unknown,

based on the consistent application of group-
However, as has been already explained partly
relevant relations could in principle te ob-
procedure from more general local theories.

For instance, the basic elements of 0(2,3)-formalism corstructed
in paper/1/ can be deduced ir a different manrer, by noting that
the space 0(2,3)/0(1,3) is a particular solution of Einstein's
equations with the negative cosmological term and substituting

the relevant background metric into pgeneral relativity formulae.
Likewise, the superspace 0Sp(1,4)/0(1,3) (as well as 03p(1,4)/5_
and OSp(1,4)S+) is expected to be a particular solution of equa-
tions of superfield supergravity/4’5’9/. Therefore, all relatiors
of 0Sp(1,4)-covariant formalism should result from general for-
mulae of a self-contained superfield supergravity on inserting

the corresponding particular values of gauge guperfields, To
verify this, we might proceed,say, from the explicit form of
0Sp(1,4 )-solution for the Ogievetsky-Sokatchev axial superfield
found in Sec., 2. But, as a closed formulation of 0sp(1,4 )-super-
gravity (as well as of conformal one) in terms of the axial super-
field (an invariant action, superfield equations of motion,etc.)
is not constructed for th31g§me being, it is simpler to work with-

certain gauge of the complete superfield theory. A particular set

in component supergravity which seems to be euivalent to a

of gauge fields of component supergravity related to the super-
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space 05p(1,4)/0(1,3) includes (in our notation) 0(2,3)~ de Sitter
golution for the vierbein e°'=8; a(x) and the constant solu-
tion for the auxiliary field S=3yZ2m (all other gauge fields,
Vju N qr, P take zero values), Ingerting this set,e.g, in the
general transformation law for a scalar multiplet of local super-
symmetry/11/ with the restriction to 0Sp(1,4 )-transformations
only, one recovers the transformation law (I,43). Analogously,
starting from general couplings of a scalar multiplet with super-
gravity 12/, it is possible to regain the action considered in
Sec, 3, The advantage of the approach we have developed is that
it allows one to deduce all the relations of 0Sp(1,4 )-supersym—~
metry on the basis of 0Sp(1,4)-superalgebra (I,1) alone and pro-~
vides a deep understanding of the group structure of this impor-
tant second global limit of local supersymmetry. Moreover, it may
gerve as a useful guide in constructing a closed superfield formu-
lation of 0Sp(1,4)-supergravity,
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Appendix A, 0Sp(1,4)-generators in nonsymmetric parametrization,
Taking into account that the left- and right-handed splitting
bases (1,), (1_) are related through involution, it is sufficient
to know expressions for generators in one of them, say in the
basis (1+):

My =085 35 X5 3) +5 BB 3z, + MBS (A1)

Q=-oc'ayAlx") xf‘GLJ,‘.fLA(x“)B- 80 U-Fimx. ’]aa‘au T ae2)
HALZBGYAGIQS + H A (X )G + Hm Kps ) 8 M3

p-mixt 2, =
Rp= ({55 B moxfx )35+ BB 6 s

+ m?-xL\’MS- (A.3)

xfn 95;. r‘v .
Here
s =R d
Mfw = ."zyz ES“' ﬁ" + 'wa (A.4)
Qs— =L(4'%En21)‘32$g+ t”jn‘-' Grv?gj‘rv (A.5)
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are generators of supergroup S_ realized ir the coset space

s_/0(1,3).
Appendix B.Irreducible spaces of supergroups S_ ard S+.

In Sec. 2 we have remarked that linear representations of
the supergroup 0Sp(1,4) in the parametrizations (1+), (1_) can be
regarded as induced in invariant spaces of its supersubgroups S_,
S
words, given,e,g,,a space closed under the action of 5_ M

CP.:(QRFPK“IRNK *?R'ZRB-L (B.1)

( K Dbeing the external Lorentz index), one immediately arrives at

4 respectively (with 0(1,3) as the structure group). In other

the space invariant under the whole supergroup 0Sp(1,4) (and, hence,
carrying its some linear representation) simply replacing cons-

tant coefficients in (B.,1) by functions over the homogeneous space
0Sp(1,4)/5_:

P&'NK’B“—’ PK(XLv GL)7N‘(XL’ QL)’ B"(XL‘ QL) . (B.2)

So, the problem of implementing all inequivalent linear represen-
tations of 0Sp(1,4) in the left-handed basis (1+) reduces to fird-~
ing all inequivalent irreducible invariant spaces of supergroup
S_ of the type (B.1) (the analogous statement,with the change 5%
S+, holds also for the right-handed basis). Henceforth, we

restrict our consideration to the case of 5_ keeping in mind that
invariant spaces of S+ can be obtaineq from those of 5_ by involu-~
tion (just as S, itself from S_).

To obtain all the irreducible S_-invariant spaces of type
(B.1) it is sufficient to find the spectrum of two Casimir opera-
tors of S_:

S- [ ST vfl 5-
C MruMs S“’___ Q Q Cz M M r Léﬁ M MP’I’ (B-B)
where rqfv ’ Q T -~are given by (4.4) and (A 5). Inserting in
(B.3) the explicit forms for generators and u51ng (8) we get:

(C,) E.1(@) 50) + )f, -(K,+K) (B.4)
where 9),. ﬂ)e (%RP (EDf e

parts of the Casimir operators of the Lorentz group;

~ Y ‘ 2
=Uvjp Kz=i€rv va). (B.5)
1 N ' 2 J1v Jp

We suppose that external indices of superfields (B.1) are rotated

and Kv’ KZ are purely matrix

by the finite-dimensional irreducible representations of the Lo~
rentz group, .’)(P"H , Where P and G- are positive integer and

3) We apply here terms "invariant space™ and "superfield"
on equal footing.
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half~-integer., For such representations the spectrum of operators
(B.5) has the form:

RP¥) = Yp(pei)+ g gr1), Ra™ Y =lp(prt)-Hglgeen) | (3.6)

Nqﬂ the use of the simple identity for the covariant derivative

i Yl
~ A 2 A -~ —:\. ~
(DEDAY = (KimRa) +2mD fD:
yields the spectrum of operator C, K
CrR)EV =1201v29) . (5.7)

Finally, the total spectrum of operators C and Cz on super-
fields (B.,1) is given by:
-~

Cf’;f)’—hp(pﬂ lq (ge)rd(142g), ciPvL fp(p+1) . (8.8)
It is seen that the eigenvalue of Cz is uniquely determined by
the superfield external index,K . At the same tlm?{ to each fixed
¢ ‘there correspond two different eigenvalues of C, distingui-
shed by signes (+,-). Consequently, each superfield (B,1) with
the fixed Lorentz index (i.e.P and § fixed) contains two irre-
ducible inequivalent subspaces of supergroup S_. The normalized
projection operators which single out these subspaces are construc-
ted in a standard manner:

A ( AR A -
P €, - &5y - ﬁbf DE-[13 U+r2q9]1m o)
* Fyswwww - ITY
). PPt B.9
c:(:’) c1(+) 2m (1"23')

(; ) (, (P'%') {Fl%) ", (r
(”:$r+ :"!r),_,’ ” n(f'?)” Py _ O)

With the help of these operators irreducible parts of a superfield
é (yz ) are expressed as follows

B2 N=(N )= R Q(YNJc—HG*M%)]P (8107
where
ey mL 1% (+24)] P + 4B (B.11)
+ 2m(1+29)
and \{ are the operators projecting out of A&x Lorentz irredu-
cible pieces:

1 4- LY { . A
(=5 2(«2?;)[”(1 29)+ 4657 Jw] )

From (B,10) and (B,12) it follows that the Qg ~independent
inveariant spaces do exist only for sign minus in' (B, 10). Indeed
nnly in this case we may nullify the coefficient for q '2 (by k
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putting there%=()), For reprqsentations D(mo) the generators
Dry contain the projector t%fxr , therefore, due to the trivial
algebraic property (4—}!’-6"’")‘}(4*2‘7‘6' v):xzo,the componer:t (Y-/\/)'"<
is zero automatically, Analogously, for supergroup S+ the QL -
independent invariant functions exist provided their external in-
dices belong to representations]yo’?) of the Lorentz group. These
results explain why 0Sp(1,4) has no left-handed chiral superfields
with g,;to and right-handed chiral ones with P#O (see Sec . 2).
The projection operator which singles out theizk ~independent in-
variant spaces of supergroup S__has the very simple form:

n(P'o)___ 2m - éo-nﬁ):

(B.13)
m
As an example, we list here the simplest irreducible spaces
of supergroup S_.
a. Scalar superfields(P‘:Cb':O) .
4 (0,00 le S + —ep/t R Ryt
peo_ [E=2, D nN=PT N- mpfptp

2 ) atou)_

¢ (—)"O ’ C%—(VZ!)'—: P

b. Spinor superfields (P=0 ,cr),:‘E or P35 ,4=0).
~(0,1/2) o -
G o o[ Cor =6, Ealg")- B Na67") - 3 mi " B
2 ) 2 (0,2) ~.

Cier =2, B=R+N Tl + D" Y

e A (‘I’,,Ol ~/+ R (n + 2 - e /+ (B.14)
C. 6] i o0 S RN E TR
Cf (_),=3, é‘(q ):8\' (B.15)
c. Vector superfields (P=4E ,%«=4§ ).
A0M2,42)_a T+ _pt. T+ ALY —
E(q/z,q/,) ¢ Coy =9, @r('zﬂ)—-@ﬁl\/v( )"v'TiX xr)'zl‘%m'zl'{e:
2 = o~

(.4 ~_ - — _ .
LTG5, Pat BN e Mo Py

The boson components oflgll these superfields have the struciyre
S..,;_p, Vﬂi-;, ”r'Nr' ' /V}.,v where S, P, V. ,}4}.,, Nj‘“’ and Ay
are, resp,, scalar, pseudoscalar, vector, axial vector, antisym-
metric tensor and its dual, all real;

Note that for P fixed (hence, C, fixed) there always exist
two different values of %r to which the same eigenvalue of the
Casimir operator {; corresponds, These 1} are shifted by 1/2.

18

By the Schur lemma two such representations gj the supergroup S_
are equivalent, Thus, the scalar superfie%lf?+(qf) from the
above set is equivalent fo the spinor one CP‘(Q') that gxay easily
be verified by acting on@oy the covariant derivative D, (P>N
/V:~P:). A’r_lgll;ogc;usly, one may be convinced of that the s i:nor :u-—
perfield é‘* {}z )is equivalent to the vector superfield ;‘(Vl ).

References

1. Ivanov E.A., Sorin A.S., preprint JINR E2-12363, 1979, Dubna.
2, Aneva B,L,, Mikhov S,G., Stoyanov D,T,, Teor,Lat,Fiz.,
1977, 31, p. 177.
3. Ivanov E,A,, Sorin A.S., preprint JINR E2-11610, 1978, Dubna;
Teor, mat, fiz. 1979, 39, p. 172.

4, Ogievetsky V.I., Sokatchev E,, Nucl,Phys., 1977, B124, p. 309;
Phys.lett., 1978, B79, p. 222; Yad, fiz., 1978, 28, p. 1633;
Talk presented at the Seminar on quantum gravity, loscow,
1978.

5. Siegel W,, Gates 5.J., Nucl,Phys., 1979, B147, p. 77.

6. Wess J., Zumino B., Nucl.Phys., 1974, B70, p. 39;

Phys.Lett., 1974, B49, p.52,

7. Perrara S,, Zumino B,, Nucl.Phys., 1974, B79, p. 413,

8. Ivanov E.A., Sorin A.S., preprint JINR, E2-12331, 1979, Dubna,

9, Wess J., Zumino B.,Phys.lett., 1977, B66, p. 361;

1978, B79, p. 394.

10, Ferrara S.,, Grisaru li,T., P.var Nieuwenhuizen, Nucl.Phys.,

1978, B138, p. 430,

11. Ferrara S., P. van Nieuwenhuizen, Phys.,Lett., 1978, B76,

p. 404,

12, Cremmer E,, Julia B,, Sckerk J,, Ferrara S., Girardelloc L.,

P. van Nieuwenhuizer, Phys,lett., 1978, B79, 231;
Nuecl,Phys,, 1979, B147, p. 105.

Received by Publishing Department
on April 2 1979.

19




