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HsaHos E.A., CopHH A.C. E2 - 12363 
Cynepnoneao~ no,qxo,q K cynepc~MMeTp~~ e npocTpaHcTae 
aHT~tt ,qe CHTTepa 

Pa3BHT cynepnoneeo~ no,qxo,q K rnofianbHoH cynepcHMMeTpHH 
a npocTpaHcTae aHTH ,qe CHTTepa. YcTaHoaneH~ oF~He TpaHc~opMa~HoH­
Hble 3aKOHbl .QllR OSp(l. 4) -cynepnonel1 H nocTpoeHbl see OCHOBHble 
311€M€HTbl 0Sp(1,4) -KOBapHaHTHOrO 4lOpMaJlH3Ma B CHMM€TPH4HOM 6a31-1C€, 

TaKHe, KaK KOBapHaHTH~€ npOH3BOAHble, HHBapHaHTHaR Mepa HHTerpHpO-
BaHHR s cynepnpocTpaHcTse 08p(l.4)/0(1.3) H T • .Q. Hccne.QyiOTcn so-
npocbl npHBO.QHMOCTH 08p(l.4) -cynepnone~ H Ha~.QeHa peanH3aliHR 0Sp(1.4) 
a neeoM H npaaoM KHpanbHblx cynepnpocTpaHcTaax. 

Pa6oTa Bblno~eHa B na6opaTOPHH TeopeTH4eCKO~ $H3HKH OH~H. 

Co06W€HH& 06'b€LlHH9HHOr'O KHCTHTyTa SUlepHbiX HCCnenOBBHHii. ,Qy5Ha }979 

Ivanov E.A., Sarin A.S. E2 - 12363 

Superfield Approach to Anti de Sitter Supersymmetry 

A self-contained superfield approach to global supersymmetry 
in anti de Sitter space (OSp(l. 4)) is developed. General trans-
formation laws for 08p(1.4) -superfields are established, and all 
basic elements of the 0Sp(l,4)-covariant formalism in the real basis, 
such as covariant superfield derivatives, invariant integration 
measure over the superspace 08p(l.4)/0(1.3), etc., are explicitly 
given. We analyse also the reducibility questions and find realiza-
tions of 0Sp(l,4) in the left- and right-handed chiral superspaces. 

The investigation has been performed at the Laboratory 
of Theoretical Physics, JINR. 

Communication of the Joint Institute for Nuclear Research. Dubna 1979 

© 1979 06 .. QQBB6BBbl/l BHCTBryT liJ18pBblJC BCCnetlOBSHJI/1 /1y6BS 

1. Currently a good deal of attention is being paid to the 
orthosymplectic supergroup 0Sp(1,4), the minimal extension of the 
group 0(2,3) (-Sp(4)) by Majorana spinor ,generators/1-81. 

There exist obvious indications that this supergroup has 
strong relevance to the dynamics of supersymmetric theories. For 
instance, Deser and Zumino/2/ have argued that spontaneously bro­
ken supergravity should be constructed as a theory of the sponta­
neously broken local 0Sp(1,4)-symmetry (0Sp(N,4) for the O(N)­
extended supergravity). With such a construction, it becomes 
possible to remove the unwanted cosmological term arising due to 
the super-Higgs effect (through cancellation with a similar term 
coming from the pure gauge supergravity Lagrangian) and simulta­
neously to adjust the reasonable order of the mass splitting 
between bosons and fermions. An analogous approach to spontane­
ously broken supergravity was developed on the basis of the vier­
bein formulation of 0Sp(1,4 )-symmetry/4-6/. 

An additional evidence in favour of significance of 0Sp(1,4) 
is associated with its role as a subgroup in the Wess-Zumino/9/ 
conformal supergroup. In fact, the conformal supergroup is a clo­
sure of two its different graded subgroups 0Sp(1,4) with the 
common 0(2,3)-subgroup/7/. We have shown in paper/7/ that one of 

these 0Sp(1,4) is the stability group of classical instanton-like 
solutions of the simplest superconformal-invariant theory, the 
massless Wess-Zumino model, i.e. it plays there the same role as 
the group 0(2, 3) in the massless' C(' I( -theory/10/. The other 

0Sp(1,·4) is spontaneously broken on these solutions to 0(2,3 )­
symmetry. By analogy, the 0Sp(1,4)-structure of spontaneously 
broken supergravity may be thought to emerge due to a similar 

mechanism/7, 8/. Note also that the Euclidean analog of 0Sp(1,4), 
the extension of the group 0(5) by Dirac spinor generators, may 
happen to be the stability group of generalized bosonic-fermio-
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nic instantons in Euclidean supersJ~metric gauge theories (like 
0( 5) in the usual Yang- I'. ills case/11 I). 

Takir:cg into account all this, it seen.s of real importance to 
cor:cstruct and analyze theories with global 0Sp(1,4)-invariance, 
i.e. ,supersymmetric theories in anti de Sitter space - 0( 2, 3 )/0( 1 ,3 ). 
The first nontrivial theory of this type, non-linear realization 
of the 0Sp(1,4)-symmetry, has recently been considered by Zumino 

/31. He has found in particular, that the relevant Goldstone fer­
mion possesses the mass, which is twice the inverse radius of 
anti de Sitter space. This result was reproduced in another con­
text in our paper/B/ where the ordinary massless Wess-"Zumino 
model has been revealed to be the simplest linear Ei-model of 
spontaneously broken conformal and 0Sp(1,4)-supersymmetries. In 
the same paper, we have constructed the 0Sp(1,4)-analog of the 
massive Wess-Zumino model and studied its vacuum structure. Ho­
wever, the methods we have used to obtain the corresponding Lag­
rangians were, to a great extent, heuristic. It is desirable to 
have general algorithms for constructing models with linear reali­
zation of the 0Sp(1,4) analogous to those employed in the usual 
supersymmetry. 

The most adequate and elegant formulation of conventional 
linear supersymmetric theories is achieved with the use of the 
superfield concept/121. The present and subsequent/13/ papers are 
devoted to the description of a consistent superfield approach 
to 0Sp(1,4)-supersymmetry. 

The supergroup 0Sp(1,4) can naturally be realized in the su­
perspace .....- OSp( 1 ,4 )/0( 1, 3), the spinorial extension of anti de 
Sitter space ~ 0(2 ,3 )/0( 1, 3 ). For the first time, such a realiza­
tion bas been considered by Keck/11. He has studied the transfor­
mation properties of a general scalar 0Sp(1,4)superfield and per­
formed its reduction to irreducible pieces. ·But it remained un­
clear how to construct 0Sp(1,4)-invariants from superfields and 
hence how to set up nontrivial Lagrangian densities. We give 
explicitly all elements relevant to the construction of 0Sp(1,4)­
invariant Lagrangians of arbitrary structure: covariant derivati­
ves of superfields with any external Lorentz index, invariant 
measures of integration over superspace, etc. 

The paper is organized as follows. In Sections 2,3 w~ desc­
ribe the 0Sp(1,4)-covariam superfield techniquesin the symmetri-
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cal-parametrized superspace proceeding from general theory of group 
realizations in homogeneous spaces. In Section 4, we study the 
problem of reduction of general 0Sp(1,4)-superfields and find 
realizations of 0Sp(1,4) in the left- and right-handed chiral su~ 
perspaces. 

2. The structure relations of the superalgebra 0Sp(1,4) can 
be taken as/1 ,3/ 1 ) 

[Mr~,M.~.p] = L(~i"fMv,~.+-~~~.,\Mrf'-7rAM~~f- (~~fMrA) 
[MJ'I"~~, RAJ= U?~~;Rr- '?ro.R.v), IRr,RvJ=-i. m~Mrv 
[MJ"v,Q] =- ~ SrvQ , [Rr,QJ=- 'i d"rQ 

( 1 a) 

( 1 b) 

{ Q , Q} = t,.. Rtt + T G r\) M r" · 
Even generators R.J"' and Mrv form the algebra of the group 
0(2 ,3), M f1ll being the Lorentz subgroup generators. The odd gene­
rator ~ has transformation properties of the 0(2,3)-spinor 
and obeys the Majorana condition Q=CQT. We have introduced 
explicitly into (1) the dimensional parameter of contraction 
m (Ctril=-[i) to have at each step clear correspondence with the 
standard supersymmetry whose algebra results from (1) in the 
limit m- 0 

Since 0(2,3) is the group of motions of anti de Sitter space 
1

1
4•

15
/ its spinorial extension 0Sp(1,4) determines the simplest 

possible supersymmetry in this space. Like its Minkowski counter­
part, 0Sp(1,4)-symmetry admits the natural representation in a 
superspace XJ'I 1 9-. but with anti de Sitter space as the even sub­
space/1•31. Clearly, to construct the 0Sp(1,4)-covariant forma­
lism in superspace one needs, first of all, basic relations of 
the 0(2,3)-covariant formalism in anti de Sitter space. 

Anti de Sitter space is a space of constant negative curva­
ture homeomorphic to the homogeneous (coset) space 0(2,3)/0(1,3). 
Due to the latter fact we can take advantage of general construc­
tive methods of group realizations in homogeneous spaces/16-19/. 

One-to-one correspondence between the coset space 0(2,3)/ 
/0(1,3) and anti de Sitter space means that coordinates of the 

1) Our conventions on metric "3.nd ¥ -matrices coincide with 
those of Salam and Strathdee/12/. Indicesf1,v,p,A refer to Lo­
rentz vectors andc:><:,JS,t,& to spinors. Summation over repeated 
indices is meant everywhere. 
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latter can be identified with parameters of left cosets of group 
0(2,3) over its subgroup 0(1,3). To different parametrizations of 
cosets there correspond equivalent systems of curvilinear coordi­
nates in anti de Sitter space. Of common use is the exponential pa-
rametrization 

exp{ L t:f'l Rf4} L, 
where ~ is the set of the Lorentz group elements. However, we 
find it more convenient to deal with the coordinates Xr related 
to :z. by 

~r m~ d + t' 
Xt<=~r ~ --r , ~ex).!.. exp{i.~(x)Rr} (2) 

m.:c 
with~= J t;t' i;. 2 ). This choice is advantageous as it diagonalizes 
the metric of anti de Sitter space and makes most simple covariant 
derivatives of fields. Note that X J' are stereographic projec­
tions of the Cartesian coordinates on a four-dimensional hyper­
sphere with radius 4/nn in a five-dimensional pseudo-Euclidean 
space with metric Per", 1) 3 ). · 

The group 0(2,3) can be realized in the space 0(2,3)/0(1,3) 
as left multiplications of cosets: 

J4D • r"M ~o= exp{t). n.r + t.A r~}E:Q(2,3) <JCX) :.__ ______ .:____..., i.Jt 9o~lx}=3~'J e2: <~.,x)M 14v • (3) 

Shifts with ~ 0 E 0(1 ,3) induce on Xr usual Lorentz trans­
formations which form the little (stability or structure) subgroup 
of realization (3). Shifts with ~o=-eXp{i.A.~"R..t'}result in nonli­
near transformations 

SR Xr = ~ O,r + 2 m2
C.AX)Xf'l- m:l X2A.r) <4 l 

Transformation properties of Lorentz irreducible fields fK (X) 
with respect to realization (3) can be naturally defined following 
the induced representations method: 

2) A simil~r parametrization of cosets 0(2,3)/0(1,3) has been 
used also by Gursey and Marchildon /G/. However, their treatment 
of 0(2,3)(and 0Sp(1,4)) essentially differs from ours. Together 
with rv:acDowell and Mansouri /4/ and Chamseddine /5/ they regard 
these groups as purely gauge i.e.,as acting in some internal tan­
gent space. In such a treatm~nt parameters of cosets are fields 
over usual Minkowski space-time which is not affected by group 
transformations at a·ll. 

3) These coordinates also determine a particular parametrization 
of the coset space 0(2,3)/0(1,3). Their explicit relation to 21" 
was given in refs. /1,3/. 
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I • f4.V 'l 
f~e (X')= (eXp{iu (9o,X) c..lrv} ).cf fe (X), (5) 

where ( J J1Y ),<:t. are matrices representing generators of the little 
group 0( 1 ,3) on fields 'ftc. (X) • For infini tesirr.al 0(2 ,3 )-transla­
tions (4) functions u!' 11 (.~.,X) are given bye 

t/f).,X}= m._(/X"-JtXf") = i (C/SR/- tJ"~RXf") . (r;) 

At this point, one essential remark is to be made. Insofar 
as the subgroup 0(1,3) of 0(2,3) is identified with the physical 
Lorentz group the law (5) is the most general 0(2,3)-transforma­
tion law for fields defined over anti de Sitter space (up to a 
change of coordinates). For instance, given some linear 0(2,3) 

. n-.( ) ..l-.. o<z.!ll ~ ') - rr.. ) mul tl.plet "'r X such that '±"(X)- r(X = ~ ':::t" ( .)( where 
8 is an appropriate matrix representation of 0(2,3), it can be 

decomposed into the direct sum of Lorentz irreducible fields with 
transformation ~operties (5) by m~ns of the equivalence repla-

cementcp(x)~<:p(X)=e>Cp{-i.l~x)Rf1}cp(.x),V:::ere RJ" are matri-
ces of generators R11 in the representation ~ • This phenomenon 
is a particular manifestation of the relationship between linear 
and nonlinear group realizations/171. As an important example, we 
write down explicitly the equivalency transformation by which some 

0(2,3)-spinor 't'!(X) ( R.t' = m ~ .. )is expressed in terms of compo­
nents 'Yo. (X) comprising a Lor~ntz spinor: 

'f'1<xl=(exp{ i.;" i~xl Or\ L~ 'tp (x)=J11 ~x>(1+imx'!.rl! 'Y,(x) =1\Jx) ~(X) (7) 

with 
) - 2. CX.(X - ---2- ._ • 

1 + m X /3 20/ 
The transformation (7) has been used earlier in papers ' 

(8) 

however without explanation of its group meaning. 

Let us define the covariant differentials and derivatives of 
fields f'" (X). This can be done quite simply using the rr.ethod of 
Cartan differential forms. In our case, these forms are found from 
the decomposition: 

~-~,() d~ (X) =o i.. r: (X,dX) R.u + t v;l'{X ,d.x) MN := 
( 9) = ~a.(x)d.x"R.~~- i. m2.a.(x)xt<d__xr MJ'f'. 

The for:n J'1t = CL(X)d_ X" transforms under shifts (J) homo~ene-
ously as the ~orentz 4-vector, with parameters u_f""<~o,X) and thus 
is the covariant differential of the coordinate XV • The inhomo-
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geneously transforming form vf'=-m'a..<x)(X'Hx'-x'd.Xf') (the Lorentz 
conr,ection) enters into the covariant differentials of fields ~(x): 

V"lf!:CX)=d.'fo:(X) +t)}:"(x,d.x)( 8_r,)r:l 'ft.(X) (10) 

which transform as r~(x) themselves. The covariant derivatives 
~~~(X)are naturally defined as coefficients of the expansion of 

'VIf~ (X) in forms )1/ : 

whence 
VCf ... (x) = fii<x,dx) V'r 'f, (X) ( 11 ) 

Yj. 'f~ ex)= ci
1
(X) dp ~Cxl- i. m2xr( Jrr) ... e ft (x). 

It is worth noting the useful formula 4) 
( 12) 

[ 'Vr, V).] = -i.m2. JrA <n) 
which can be deduced either directly or using the following gene­
ral method. One should evaluate the commutator of two independent 
covariant differentials (10), extract from both aides of the ob­
tained identity independent products of forms r I with taking 
into account the Maurer-Cartan structure equations for~i , ~:~, 
and, finally, identify coefficients of these products (the struc­
ture equations for anti de Sitter apace are readily extracted from 
more general ones for the superspace 0Sp(1,4)/0(1,3) which are 
given in the next Section). 

Obtained formulae allow us to construct all objects relevant 
to the geometry of anti de Sitter space. The contraction of two 
forms~$' gives the invariant inte?Val: 

d..S
2=f1:rs" = 3~, cx>d..x,. d..i" = a."cxJ 7fl" d..x~' dx v c 14) 

y . and the outer product of four forme )Ms, the invar1ant volume 
element: 

PJ'ms =r:• Af1:'1\f:5 1\ r:• 'd.'~X J-113;v11' =d." X a."(X) • ( 15) 

One immediately observes that 3:,.Cx)= a.a.(X) ~.r" playa the role of 
anti de Sitter metric, a.(x) tz.J"ll being an appropriate vierbein. 
The curvature tensor can be defined now in the standard fashion. 
As a matter of fact, its components are given already by eq. (13): 

R.J>A _ ~( t A A S') r--m br~~-~r~·' taking into account that (12) and (13) are 

~~ Hereafter we mean that the matrix part of each covariant 
derivative in operators of the typeVpV.I"' ... V;.. acts on all free 
Lorentz indices to the right of it, including vector indices of 
covariant derivatives. 
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particular cases of well known general covariance formulae (cor­
responding to the above special choice of vierbein). 

To conclude, having expressions for covariant derivatives of 
fields r.c (X) and for the 0(2,3)-invariant volume element (which 
is the measure of integration over the space 0(2,3)/0(1,3)) we can 
construct 0(2,3)-invariant Lagrangian densities of any desirable 
structure in Cf'.: (X). Also, the problem of reduction of r,.. (X) to 
0(2,3)-irreducible pieces can be solved (by representing two Casi­
mir operators of 0(2,3) in terms of covariant derivatives(12) and 
proceeding further like Grensing/21 1 in his analysis of 0(1,4)-
de Sitter fields). 

As m--.0 , all the expressions obtained reduce to their tri­
vial Minkowski analogs (within our definition of anti de Sitter 
coordinate, the complete correspondence with Minkowski space ari­
ses upon rescaling Xr .-! x,. ). 

3. To develop the covariant superfield technique for 0Sp(1,4) 
-symmetry, we shall follow, as before, general recipes of the theo­
ry of group realizations in coset spaces and represent 0Sp(1,4) 
by left shifts in the superepace 0Sp(1,4)/0(1,3). For cosets of 
0Sp(1,4) over group 0(1,3) we take the parametrization 

G:(x,9) = 0(2,3)/0<1,3) ·OSp(-f,'-l)/0(2,3) = ~<x) e.xpjl{-1- W 9e)9Q} , <16 > 

where e~ are the Grassmann coordinates associated with genera­
tor Gl~ and comprising a Majorana spinor. The parametrization 
(16) differs from that adopted by Keck/1/ and ZQmino/3/, besides 
the different choice of the coordinate system in space 0(2,3)/ 
/0(1,)) also by the opposite arrangement of even and odd factors. 
We adhere to this sequence in order that under the left shifts be­
longing to subgroup 0(2 ,) ) coordinate 9,~.. transform according to 
the induced representation law (5),i.e. ,like a Lorentz spinor. 
Within this choice, different 8 -monomials do not mix under 0(2,)) 
-transformations, and as a consequence, components of 0Sp(1,4) 
auperfielda have the uniform transformation properties (5) in all 
their Lorentz indices. At the same time, with making use of the 
parametrization by Keck/1/ and Zumino/3/, the spinor coordinate 
(denoted here by 8f) behaves like a 0(2,3)-spinor, i.e.,trans-

C"rtS ' f' S forms under 0(2 ,J )-translations as o t1 = c.~ ).. (r 9 . For this 
reason, components of corresponding euperfields, in indices asso­
ciated with 8 -monomials, form linear rnultiplets of 0(2,3) what 
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seems to us less convenient because of the lack both of uniformity 
and explicit correspondence with the ordinary supersymmetry. The 
conr:ectior, of our coordinatesXr,9a with those of Keck/1/ and 
Zumino/3/ is given by eq. (2) and by the formula of the type (7) 

s ,. n m-
et:J. = Aal <xl o~~ ( 1- 3 e e) . < 11 > 

An additional canonical redefinition of the Grassmann coordinate 
with the help 0~ e -dependent factor (1-!f9tl) in (16) is made 
to simplify subsequent formulae (it does not alter 0(2,3)-proper­
ties of ()6. ). 

Transformation properties of the superspace 0Sp(1,4)/0(1,3) 
and defined over it superfields ~ (x, 9) ( K is the Lorentz in­
dex) with respect to an arbitrary 0Sp(1,4)-transformation are spe­
cified by the formulae (compare with (3) and (5)): 

G-(x,e)- G-oG-Cx,9) :G-(x1,9') exp {~ w%-o,X,9) Mr,} (18 ) 

cFIC.(x,9)- cp; (x',Q,) = ( exp{~ Wf'(c;o,x,9) ~r~~D~t <fecx,13) <19 > 
with ( Jr"Lt again being the matrix realization of generators Mr". 

Clearly, for G;.=3aE0(2.,3) transf_,e~tions (18) and (19) re­
duce to (3) and (5). In particular, W (a.,x,fl)=u!'"(~.,X)• and 
generators M.r, and R..t in realization on superfields cp. (x,9) 
are simply 

. ~ - ~ 
Mrv=dXrdv-x .. a,d+ -r9Sr" il§ + Jrv <

2
o> 

• ( <f-ma.x.J. " 1 ") 2 - d l v 1"1 R.~. =. l -2.- a,~.+ m x.~.x J.,+~ .x"I36"AuJlr-m X Jv.tl • 
Much more involved is the structure of.£dd 0Sp(1,4)-trans­

formations generated by shifts with boo= e ~. Q. Making use of the 
commutation relations (1) and formulae of Zumino/3/, through ra­
ther cumbersome calculations we have found that generators ~~ 
realized on superfields cf)K(X,9) are of the form: 

Q ... = (1- ~ 99 M!(x){L [ (1+ ~sa)~/+ m 9.P e ¥- r:: lr"{))Jl (9 (tv- (21) 

- mx'Gj."))'J~ 94 -! cih)(t''fl)11 CJ..,+ L !i; [(2m¥rXv+G",rl9 ],. :J""} , 
where matrix f\.._JI(!C) and function ().(X) are introduced by eqs. 
(7) and (8). Differential parts of generators (20) and (21) trans­
form arguments Xr and B-. , while matrix ones change the super­
field form via the Lorentz-rotation with .kj..- and {).._-dependent 
parameters. In the contraction limit, (20) and (21) convert into 
the generators of usual supersymmetry (with additional rescaling 
xr- i Xr>. 
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We now turn to making up covariants of the realization given 
by transformation laws (18), (19). The relevant Cartan forms are 
introduced by the identity which is a direct extension of the de­
composition (9): 

-1 ' - ., • rl. 
G-cx,e)a.{;(x~fJ)~'Px,e,d.x,tl.e)Q+i.fCX,G,d.x,d.e)Ry +~ ))(x,B,dx,dl:tJ M f'A· <22) 

The forms~ , L are easily verified to transform under shifts 
(18) according to the general law (19), independently of each 
other. So they have the meaning of covariant differentials of 
coordinates X'J), (}.,_ • The inhomogeneously transforming form )).P.Ji 

is nothing but the connection over the Lorentz group (which is 
the structure group of the present realization). This form deter-
mines the covariant differentials of superfields: 

9J<P .. (x,B) =cL cf'.._<x,9} + ~ 'l>1.t( J1A ),ct <Pe cx,8 J • (23) 

Inhomogeneity of its transformation is just such as to compen­
sate the noncovariant term which arises from d~(x,B) when 

GPK(x,9) undergoes the transformation (19). As a result,~9PK(~9) 
transforms like c;PK(K, 9} itself. 

- fA Explicitly, the forms T',f111
1 )) are as follows: 

T'= (-f-~99 J{d.e"[[1 .. ~m~~(iiBt1~- !fB~~.B'J- i. f aOtJd.x"[B<tr.. mx116"~"JJ7 
fi''"=a(xJd.x"+tH-~seJ Tte (24 ) 

\)I'~ i.;:'C~-re-ea) I[G~'1+ m(XI'KJ.-l.r"J]B- m~(x"fiA- XAf1') • 
In constructing the covariant derivatives of superfields we 

shall do in close parallel with the pure anti de Sitter case. Na­
mely, we extract from :z>c:P .. (x, B) (23) the covariant differentials 
of coordinatesX11 ,94 ,i.e.,formsfi", '(:" ... and identify with cova­
riant derivatives, respectively vector and spinor, coefficients 
of these forms: 

~cpoc(X,9)"'" r" V~ cpK(lC,9) + yrt. iJ. cFoc(X,9) • (25) 
The objects thus defined are manifestly 0Sp(1,4)-covariant by cons­
truction. With the explicit expressions for Cartan forms (24) de­
finition (25) implies: 

"' i ~m- t<c-- )a z. r'l < 6) ~=a(X)dy+ Te(t .. -mx OJ"~ aa -~m X Jrv 2 

~.=<-t-!ij!99J{[(1+~m99)~ +~ e ... a'Jh- -i<t,.9l"'~- ~ csr"Bl" Jr,} (27 > 
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As m ~ 0 , these operators contract into the usual vector and 
spinor covariant derivatives of "flat" supersymmetry. Let us point 
out that dXr and dr ~nter into forms (24) and covariant deri-

Jt vatives (26) and (27) only through their 0(2,3)-counterpartsf1s 
~~ thus ensuring correct 0(2,3)-properties for (24), (26) and 

(27). Note also that the pieces of forms (24) independent of Xr , 
dXr coincide with Cartan forms for the realization of 0Sp(1,4) 

in the purely Grassrrannian coset space 0Sp(1,4)/0(2,3). 
Though the structure of covariant derivatives (26) and (27) 

is rather complicated their commutator algebra turns out, beyond 
expectation, almost as simple as in the case of usual supersym­
metry: 

[ \]r, Vv]: .. -i. m2 ~rv 
{ 

A A f'" 'J 1 "C "' ~.,..~_,}:o-~(6" Cl1119 :rv+-T('( )ol,.\1"» 
(28) 

[ vfl 'fi>.,.] = r ( ~r ~ )"' 
multiplication o~ covariant derivatives being understood here in 
the sense explained in the footnote to formula (13). To learn 
what are these (anti) commutators we have taken advantage of the 
general method mentioned after eq. (13) (the straightforward com­
putation of them is also possible, but it involves a lot of te­
dious labour). In application to the present case, that method 
consists in evaluating an antiayrnmetrized second-order covariant 
differential of <P" (x, 9) and equating afterwards coefficients 

~ ;;:;::~.,. 
of independent products of forma~ , L in both aides of the 
resulting identity. This procedure essentially exploits the Maurer­
Cartan structure equations for the auperspace 0Sp(1,4)/0(1,3): 

~~ "f<a..)-!1>, I(da) + ~i.CL"cct,J rr~ct1al- tld.a) r"r.,£41>] = o 
(29) 

5>a.f'~<d.f) -~v1,cd2)- i T<d.t)(v '[fda}= o 
;]) .. ~'td,) -~. \)PAcd 1 > -m2[f'~ct.>r"cct,>-r"cct,)f''ht,>] -i.m t<tl..1>S'tlct,l= 0 

which are derived in Appendix. 
It follows from (28) that, in contrast to the case of ordi­

nary ("flat") supersyrnmetry, 0Sp(1,4)-covariant derivatives~,~al 
do not generate the algebra isomorphic to the initial one (1). 
Indeed, relations (28), like their 0(2,3)-counterparts (13) cop-

12 

~ 
i 

; 

t 

~ 

tain only tangent space pieces of Lorentz generators. Besides, 
relative signs between different structures in the right-hand side 
of (28) are somewhat distinguished from those appearing in (1). 
Strictly speaking, relations (28) (equally as (13)) should not at 
all be referred to as introducing any algebra in its conventional 
meaning because (anti) commutators between covariant derivatives 
are defined in (28) quite differently from those between infinite­
simal group generators 5 ) (see the footnote to eq. (13)). Rather, 
eqs. (28) have to be regarded as an equivalent form of the struc­
ture equations (29). If, nevertheless, one attempts to treat (26), 
(27) as generators of certain auperfield transformations and be­
gins to commute (anticommute) them in the usual way, one immedi­
ately observes that they do not form any closed superalgebra 
(even together with 0Sp(1,4) generators (20), (21 )) and it is not 
clear to which more extensive (finite-dimensional) auperalgebra 
they could pertain. Note that (anti) commutators (in the usual 
sense) of !J,.,iJ.~. with 0Sp(1,4)-generators are again the same ob­
jects but Lorentz rotated according to the general rule (19). 
For instance: 

{~d.' Q~}= ~[:~,.wrv(~,x,e)]E-=o(6rvl/~1 (= 0 ou m -.o) . 
This way, OSp( 1 ,4 )-covariance of ~ , ~« displays itself at the 
commutator level. Recall that the covariant spinor derivative of 
usual aupersyrnmetry commutes with the 4-translation generator~ 
and anticommutes with the apinor generator. It can be defined not 
only through the Cartan forms method but also alternatively, as 
the generator of right aupertranalationa. In the 0Sp(1,4)-case, 
only the first apprbach appears constructive because the right 
action of 0Sp(1,4) on cosets 0Sp(1,4)/0(1,3) does not commute 
with the left one/11. Covariant derivatives (26), (27) cannot 
certainly be identified with generators of right 0Sp(1,4)-trans­
formationa since, as pointed out above, their "algebra" does not 
close with respect to operation of usual (anti) commuting. 

Having the explicit expressions (24) for the Cartan forma 
we may readily construct all geometrical characteristics of the 
auperspace 0Sp(1,4)/0(1,3). As in the case of conventional super­
apace, there exist three independent invariant "intervals": 

5) In usual supersyrnmetry, due to the absence of vierbein 
parte in corresponding covariant derivatives, both definitions 
completely coincide. This is the reason why these derivatives form 
the true auperalgebra (it is reproduced, of course, from (28) in 
the contraction limit). 
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f1" f'1v , '[ 'C , L ts't. • The components of the curvature and tor­
sion supertensors (in the tangent space representation) are extrac­
ted most easily from relations (28): they are given, respectively, 
by coefficients of the matrix ~ 'J.rv and covariant derivatives in 
the r.h.s. of (28)~ In obvious notation: 

Rlp:._ 2.(~~ S'_~,,~) R}.l'_. ( )f'C) Tf1_ . ( rc) 
J"" m Or.~v dj"OY, clf>-LmQ o(_j!.t IJ.J'> --t. a' J.fl• 

T~=-T.!;. =-~ m (3"r).,/ , all other components being zero. The 
same results follow from the consideration of the structure equa­
tions ( 29 ). As is expected, in the limit m~ 0 there survi vee only 
the supertorsion component f"~~ associated with the superspace of 
ordinary supersymmetry. 

To conclude this Section, we calculate the 0Sp(1,4)-inva­
riant measure of integration over superspace 0Sp(1,4)/0(1,3) (the 
invariant volume element) the knowledge of which is important for 
constructing 0Sp(1,4)-invariant Lagrangians, It is defined in a 
standard manner/22 / through superdeterminant (Berezinian) of 
the supervierbein E : 

Ben. E = d.ui. (fl.- B o-fc) d.ei o-1
, 

where the supermatrix f and matrices .4,8,(, D are introduced 

by: v -;:::d. v _? (A/cx,9J s;(x,9))- _ 
(_11, L )=(d.x,d.9) , D"' =(d..x,d.&JE(x,e).( 3o) 

C11 (X,tl) ~(X,9) 
Substituting for A, B,C, D their explicit expressions which are 
straightforwardly extracted from formulae (24), we find: 

flJm =d.~xd~e Pwr.E "'d\cte a 4(xJ[1+ imee t t m2 0H1) 2
]. 01) 

The invariance of measure (31) with respect to trJe transformations 
of coordinates Xr and f}d. genera ted by ( 20) and ( 21 ) can be veri­
fied directly, by using the rules for changing variables in the 
Grassmann integrals/23/, Its factorization has the clear meaning: 
the factor d._~ X a~(X) is the 0(2 ,3 )-invariant neasure of integration 
over the space 0(2,3)/0(1,3), and the remaining part coincides with 
the integration measure for the superspace 0Sp(1,4)/0(2,3) inva­
riant with respect to the left action of 0Sp(1,4) in that super­
space. Note that the full invariant volurr.e of the space OSp( 1 ,4 )/ 
/0(2,3) obtained by integration over the measure d'f() [14-i_rnlffl+ 

t .l rn2(9Qf.p.s 3m2 ;.>0 what is to be compared with the case of the 
cos~t space of the standard supergroup over the Poincare group the 
volume of which is zero, 
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4. Let us study tl1e problem of reduction of general OSp( 1 ,4 )­
superfield 

cf?~(x,9) = A.:(X) + 9 ~{(x) + ta9 F.Jx)+t e~,e &K(x) + 

+tSL~.f' ~sBfl~(x) + ree 9 Xl:(x) + li (99/ D~(X) 
with the standard 0Sp(1,4)-supertranslation law 

~cp"(x,9)= i.(f"Q 1><x,f}J)K, 
where E is an anticommuting constant spinor parameter, and 
is given by (21). 

(32) 

(33) 

Qc~-

In the usual supersymmetry, superfields of the type (32) are 
known to be local-reducible/121. The reduction is effected by 
imposing covariant conditions of first and higher orders in cova­
riant derivatives/12 •24/. One may attempt to proceed in the analo­
gous way also in the 0Sp(1,4)-case. The simplest covariant condi-
tiona of first order in derivatives are now 

( 
1- i.(s-) "( .... 
-;- tJ. ~, <Pcx,e))K = 0 

which directly generalize the well known constraints isolating 
chiral representations in tmusual eupereymmetry, 

(34:!:) 

Equations (34) are solved most simply when rewritten in the 
componer,t form. Examining the thus obtained system of differential 
equations we have found that, unlike the case of "flat" supersym­
metry, it possesses nontrivial solutions (if>,.. #O} not for any super­
fields but only for those which are transformed by one of the fol­
lowing representations of the Lorentz group: 6 ) 

D(p,O) . . 
for cond1t1on (34+) (35+) 

D (o,<i-l 
for condition (34 ) (35 ) - . -

where ] <P•<i-) are rna trices of nonuni tary fini te-dirnensional repre­

sentations of the Lorentz group, P and CfJ are positive integers 
and half-integers (see, e.g~ paper/14/). 

In superfields q?!K(x,8) of the classes (351) the conditions 
(34±) pick out as independent components A~~ , f±K and ~rK (the 
latter, in suppressed spinor index associated with et/... should be 
either left- or right-banded depending on the lower sign) and exp­
ress the remaining components in terms of the independent ones: 

G-H:= ±i.f:tl(., Atl( =±i.(\7f'A:t)~:: 
Y::t~:=--dt~"\7J"'t':tl"-2m 't':H. 06+) 

Dn=- ('Vf'\7.f' A:t)o:- 8 rn Fn, 
6) The group meanirg of these restrictions is explained in 

our paper /13/. 
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where 'Vr is the 0(2,3)-covariant derivative defined by (12). Note 
the similarity of (36+) to the corresponding relations of standard 
supersymmetry. The analogy becomes most striking after going back 
to the superfield notation. We have checked that the solutions 
(36+) admit the compact superfield representation: 

Z±>tK(x,9)=(exp{=fte~.rts9?f})r.e Tt (X,9t) (37 +) 

- ~ -r;cx,et)"' A:t.dx)+B:t'f'tdX) +2:9:t8:tF:tdx), (38:!:) 

where Vf is the 0Sp(1,4)-covariant vector derivative (27) and 

9+, 1±ta';n • Relations (37) are seen to appear as a direct "cova-- -all ~ 
riantization" ( df- 'V'f') of familiar formulae of "flat" supersyrrt-
metry which describe the transition to the symmetric basis in cor­
responding "truncated" chiral superfields. These formulae are just 
the contraction limit (rn:o) of (37). Without loss of generality, 

one may put <f\r.(x,9)::.cp_:cx,e) and 'T:.+<x,e+)={T;cx,eJ)* where sym­
bol ~ means involution (complex conjugation plus reversion of the 
order of anticommuting factors). 

Thus, we come to the conclusion that superfields from the 
restricted set (35+) possess invariant chiral subspaces. Those su­
perfields which are transformed by the direct sum of representa­
tions ]Cp,oJEB ] (o, Pl (they can be submitted to the reality condi­

tion) contain invariant subspaces of both chiralities. A simplest 
example is a real scalar superfield q?(x,B). It contains two irre­
ducible conjugated scalar 0Sp(1,4)-multiplets involving, as sug­
gested by the field content of (38 ),eight real independent compo­
nents. This fact has been establisEed earlier by Keck/1/ through 

a straightforward analysis of transformation properties of super­
field components. 

Further reduction of superfields (32) can be effected by im­
posing supplementary conditions of higher order in covariant deri­
vatives with the structure dictated by the.structure of Casimir 
operators of supergroup 0Sp(1,4). The corresponding procedure will 
repeat, in its main steps, that one employed in the usual case 
/1 2 •241. However, the knowledge of supplementary conditions and 
projection operators which single out higher representations of 
0Sp(1,4) is, in our opinion, rather of academic interest. Based 
on analogy with the conventional supersymmetry, it should be ex­
pected that in 0Sp(1,4)-invariant theories of real interest 
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(0Sp(1,4)-symmetric Yang-Mills theory, 0Sp(1,4)-supergravity, etc.) 

a minimal set of relevant fields will be automatically picked out 
on account of additional local invariances (with the elimination 
of a subset of auxiliary fields afterwards through equations of 
motion). 

From the existence of representations (37 ) it follows that 
+ + 

OSp( 1 ,4) can be realized on "truncated" chiral-superfields T.,.-(x,9t:) • 
To find these realizations, we reduce (37+) in analogy with the 
case of usual supersymmetry to certain nonlinear shifts of super­
field arguments. For the purpose, we unlink first the matrix and 

differential parts in the operator exp{:t.~lit'lsB G,} . This can 
easily be done using the Baker-Hauedorf formula and the basic pro­
perty of Grassmann coordinates ( 9)5= 0 • We have 

{ - i - f .... { l.ma- f ..., t exp ..-7fBK ts8V1}=exp :t 48K tsBx :J.,..Pj" 
09

> 

X e; p{+H9x'.rsBa:1

(X) dr+ 2im 08· e rs(1+t i. rn X rl ads] J ' 
where :J.,.f are matrices of generators of the Lorentz group in repre­
sentations (35 ). Applying further the general identity ef(~)J, <f'{l)= 

-= <e{e-l<~)J~t:) :!:we rewrite (37 ) as follows 

,-.J • 2. - + T .. (X , g ) + { + L L 

cp:!:K(x, ar=( exp{ + L~ ~¥'(s8 xv.J;, l~tcBr(x,9) =- T- (XR fl) ' 40:!:) 

where ~ 1 X ) 

(xt)= exp{-.}[s.r'Xs9ci1
{x) d.f' + 2i. m BB·B~s(-l+!imxcr) }91H l = 

9 \ - 2. - -i ) (41) 

(

[ 1+ __l!!_(99) Jx .. - +.-e;rr.rsBa. oq 
t6 a.(x) J -r 

= El+- meg(Q++l.i.mxcr9-) 
R L 2. ll If_ T 

and Xr = (xr)*, 9 =-CBL result from (41) simply by changes 
e+-a-. Based on these relatione, and making use of the fact 

that the realization of 0Sp(1,4) on~uperfielde 4?xK (X
1
6) (and 

on canonically related euperfields ~~K(x,Q) ) is known we are 
now in a position to deduce the 0Sp(1,4)-transformation rules of . Tt chiral superf1elds ~ • Transformation properties of their argu-

L L R l\ll 
mente Xr ' e«. and Xr I 1:70(. are uniquely determined by the pro-
perties of XP< 1 6,. owing to the explicit connection (41 ) (and the 

; A II. 
analogous one between Xr, 8-. and Xr, 6• ). As expected, these 
pairs of variables form invariant spaces with respect to the ac­
tion of 0Sp(1,4). Under the Lorentz-rotations and 0(2,3)-tranela­
tione they behave like coordinates X.r and f1a~. • Their odd trans­
formations are given by 
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~QX~ = Lci\XL)E/\(XL) ~]" 8L . (42) 

S GleL = EA(xL)[-t.,.~9L9L{1- ~ i~X~cfl')] 1 ~rs 
(iiCfinitesimal variation~ of x;' .erl are of the same forrr.. up to 
the replacementsl~R, 1~5'- 1_:ib' ). Matrix parts of 0Sp(1,4) 

T+ 2. T- 2--transformations of ..:. and .: can also be shown to depend, res-
pectively, either on x;, 9~ or+ on X~ , 9! (at this point, it is 
significant that geperators ~f~ of representations (35+) do con-
tain projectors 1± ~Ks ). -

For illustration, we write down the transformations induced 
by the supershifts (42) for components of scalar chiral super­
fields T±cx,9±): 

6Q At=~ ft (43) 

~Q f± = 1±2i.K" (-i.lr\Jr A:t + F:t) ~ 

oQF:t
1

== ~(-i.I!'J'\:Jt't':t -m 't':t) 
where J3-= K (K)E-. The laws (43) are the same as those we have found 
earlier/81. In the contract~on limit they become the usual trans­
formation laws of scalar multiplets of "flat" supersymmetry. 

];;ore detailed study of chiral realizations of 0Sp(1 ,4) will 
be carried out in subsequent paper/13/ where also some linear 
0Sp(1,4)-symmetric models will be presented, 

Appendix. The derivation of the structure equations. 

As a first step, we differentiate the decomposition (22) and 
antisymmetrize independent differentials to obtain: 

d"(Gd,G-)-d,(&daG-J= i\.d1j'41d,J-~r(d~,~R·1[d;lcd,)-J.X~&zl)l}il!Litd,) -d.,~(c:l2)] M <A. 
1 

> 
(for brevity we have suppressed Lorentz indices). Further, the 
l.h.s. of (A.1) can be written as the commutator: 

r&""·d~b-, c;.-atc;. J (A. 2) 

Inserting in the latter again the decomposition (22), making use 
of the (anti) commutator algebra (1) and finally comparing coef­
ficients of 0Sp(1,4)-generators in both sides of (A.1), we come 
to the equations (29). 
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