3093/2-79

сообщения объединенного

ииститута лаериых исследоваиий аубна

C324.1r
I-98

13/8-79
E2-12363
E.A.Ivanov, A.S.Sorin

SUPERFIELD APPROACH TO
ANTI DE SITTER SUPERSYMMETRY

E.A.Ivanov, A.S.Sorin*

SUPERFIELD APPROACH TO

ANTI DE SITTER SUPERSYMMETRY

[^0]Иванов Е.А., Сорин А.С.
Суперполевой подход к суперсимметрии в пространстве анти де Ситтера
Развит суперполевой подход к глобальной суперсимметрии в пространстве анти де Ситтера. Установлены общие трансформацион-
ные законы для $\operatorname{OSp}(1,4)$-суперпой ные законы для $\operatorname{Osp(1,4)\text {-суперполей}и\text {построенывсеосновные}}$ такие, как ковариантные производные, инвариантная мера интогрире, вания в суперпространстве оррродне, инвариантная мера интегриропросы приводимости $\operatorname{OSp}(1,4)$-суперполей и найдена редуютсл во просы приводимости $\operatorname{Osp}(1,4)$-суперполей и найдена реализация $\operatorname{Osp}(1,4)$
в
и пром
правом киральных суперпространствах.

Работа выпоянена в Лаборатории теоретической фиаики пияи.

Сообшениө Объединенного института ядерных исследовании. Дубна 1979
Ivanov E.A., Sorin A.S.
E2-12363
Superfield Approach to Anti de Sitter Supersymmetry
A self-contained superfield approach to global supersymmetry in anti de Sitter space ($\operatorname{OSp}(1,4)$) is developed. General transformation laws for $\operatorname{OSp}(1,4)$-superfields are established, and all such elements of the $\operatorname{OSp}(1,4)$-covariant formalism in the real basis such as covariant superfield derivatives, invariant integration given. We the superspace $\operatorname{OSp}(1,4) / O(1,3)$, etc., are explicitly tions of

The investigation has been performed at the Laboratory
of Theoretical Physics, JINR.

Communication of the Joint Institute for Nuclear Reseorch. Dubna 1979
(С) 1979 Объадпненный институт ядерных нсследованея Дубне

1. Currently a good deal of attention is being paid to the orthosymplectic supergroup $\operatorname{OSp}(1,4)$, the minimal extension of the group $O(2,3)(\sim \operatorname{Sp}(4))$ by Majorana spinor generators $/ 1-8 /$.

There exist obvious indications that this supergroup has atrong relevance to the dynamics of supersymmetric theories. For instance, Deser and Zumino $/ 2 /$ have argued that spontaneously broken supergravity should be constructed as a theory of the spontaneously broken local $\operatorname{OSp}(1,4)$-symmetry ($\operatorname{OSp}(N, 4)$ for the $O(N)$ extended supergravity). With such a construction, it becomes possible to remove the unwanted cosmological term arising due to the super-Higga effect (through cancellation with a similar term coming from the pure gauge supergravity Lagrangian) and simultaneously to adjust the reasonable order of the mass splitting between bosons and fermions. An analogous approach to spontaneously broken supergravity was developed on the basis of the vierbein formulation of $\operatorname{OSp}(1,4)$-symmetry $/ 4-6$ /.

An additional evidence in favour of significance of $\operatorname{OSp}(1,4)$ is associated with its role as a subgroup in the Wess-Zumino $/ 9{ }^{\prime}{ }^{4}$ conformal supergroup. In fact, the conformal supergroup is a closure of two its different graded subgroups $\operatorname{OSp}(1,4)$ with the common $0(2,3)$-subgroup $/ 7 /$. We have shown in paper $/ 7 / /$ that one of these $\operatorname{OSp}(1,4)$ is the stability group of classical instanton-like solutions of the simplest superconformal-invariant theory, the massless Wess-Zumino model, i.e., it plays there the same role as the group $O(2,3)$ in the massless φ^{4}-theory $/ 10 /$. The other $\operatorname{OSp}(1,4)$ is spontaneously broken on these solutions to $0(2,3)$ symmetry. By analogy, the $\operatorname{OSp}(1,4)$-structure of spontaneously broken supergravity may be thought to emerge due to a similar mechaniam $/ 7,8 /$. Note also that the Euclidean analog of $\operatorname{OSp}(1,4)$, the extension of the group $O(5)$ by Dirac spinor generators, may happen to be the stability group of generalized bosonic-fermio-
nic instantons in Euclidean supersymmetric gauge theories (like $0(5)$ in the usual Yang-ilils case $/ 11 /$).

Taking into account ail this, it seers of real importance to construct and analyze theories with global $\operatorname{OSp}(1,4)$-invariance, i.e., oupersymmetric theories in anti de Sitter space $\sim 0(2,3) / O(1,3)$. The firat nontrivial theory of this type, non-linear realization of the $\operatorname{OSp}(1,4)$-symmetry, has recently been considered by zumino 13). He has found in particular, that the relevant Goldstone fermion possesses the mass, which is twice the inverse radius of anti de Sitter space. This result was reproduced in another context in our paper $/ 8 /$ where the ordinary massless Wess-Zumino model has been revealed to be the aimplest linear σ-model of spontaneously broken conformal and $\operatorname{OSp}(1,4)$-supersymmetries. In the same paper, we have constructed the $\operatorname{OSp}(1,4)$-analog of the massive Wess-Zumino model and studied its vacuum structure. However, the methods we have used to obtain the corresponding lagrangians were, to a great extent, heuristic. It is desirable to have general algorithms for constructing models with linear realization of the $\operatorname{OSp}(1,4)$ analogous to those employed in the usual supersymmetry.

The most adequate and elegant formulation of conventional linear supersymmetric theories is achieved with the use of the superfield concept/12/. The present and subsequent/13/ papers are devoted to the description of a consistent superfield approach to $\operatorname{OSp}(1,4)$-supersymmetry.

The supergroup $\operatorname{OSp}(1,4)$ can naturally be realized in the superspace $\sim \operatorname{OSp}(1,4) / O(1,3)$, the spinorial extension of anti de Sitter space $\sim 0(2,3) / O(1,3)$. For the first time, such a realization has been considered by Keck $/ 1 /$. He has studied the transformation properties of a general scalar $\operatorname{OSp}(1,4)$ superfield and performed its reduction to irreducible pieces. But it remained unclear how to construct $\operatorname{OSp}(1,4)$-invariants from superfields and hence how to set up nontrivial Lagrangian densities, We give explicitly all elements relevant to the construction of $\operatorname{OSp}(1,4)$ invariant Lagrangians of arbitrary structure: covariant derivatives of superfields with any external Lorentz index, invariant measures of integration over superspace, etc.

The paper is organized as follows. In Sections 2,3 we describe the $\operatorname{OSp}(1,4)$-covariant superfield techniquesin the symmetri-
cal-parametrized superspace proceeding from general theory of group realizations in homogeneous spaces. In Section 4, we study the problem of reduction of general $\operatorname{OSp}(1,4)$-superfields and find realizations of $\operatorname{OSp}(1,4)$ in the left- and right-handed chiral sum perspaces.
2. The structure relations of the superalgebra $\operatorname{OSp}(1,4)$ can be taken as $/ 1,3 / 1$)

$$
\begin{aligned}
& {\left[M_{\mu \nu}, M_{\lambda \rho}\right]=i\left(\eta_{\mu \rho} M_{\nu \lambda}+\eta_{\nu \lambda} M_{\mu \rho}-\eta_{\mu \lambda} M_{\nu \rho}-\eta_{\nu \rho} M_{\mu \lambda}\right)} \\
& {\left[M_{\mu \nu}, R_{\lambda}\right]=i\left(\eta_{\nu \lambda} R_{\mu}-\eta_{\mu \lambda} R_{\nu}\right),\left[R_{\mu}, R_{\nu}\right]=-i m^{2} M_{\mu \nu}} \\
& {\left[M_{\mu \nu}, Q\right]=-\frac{1}{2} \sigma_{\mu \nu} Q,\left[R_{\mu}, Q\right]=-\frac{m}{2} \gamma_{\mu} Q} \\
& \{Q, \bar{Q}\}=\gamma_{\mu} R^{\mu}+\frac{m}{2} G^{\mu \nu} M_{\mu \nu} . \\
& \text { Even generators } R_{\mu} \text { and } M_{\mu \nu} \text { form the algebra of the group } \\
& \text { (2.3). M }
\end{aligned}
$$ $o(2,3), M_{\mu \nu}$ being the Lorentz subgroup generators. The odd generator Q has transformation properties of the $0(2,3)$-spinor and obeys the Majorana condition $Q=C \bar{Q}^{\top}$. We have introduced explicitly into (1) the dimensional parameter of contraction $m\left([m]=L^{-1}\right)$ to have at each step clear correspondence with the standard supersymmetry whose algebra results from (1) in the limit $m \rightarrow 0$.

Since $0(2,3)$ is the group of motions of anti de Sitter space $/ 14,15 /$ its spinorial extension $\operatorname{OSp}(1,4)$ determines the simplest possible supersymmetry in this space. Like its Minkowski counterpart, $\operatorname{OSp}(1,4)$-symmetry admits the natural representation in a superspace X_{μ}, Θ_{α} but with anti de Sitter space as the even subspace $/ 1,3 /$. Clearly, to construct the $\operatorname{OSp}(1,4)$-covariant formalism in superspace one needs, first of all, basic relations of the $O(2,3)$-covariant formalism in anti de Sitter space.

Anti de Sitter space is a space of constant negative curvature homeomorphic to the homogeneous (coset) space $0(2,3) / 0(1,3)$. Due to the latter fact we can take advantage of general constructive methods of group realizations in homogeneous spaces/16-19/.

One-to-one correspondence between the coset space $0(2,3)$) /O(1,3) and anti de Sitter space means that coordinates of the

1) Our conventions on metric and γ-matrices coincide with those of Salam and Strathdee/12/. Indices μ, ν, ρ, λ refer to Lo rentz vectors and $\alpha, \beta, \gamma, \delta$ to spinors. Summation over repeated indices is meant everywhere.
latter can be identified with parameters of left cosets of group $O(2,3)$ over its subgroup $O(1,3)$. To different parametrizations of cosets there correspond equivalent systems of curvilinear coordinates in anti de Sitter space. Of common use is the exponential parametrization

$$
\exp \left\{i z^{\mu} R_{\mu}\right\} L
$$

where L is the set of the Lorentz group elementa. However, we find it more convenient to deal with the coordinates X_{μ} related
to Z_{μ} by to Z_{μ} by
$x_{\mu}=z_{\mu} \frac{\operatorname{tg}}{} \frac{m z}{2}, g(x) \stackrel{\text { def }}{=} \exp \left\{i z^{\mu}(x) R_{\mu}\right\}$
with $Z=\sqrt{Z^{\mu} Z_{\mu}}{ }^{2)}$. This choice is advantageous as it diagonalizes the metric of anti de Sitter space and makes most simple covariant derivatives of fields. Note that X_{μ} are stereographic projections of the Cartesian coordinates on a four-dimensional hypersphere with radius $1 / m$ in a five-dimensional pseudo-Euclidean space with metric $\left(\eta_{\mu \nu}, 1\right)^{3}$).

The group $O(2,3)$ can be realized in the space $0(2,3) / O(1,3)$

$$
\begin{aligned}
& \text { as left multiplications of cosets: } \\
& g(x) \xrightarrow{g_{0}=\exp \left\{i \lambda^{\mu} R_{\mu}+\frac{i}{2} \lambda^{\mu \nu} M_{\mu \nu}\right\} \in O(2,3)} g_{g} g(x)=g\left(x^{\prime}\right) e^{\frac{i}{2} u^{\mu \nu}\left(g_{0}, x\right) M_{\mu \nu}} \text {.(3) }
\end{aligned}
$$

Shifts with $g_{0} \in O(1,3)$ induce on X_{μ} usual Lorentz transformations which form the little (stability or structure) subgroup of realization (3). Shifts with $g_{0}=\exp \left\{i \lambda^{\mu} R_{\mu}\right\}$ result in nonlinear transformations

$$
\delta_{R} x_{\mu}=\frac{1}{2}\left(\lambda_{\mu}+2 m^{2}(\lambda x) x_{\mu}-m^{2} x^{2} \lambda_{\mu}\right)
$$

Transformation properties of Lorentz irreducible fields $\varphi_{\kappa}(X)$ with respect to realization (3) can be naturally defined following the induced representations method:

[^1]\[

$$
\begin{equation*}
\varphi_{k}^{\prime}\left(x^{\prime}\right)=\left(\exp \left\{\frac{i}{2} u^{\mu \nu}\left(g_{0}, x\right) J_{\mu v}\right\}\right)_{k e} \varphi_{l}(x), \tag{5}
\end{equation*}
$$

\]

where $\left(D_{\mu \nu}\right)_{\kappa} \ell$ are matrices representing generators of the little group $0(1,3)$ on fields $\varphi_{K}(X)$. For infinitesimal $0(2,3)$-translations (4) functions $U^{\mu \nu}(\lambda, X)$ are given by

$$
\begin{equation*}
u^{\mu \nu}(\lambda, x)=m^{2}\left(\lambda^{\mu} x^{\nu}-\lambda^{\nu} x^{\mu}\right)=\frac{1}{2}\left(\partial^{\mu} \delta_{R} x^{\nu}-\partial^{\nu} \delta_{R} x^{\mu}\right) \tag{6}
\end{equation*}
$$

At this point, one essential remark is to be made. Insofar as the subgroup $O(1,3)$ of $O(2,3)$ is identified with the physical Lorentz group the law (5) is the most general $0(2,3)$-transformation law for fields defined over anti de Sitter space (up to a change of coordinates). For inatance, given some linear $0(2,3)$ multiplet $\Phi(x)$ such that $\Phi(x) \xrightarrow{0(2,3)} \Phi^{\prime}\left(x^{\prime}\right)=\bar{g} \Phi(x) \quad$ where \bar{g} is an appropriate matrix representation of $0(2,3)$, it can be decomposed into the direct aum of Lorentz irreducible fields with transformation properties (5) by means of the equivalence replacement $\Phi(x) \rightarrow \Phi(x)=\exp \left\{-i Z^{\mu}(x) \bar{R}_{\mu}\right\} \Phi(x)_{\text {where }} \bar{R}_{\mu}$ are matrices of generators R_{μ} in the representation \bar{g}. This phenomenon is a particular manifestation of the relationship between linear and nonlinear group realizations/17/. As an important example, we write down explicitly the equivalency transformation by which some $0(2,3)$-spinor $\Psi_{\mu}^{S}(x)\left(R_{\mu}=\frac{m}{2} \gamma_{\mu}\right)$ is expressed in terms of components $\Psi_{\alpha}(x)$ comprising a Lorentz spinor:

$\Psi_{\alpha}^{s}(x)=\left(\exp \left\{\frac{i m}{2} z^{\mu}(x) \gamma_{\mu}\right\}\right)_{\alpha}^{\beta} \Psi_{\beta}(x)=\sqrt{\frac{\alpha(x)}{2}\left(1+i m x^{\mu} \gamma_{\mu}\right)_{\alpha}^{\beta} \Psi_{\beta}(x) \equiv \bigwedge_{\alpha}^{\beta}(x) \Psi_{\beta}(x)(7), ~(x)}$

 with$$
\begin{equation*}
\alpha(x)=\frac{2}{1+m^{2} x^{2}} \tag{8}
\end{equation*}
$$

The transformation (7) has beer used earlier in papers $/ 3,20 /$
however without explanation of its group mearing.
Let us define the covariant differentials and derivatives of fields $\varphi_{k}(x)$. This can be done quite simply using the method of Cartan differential forms. In our case, these forms are found from the decomposition:

$$
\begin{align*}
g^{-1}(x) d g(x) & =i \mu_{s}^{\nu}(x, d x) R_{\nu}+\frac{i}{2} \nu_{s}^{\mu \rho}(x, d x) M_{\mu \rho} \equiv \tag{9}\\
& \equiv i \alpha(x) d x^{\nu} R_{\nu}-i m^{2} \alpha(x) x^{\mu} d x^{\rho} M_{\mu \rho} .
\end{align*}
$$

The form $M_{s}^{\nu}=\alpha(x) d x^{\nu} \quad$ transforms under shifts (3) homogeneously as the Lorentz 4 -vector, with parameters $u^{\mu \nu}\left(g_{0}, X\right)$ and thus is the covariant differential of the coordinate X^{ν}. The inhomo-
geneously transforming form $\nu_{s}^{\mu \rho}=-m^{2} a(x)\left(x^{\rho} d x^{\rho}-x^{\rho} d x^{\rho}\right)$ (the Lorentz connection) enters into the covariant differentials of fields $\varphi_{k}(x)$:

$$
\begin{equation*}
\nabla \varphi_{k}(x)=d \varphi_{k}(x)+\frac{i}{2} \nu_{s}^{\mu p}(x, d x)\left(J_{\rho \rho}\right)_{k} \ell \varphi_{l}(x) \tag{10}
\end{equation*}
$$

which transform as $\varphi_{x}(x)$ themselves. The covariant derivatives $\nabla_{\rho} \varphi_{K}(x)$ are naturally defined as coefficients of the expansion of $\nabla \varphi_{k}(x)$ in forms μ_{s}^{ρ} :

$$
\begin{equation*}
\nabla \varphi_{k}(x)=\mu_{s}^{\rho}(x, d x) \nabla_{\rho} \varphi_{k}(x) \tag{11}
\end{equation*}
$$

whence

$$
\begin{equation*}
\nabla_{\rho} \varphi_{k}(x)=a^{-1}(x) \partial_{\rho} \varphi_{k}(x)-i m^{2} x^{\mu}\left(J_{\mu \rho}\right)_{k} l \varphi_{l}(x) \tag{12}
\end{equation*}
$$

It is worth noting the useful formula ${ }^{4}$)

$$
\begin{equation*}
\left[\nabla_{\rho}, \nabla_{\lambda}\right]=-i m^{2} J_{\rho \lambda} \tag{13}
\end{equation*}
$$

which can be deduced either directly or using the following general method. One should evaluate the commutator of two independent covariant differentials (10), extract from both sides of the obtained identity independent products of forms μ_{s}^{ρ} with taking into account the Maurer-Cartan atructure equationa for μ_{s}^{ρ}, $\nu_{s}^{\rho \mu}$, and, finally, identify coefficients of these products (the structure equationa for anti de Sitter apace are readily extracted from more general ones for the superapace $\operatorname{OSp}(1,4) / O(1,3)$ which are given in the next section).

Obtained formulae allow us to construct all objects relevant to the geometry of anti de Sitter space. The contraction of two forms μ_{S}^{y} gives the invariant interval:

$$
\begin{equation*}
d S^{2}=\mu_{S}^{\nu} \mu_{S \nu}=g_{\mu \nu}^{s}(x) d x^{\mu} d x^{\nu}=\alpha^{2}(x) \eta_{\mu \nu} d x^{\mu} d x^{\nu} \tag{14}
\end{equation*}
$$

and the outer product of four forms μ_{S}^{ν}, the invariant volume element:

$$
\begin{equation*}
\mathscr{D} m_{s}=\mu_{S}^{v_{1}} \wedge \mu_{s}^{\nu_{2}} \wedge \mu_{s}^{\nu_{3}} \wedge \mu_{s}^{\nu_{4}}=d^{4} \times \sqrt{-\left\|g_{\mu \nu}^{s}\right\|}=d^{4} \times a^{4}(x) \tag{15}
\end{equation*}
$$ One immediately observes that $g_{j_{\nu}^{s}}^{s}(x)=\alpha^{2}(x) \eta_{\mu \nu}$ plays the role of anti de Sitter metric, $\alpha(x) \eta_{\mu \nu}$ being an appropriate vierbein. The curvature tensor can be defined now in the atandard fashion. As a matter of fact, its components are given already by eq. (13): $R_{\mu \nu}^{\rho \lambda}=-m^{2}\left(\delta_{\mu}^{\rho} \delta_{\nu}^{\lambda}-\delta_{\mu}^{\lambda} \delta_{\nu}^{\rho}\right)$, taking into account that (12) and (13) are

[^2]particular cases of well known general covariance formulae (corresponding to the above special choice of vierbein).

To conclude, having expressions for covariant derivatives of fields $\boldsymbol{\varphi}_{k}(x)$ and for the $0(2,3)$-invariant volume element (which is the measure of integration over the space $0(2,3) / 0(1,3)$) we can construct $O(2,3)$-invariant Lagrangian densities of any desirable structure in $\varphi_{k}(x)$. Also, the problem of reduction of $\varphi_{k}(x)$ to $O(2,3)$-irreducible pieces can be solved (by representing two Casimir operators of $0(2,3)$ in terms of covariant derivatives (12) and proceeding further like Grensing $/ 21 /$ in his analysis of $0(1,4)$ de Sitter fields).

As $\mathrm{m} \rightarrow 0$, all the expressions obtained reduce to their trivial Minkowski analogs (within our definition of anti de Sitter coordinate, the complete correspondence with Minkowski space arises upon rescaling $X_{\mu} \rightarrow \frac{1}{2} X_{\mu}$).
3. To develop the covariant superfield technique for $\operatorname{OSp}(1,4)$ -symmetry, we ahall follow, as before, general recipes of the theory of group realizations in coset spaces and represent $\operatorname{OSp}(1,4)$ by left ahifts in the superspace $\operatorname{OSp}(1,4) / O(1,3)$. For cosets of $\operatorname{OSp}(1,4)$ over group $0(1,3)$ we take the parametrization
$G(x, \theta)=O(2,3) / O(1,3) \cdot O S p(1,4) / O(2,3)=g(x) \exp \left\{i\left(1-\frac{m}{3} \bar{\theta} \theta\right) \bar{\theta} Q\right\},(16)$ where θ_{α} are the Grassmann coordinates associated with generator Q_{α} and comprising a Majorana apinor. The parametrization (16) differs from that adopted by Keck $/ 1 /$ and Zumino $/ 3 /$, besides the different choice of the coordinate system in space $0(2,3)$ / $\mathrm{f}(1,3)$ also by the opposite arrangement of even and odd factors. We adhere to this sequence in order that under the left shifte belonging to subgroup $0(2,3)$ coordinate θ_{α} transform according to the induced representation law (5), i. θ. , like a Iorentz apinor. Within this choice, different θ-monomials do not mix under $0(2,3)$ -tranaformations, and as a consequence, components of $\operatorname{OSp}(1,4)$
auperfielde have the uniform tranaformation properties (5) in all their Lorontz indices, At the same time, with making use of the parametrization by Keck $/ 1 /$ and Zumino $/ 3 /$, the apinor coordinate (denoted here by θ^{s}) behaves like a $O(2,3)$-spinor, i.e., transforms under $0(2,3)$-translations as $\delta \theta^{s}=\frac{i m}{2} \lambda^{f} \gamma_{\rho} \theta^{s}$. Por this reason, components of corresponding superfields, in indices associated with θ-monomials, form linear multiplets of $O(2,3)$ what
seems to us less convenient because of the lack both of uriformity and explicit correspondence with the orcinary supersymmetry. The conrection of our coordinates X_{μ}, θ_{α} with those of Keck $/ 1 /$ and zumino $/ 3 /$ is given by eq. (2) and by the fortiula of the type (7)

$$
\begin{equation*}
\theta_{\alpha}^{s}=\Lambda_{\alpha}^{p}(x) \theta_{\rho}\left(1-\frac{m}{3} \bar{\theta} \theta\right) \tag{17}
\end{equation*}
$$

An additional canonical redefinition of the Grassmann coordirate with the help of θ-dependent factor $\left(1-\frac{m}{3} \bar{\theta} \theta\right)$ in (16) is made to simplify subsequent formulae (it does not alter $0(2,3)$-properties of θ_{α}).

Transformation properties of the superspace $\operatorname{OSp}(1,4) / O(1,3)$ and defined over it superfields $\Phi_{k}(x, \theta)(k \quad$ is the Lorentz index) with respect to an arbitrary $\operatorname{OSp}(1,4)$-transformation are apecified by the formulae (compare with (3) and (5)):

$$
\begin{equation*}
G(x, \theta) \rightarrow G_{0} G(x, \theta)=G\left(x^{\prime}, \theta^{\prime}\right) \exp \left\{\frac{i}{2} W^{\mu \nu}\left(G_{0}, x, \theta\right) M_{\mu \nu}\right\} \tag{18}
\end{equation*}
$$

$$
\begin{equation*}
\Phi_{k}(x, \theta) \rightarrow \Phi_{k}^{\prime}\left(x^{\prime}, \theta^{\prime}\right)=\left(\exp \left\{\frac{i}{2} W^{\mu \nu}\left(G_{0}, x, \theta\right) J_{\mu \nu}\right\}\right)_{k \ell} \Phi_{R}(x, \theta) \tag{19}
\end{equation*}
$$

with ($\left.J_{\mu \nu}\right)_{x \ell}$ again being the matrix realization of generators $M_{\mu \nu}$. clearly, for $G_{0}=g_{0} \in O(2,3)$ transformations (18) and (19) reduce to (3) and (5). In particular, $W^{\mu \nu}\left(g_{0}, x, \theta\right)=u^{\mu \nu}\left(g_{0}, x\right)$, and generators $M_{\mu \nu}$ and R_{λ} in realization on superfields $\Phi_{k}(x, \theta)$ are simply

$$
\begin{aligned}
& M_{\mu \nu}=i\left(x_{\mu} \partial_{\nu}-x_{\nu} \partial_{\mu}\right)+\frac{1}{2} \bar{\theta} \sigma_{\mu \nu} \frac{\partial}{\partial \bar{\theta}}+\eta_{\mu \nu} \\
& R_{\lambda}=i\left(\frac{1-m^{2} x^{2}}{2} \delta_{\lambda}^{\nu}+m^{2} x_{\lambda} x^{\nu}\right) \partial_{\nu}+\frac{m^{2}}{2} x^{\nu} \bar{\theta} \sigma_{\lambda \nu} \frac{\partial}{\partial \theta^{\sigma}}-m^{2} x^{\nu} \eta_{\nu \lambda} .
\end{aligned}
$$ formations generated by shifts with $G_{o}=e^{i \overline{\mathbb{C}} Q}$. Making use of the commutation relations (1) and formulae of $Z u m i n o / 3 /$, through rather cumbersome calculations we have found that generators Q_{α} realized on superfields $\Phi_{k}(x, \theta)$ are of the form:

$$
\begin{align*}
& Q_{\alpha}=\left(1-\frac{m}{4} \bar{\theta} \theta\right) \Lambda_{\alpha}^{\beta}(x)\left\{i \left[\left(1+\frac{m}{4} \bar{\theta} \theta\right) \delta_{\beta}^{\gamma}+m \theta_{\rho} \bar{\theta}^{\gamma}-\frac{m}{4}\left(\gamma^{\nu} \theta\right)_{\beta}\left(\overline { \theta } \left(\gamma_{\nu}-\right.\right.\right.\right. \tag{21}\\
& \left.\left.\left.\left.\left.-m x^{\rho} \sigma_{\rho \nu}\right)\right)^{\nu}\right] \frac{\partial}{\partial \bar{\theta}^{\gamma}}-\frac{1}{2} a^{-1}(x)\left(\gamma^{\nu} \theta\right)_{\beta} \partial_{\nu}+i \frac{m}{4}\left[\left(2 m \gamma_{\mu} x_{v}+G_{u \mu}\right) \theta\right]_{\beta}\right]^{\nu \mu}\right\},
\end{align*}
$$

where matrix ${ }^{\partial \theta} \wedge_{\alpha}^{\beta}(x)$ and function $\alpha(x)$ are introduced by eqs. (7) and (8). Differential parts of generators (20) and (21) transform arguments X_{μ} and θ_{α}, while matrix ones change the superfield form via the Iorentz-rotation with X_{μ} - and θ_{α}-dependent parameters. In the contraction limit, (20) and (21) convert into the generators of usual supersymmetry (with additional reacaling $\left.x_{p} \rightarrow \frac{1}{2} x_{r}\right)$.

We now turn to making up covariants of the realizatjon giver by transformation laws (18), (19). The relevant Cartan forms are introduced by the identity which is a direct extension of the decomposition (9):

$G^{-1}(x, \theta) d G(x, \theta)=i \bar{T}(x, \theta, d x, d \theta) Q+i M^{\nu}(x, \theta, d x, d \theta) R_{\nu}+\frac{i}{2} \nu^{\rho^{2}}(x, \theta, d x, d \theta) M_{\rho \lambda}$.

The forms $\mathcal{M}^{\nu}, \bar{\tau}^{\alpha}$ are easily verified to transform under shifts (18) according to the general law (19), independently of each other. So they have the meaning of covariant differertials of coordinates X_{ν}, θ_{α}. The inhomogeneously transforming form $\nu^{\rho \lambda}$ is nothing but the connection over the Lorentz group (which is the structure group of the present realization). This form determines the covariant differentials of superfields:
$\mathscr{D} \Phi_{k}(x, \theta)=d \Phi_{k}(x, \theta)+\frac{i}{2} \nu^{\rho \lambda}\left(J_{\rho \lambda}\right)_{k} \ell \Phi \ell(x, \theta)$.
Inhomogeneity of its transformation is just such as to compensate the noncovariant term which arises from $d \Phi_{\kappa}(x, \theta)$ when $\Phi_{k}(x, \theta)$ undergoes the transformation (19). As a result, $\mathscr{D} \Phi_{k}(x, \theta)$ transforms like $\Phi_{k}(x, \theta)$ itself.

Explicitly, the forms $\bar{\tau}^{\beta}, M^{\nu}, \nu^{\rho \lambda}$ are as follows:
$\bar{\tau}^{\beta}=\left(1-\frac{m}{2} \bar{\theta} \theta\right)\left\{d \bar{\theta}^{\alpha}\left[\left[1+\frac{9}{32} m^{2}(\bar{\theta} \theta)^{2}\right]_{\alpha}^{\mu}-\frac{m}{2} \theta_{\alpha} \bar{\theta}^{\beta}\right]-\frac{i m}{2} \alpha(x) d x_{\mu}\left[\bar{\theta}\left(\gamma^{\mu}-m x_{\nu} \sigma^{\nu \mu}\right)\right]\right\}$
$\mu^{\nu}=\alpha(x) d x^{\nu}+\frac{i}{2}\left(1-\frac{m}{4} \bar{\theta} \theta\right) \bar{\tau} \gamma^{\nu} \theta$
$\nu^{\rho^{\lambda}}=\frac{i m}{2}\left(\left\{-\frac{m}{4} \bar{\theta} \theta\right) \bar{\tau}\left[\sigma^{\rho \lambda}+m\left(x^{\rho} \gamma^{\lambda}-x^{\lambda} \gamma^{\rho}\right)\right] \theta-m^{2}\left(x^{\rho} \mu^{\lambda}-x^{\lambda} \mu^{\rho}\right)\right.$.
Ir constructing the covariant derivatives of superfields we shall do in close parallel with the pure anti de Sitter case. Namely, we extract from $\mathscr{D} \Phi_{k}(x, \theta)$ (23) the covariant differentials of coordinates X_{ν}, θ_{α}, i.e., forms $\mu^{\nu}, \bar{\tau}^{\alpha}$ and identify with covariant derivatives, respectively vector and spinor, coefficients of these forms:
$\mathscr{D} \Phi_{\kappa}(x, \theta)=\mu^{\nu} \hat{\nabla}_{\nu} \Phi_{k}(x, \theta)+\bar{\tau}^{\alpha} \hat{\mathscr{D}}_{\alpha} \Phi_{\kappa}(x, \theta)$.
The objecta thus defined are manifestly $\operatorname{OSp}(1,4)$-covariant by construction. With the explicit expressions for Cartan forms (24) definition (25) implies:

$$
\begin{aligned}
& \hat{\nabla}_{\nu}=a^{-1}(x) \partial_{\nu}+\frac{i m}{2} \bar{\theta}\left(\gamma_{\nu}-m x^{\mu} \sigma_{\mu \nu}\right) \frac{\partial}{\partial \bar{\theta}}-i m^{2} x^{\mu} J_{\mu \nu} \\
& \hat{D}_{\alpha}=\left(1-\frac{m}{4} \bar{\theta} \theta\right)\left\{\left[\left(1+\frac{3}{4} m \bar{\theta} \theta\right) \delta_{\alpha}^{\beta}+\frac{m}{2} \theta_{\alpha} \bar{\theta}^{\beta}\right] \frac{\partial}{\partial^{\beta}}-\frac{i}{2}\left(\gamma^{\mu} \theta\right)_{\alpha} \hat{\nabla}_{\mu}-\frac{m}{4}\left(6^{\mu \nu} \theta\right)_{\alpha} J_{\mu \nu}\right\}
\end{aligned}
$$

As $m \rightarrow 0$, these operators contract into the usual vector and spinor covariant derivatives of "flat" supersymmetry. Let us point out that $d X_{\mu}$ and ∂_{μ} enter into forms (24) and covariant derivatives (26) and (27) only through their $0(2,3)$-counterparts μ_{S}^{μ},
∇_{μ} thus ensuring correct $O(2,3)$-properties for (24), (26) and (27). Note also that the pieces of forms (24) independent of X_{μ}, $d x_{\mu}$ coincide with Cartan forms for the realization of $\operatorname{OSp}(1,4)$ in the purely Grassmannian coset space $\operatorname{OSp}(1,4) / O(2,3)$.

Though the structure of covariant derivatives (26) and (27) is rather complicated their commutator algebra turns out, beyond expectation, almost as simple as in the case of usual supersymmetry:

$$
\begin{aligned}
& {\left[\hat{\nabla}_{\mu}, \hat{\nabla}_{\nu}\right]=-i m^{2} J_{\mu \nu}} \\
& \left\{\hat{D}_{\alpha}, \hat{D}_{\beta}\right\}=-\frac{m}{2}\left(\sigma^{\rho^{\nu}} C\right)_{\alpha \beta} \nabla_{\mu \nu}+\frac{1}{i}\left(\gamma^{\nu} C\right)_{\alpha \beta} \hat{\nabla}_{\nu} \\
& {\left[\hat{\nabla}_{\mu}, \hat{D}_{\alpha}\right]=\frac{m}{2 i}\left(\gamma_{\mu} \hat{D}\right)_{\alpha}}
\end{aligned}
$$

multiplication of covariant derivatives being understood here in the aense explained in the footnote to formula (13). To learn what are these (anti) commutatora we have taken advantage of the general method mentioned after eq. (13) (the straightforward computation of them is also posaible, but it involves a lot of tedious labour). In application to the present case, that method consiats in evaluating an antisymmetrized second-order covariant differential of $\Phi_{k}(x, \theta)$ and equating afterwards coefficients of independent products of forms $\mu^{\nu}, \vec{\tau}{ }^{\alpha}$ in both aides of the resulting identity. This procedure essentially exploite the MaurerCartan etructure equations for the superspace $\operatorname{OSp}(1,4) / 0(1,3)$:

$$
\begin{equation*}
D_{2} \overline{\tilde{U}}\left(\alpha_{1}\right)-D_{1} \bar{\tau}\left(\alpha_{2}\right)+\frac{m}{2 L}\left[\bar{\tau}\left(\alpha_{1}\right) \gamma^{\nu} \mu_{\nu}\left(\alpha_{2}\right)-\tilde{\tau}\left(\alpha_{2}\right) \gamma^{\nu} \mu_{\nu}\left(\alpha_{1}\right)\right]=0 \tag{29}
\end{equation*}
$$

$D_{2} \mu_{\nu}\left(d_{1}\right)-D_{1} \mu_{\nu}\left(d_{2}\right)-i \bar{\tau}\left(\alpha_{1}\right) \gamma_{\nu} \tau\left(\alpha_{2}\right)=0$
$D_{2} \nu^{\rho \lambda}\left(d_{1}\right)-D_{1} \nu^{\rho \lambda}\left(d_{2}\right)-m^{2}\left[\mu^{\rho}\left(d_{1}\right) \mu^{2}\left(d_{k}\right)-\mu^{\rho}\left(d_{2}\right) \mu^{\lambda}\left(d_{1}\right)\right]-i m \bar{\tau}\left(d_{1}\right) \sigma^{\rho \lambda} \tau\left(d_{k}\right)=0$

which are derived in Appendix.

It follows from (28) that, in contrast to the case of ordinary ("flat") aupersymmetry, OSp(1,4)-covariant derivatives $\hat{\nabla}_{\mu}, \hat{D}_{\alpha}$ do not generate the algebra isomorphic to the initial one (1). Indeed, relations (28), like their $0(2,3)$-counterparts (13) con-
tain only tangent space pieces of Lorentz generators. Besides, relative signs between different structures in the right-hand side of (28) are somewhat distinguished from those appearing in (1). Strictly speaking, relations (28) (equally as (13)) should not at all be referred to as introducing any algebra in its conventional meaning because (anti) commutators between covariant derivatives are defined in (28) quite differently from those between infiniteaimal group generators ${ }^{5}$) (see the footnote to eq. (13)). Rather, eqs. (28) have to be regarded as an equivalent form of the structure equations (29). If, nevertheless, one attempts to treat (26), (27) as generators of certain superfield transformations and begins to commute (anticommute) them in the uaual way, one immediately observes that they do not form any closed auperalgebra (even together with $\operatorname{OSp}(1,4)$ generators (20), (21)) and it is not clear to which more extensive (finite-dimensional) superalgebra they could pertain. Note that (anti) commutators (in the usual sense) of $\nabla_{\mu}, \mathscr{D}_{\alpha}$ with $\operatorname{OSp}(1,4)$-generators are again the same objects but Lorentz rotated according to the general rule (19). For instance:

$$
\left\{\hat{\mathscr{D}}_{\alpha}, \dot{Q_{\beta}}\right\}=\frac{1}{4}\left[\frac{\partial}{\partial \vec{\epsilon}^{\beta}} W^{\mu \nu}(\epsilon, x, \theta)\right]_{t=0}\left(G_{\mu \nu}\right)_{\alpha}^{\gamma} \hat{D}_{\gamma}(=0 \text { as } m \rightarrow 0) .
$$

This way, $\operatorname{OSp}(1,4)$-covariance of $\hat{\nabla}_{\mu}, \hat{D}_{\alpha}$ displays itgelf at the commutator level. Recall that the covariant apinor derivative of usual supersymmetry commutes with the 4-translation generator P_{μ} and anticommutes with the spinor generator. It can be defined not only through the Cartan forms method but also alternatively, as the generator of right supertranslations. In the $\operatorname{OSp}(1,4)$-case, only the first apprbach appears conatructive because the right action of $\operatorname{OSp}(1,4)$ on cosets $\operatorname{OSp}(1,4) / O(1,3)$ does not commute with the left one $/ 1 /$. Covariant derivatives (26), (27) cannot certainly be identified with generators of right OSp(1,4)-transformations since, as pointed out above, their "algebra" does not close with respect to operation of usual (anti) commuting.

Having the explicit expressions (24) for the Cartan forms we may readily construct all geometrical characteristics of the superspace $\operatorname{OSp}(1,4) / O(1,3)$. As in the case of conventional superspace, there exiat three independent invariant "intervala":

[^3]$\mu^{\nu} \mu_{\nu}, \bar{\tau} \tau, \bar{\tau} \gamma_{s} \tau$. The components of the curvature and torsion supertensors (in the tangent space representation) are extracted most easily from relations. (28): they are given, respectively, by coefficients of the matrix $\frac{i}{2} J_{\mu \nu}$ and covariant derivatives in the r.h.s. of (28). In obvious notation:
\[

$$
\begin{aligned}
& R_{\mu \nu}^{\lambda \rho}=-m^{2}\left(\delta_{\mu}^{\lambda} \delta_{\nu}^{\rho}-\delta_{\rho}^{\rho} \delta_{\nu}^{\lambda}\right), R_{\alpha \beta}^{\lambda \rho}=i m\left(\sigma^{\lambda \rho} C\right)_{\alpha \beta}, T_{\alpha \beta}^{\mu}=-i\left(\gamma^{\mu} C\right)_{\alpha \beta}, \\
& T_{\mu \alpha}^{\beta}=-T_{\alpha \mu}^{\beta}=-\frac{i}{2} m\left(\gamma_{\mu}\right)_{\alpha}^{\beta}, \text { all other components being zero. The }
\end{aligned}
$$
\] same results follow from the consideration of the structure equations (29). As is expected, in the limit $m \rightarrow 0$ there survives only the supertorsion component $T_{\alpha \beta}^{\nu}$ associated with the superspace of ordinary supersymmetry.

To conclude this Section, we calculate the $\operatorname{OSp}(1,4)$-invariant measure of integration over superspace $\operatorname{OSp}(1,4) / 0(1,3)$ (the invariant volume element) the knowledge of which is important for constructing $\operatorname{OSp}(1,4)$-invariant Lagrangians. It is defined in a standard manner $/ 22 /$ through superdeterminant (Berezinian) of the supervierbein E :

$\operatorname{Ber} E=\operatorname{det}\left(A-B D^{-1} C\right) \operatorname{det} D^{-1}$,

where the supermatrix E and matrices A, B, C, D are introduced by: $\left(\mu^{\nu}, \bar{\tau}^{\alpha}\right)=\left(d x^{\rho}, d \bar{\theta}^{\beta}\right)\left(\begin{array}{ll}A_{\rho}^{\nu}(x, \theta) & B_{\rho}^{\alpha}(x, \theta) \\ C_{\beta}^{\nu}(x, \theta) & D_{\beta}^{\alpha}(x, \theta)\end{array}\right) \equiv(d x, d \bar{\theta}) E(x, \theta) \cdot(30)$ Substituting for A, B, C, D their explicit expressions which are straightforwardly extracted from formulae (24), we find:

$$
\begin{equation*}
D M \equiv d^{4} x d^{4} \theta \operatorname{Ben} E=d^{4} x d^{4} \theta \alpha^{4}(x)\left[1+\frac{3}{2} m \bar{\theta} \theta+\frac{3}{8} m^{2}(\bar{\theta} \theta)^{2}\right] \tag{31}
\end{equation*}
$$

The invariance of measure (31) with respect to the transformations of coordinates X_{μ} and θ_{α} generated by (20) and (21) can be verified directly, by using the rules for changing variables in the Grassmann integrals $/ 23 \%$. Its factorization has the clear meaning: the factor $d^{4} x a^{4}(x)$ is the $0(2,3)$-invariant measure of integration over the space $0(2,3) / O(1,3)$, and the remaining part coincides with the integration measure for the superspace $\operatorname{OSp}(1,4) / O(2,3)$ invariant with respect to the left action of $\operatorname{OSp}(1,4)$ in that superspace. Note that the full invariant volume of the space $\operatorname{OSp}(1,4)$) $10(2,3)$ obtained by integration over the measure $d^{4} \theta\left[1+\frac{3}{2} m \bar{\theta} \theta+\right.$
$\left.+\frac{3}{8} m^{2}(\vec{\theta} \theta)\right)^{2}=3 m^{2}>0$ what is to be compared with the case of the coset space of the standard supergroup over the Poircare group the volume of which is zero.
4. Let us study the problem of reduction of general $\operatorname{OSp}(1,4)$ superfield

$$
\begin{align*}
& \Phi_{k}(x, \theta)=A_{k}(x)+\bar{\theta} \Psi_{k}(x)+\frac{1}{4} \bar{\theta} \theta F_{k}(x)+\frac{1}{4} \bar{\theta} \gamma_{s} \theta G_{k}(x)+ \tag{32}\\
& +\frac{1}{4} \bar{\theta} i \gamma_{\mu} \gamma_{s} \theta A_{k}^{\mu}(x)+\frac{1}{4} \bar{\theta} \theta \bar{\theta} X_{k}(x)+\frac{1}{32}(\bar{\theta} \theta)^{2} D_{k}(x) \\
& \text { with the standard } \operatorname{OSp}(1,4) \text {-supertranslation law }
\end{align*}
$$

$$
\begin{equation*}
\delta \Phi_{k}(x, \theta)=i(\bar{\epsilon} Q \Phi(x, \theta))_{k}, \tag{33}
\end{equation*}
$$

where ϵ is an anticommuting constant spinor parameter, and Q_{α} is given by (21).

In the usual supersymmetry, superfields of the type (32) are known to be local-reducible ${ }^{/ 12 / \text {. The reduction is effected by }}$ imposing covariant conditions of first and higher orders in covariant derivatives $12,24 /$. One may attempt to proceed in the analogous way also in the $\operatorname{OSp}(1,4)$-case. The simplest covariant conditions of first order in derivatives are now

$$
\left(\frac{1 \mp i \gamma_{5}}{2}\right)_{\alpha}^{\beta}\left(\hat{D}_{\rho} \Phi(x, \theta)\right)_{k}=0
$$

which directly generalize the well known constraints isolating chiral representations in the usual supersymmetry.

Equations (34) are solved most simply when rewritten in the componert form. Examining the thus obtained system of differential equations we have found that, unlike the case of "flat" supersymmetry, it possesses nontrivial solutions $\left(\Phi_{k} \neq 0\right)$ not for any superfields but only for those which are transformed by one of the following representations of the Lorentz group: ${ }^{6}$)

$$
\begin{array}{ll}
D^{(p, 0)} & \text { for conditior }\left(34_{+}\right) \\
D^{(0, q)} & \text { for condition }\left(34_{-}\right) \tag{-}
\end{array}
$$

where $D^{(p, q)}$ are matrices of nonunitary finite-dimensional representations of the Lorentz group, P and q are positive integers and half-integers (see, e.g., paper ${ }^{14 /}$).

Ir superfields $\Phi_{ \pm K}(x, \theta)$ of the classes ($35_{ \pm}$) the conditions ($34_{ \pm}$) pick out as independent componente $A_{ \pm k}, F_{ \pm k}$ and $\Psi_{ \pm k}$ (the latter, in suppressed spinor index associated with θ_{α}, should be ither left- or right-handed depending on the lower sign) and express the remaining components in terms of the independent ones:
$G_{ \pm k}= \pm i F_{ \pm k}, A_{ \pm k}^{\mu}= \pm i\left(\nabla^{\mu} A_{ \pm}\right)_{k}$
$x_{ \pm k}=-i\left(\gamma^{\mu} \nabla_{\mu} \Psi_{ \pm}\right)_{k}-2 m \Psi_{ \pm k}$
$\left(3{ }_{ \pm}\right)$
$D_{ \pm k}=-\left(\nabla^{\mu} \nabla_{\mu} A_{ \pm}\right)_{k}-8 m F_{ \pm k}$,
6) The group meanirg of these restrictions is explained in our paper /13/.
where ∇_{μ} is the $O(2,3)$-covariant derivative defined by (12). Note the similarity of (36_{+}) to the corresponding relations of standard supersymmetry. The anà $\frac{+}{\text { logy }}$ becomes most striking after going back to the superfield notation. We have checked that the solutions $(3{\underset{ \pm}{ }}$) admit the compact superfield representation:

$$
\begin{aligned}
& \Phi_{ \pm k}(x, \theta)=\left(\exp \left\{\mp \frac{1}{4} \bar{\theta} \gamma^{\rho} \gamma_{5} \theta \hat{\nabla}_{\rho}\right\}\right)_{k} \ell T_{e}^{ \pm}\left(x, \theta_{ \pm}\right) \\
& T_{k}^{ \pm}\left(x, \theta_{ \pm}\right)=A_{ \pm k}(x)+\bar{\theta}_{ \pm} \Psi_{ \pm k}(x)+\frac{1}{2} \bar{\theta}_{ \pm} \theta_{ \pm} F_{ \pm k}(x)
\end{aligned}
$$

where $\hat{\nabla}_{\rho}$ is the $\operatorname{OSp}(1,4)$-covariant vector derivative (27) and $\theta_{ \pm}=\frac{1 \pm i \gamma_{5}}{2} \theta$. Relations (37) are seen to appear as a direct "covariantization" ($\partial_{\rho} \rightarrow \widehat{\nabla}_{\rho}$) of familiar formulae of "flat" supersymmetry which describe the transition to the symmetric basis in corresponding "truncated" chiral superfields. These formulae are just the contraction limit ($m=0$) of (37). Without loss of generality, one may put $\Phi_{+k}(x, \theta)=\Phi_{-k}^{*}(x, \theta)$ and $T_{k}^{+}\left(x, \theta_{+}\right)=\left(T_{k}^{-}\left(x, \theta_{-}\right)\right)^{*}$ where symbol * mears involution (complex conjugation plus reversion of the order of anticommuting factors).

Thus, we come to the conclusion that superfields from the restricted set (35_{+}) possess invariant chiral subspaces. Those superfields which are transformed by the direct sum of representations $D^{(p, O)} \oplus D^{(0, P)}$ (they can be submitted to the reality condition) contain invariant subspaces of both chiralities. A simplest example is a real scalar superfield $\Phi(x, \theta)$. It contains two irreducible conjugated scalar $\operatorname{OSp}(1,4)$-multiplets involving, as suggested by the field content of (38_{+}), eight real independent components. This fact has been establis ${ }^{+}$ed earlier by Keck/1/ through a straightforward analysis of transformation properties of superfield components.

Further reduction of superfields (32) can be effected by imposing supplementary conditions of higher order in covariant derivatives with the structure dictated by the "structure of Casimir operators of supergroup $\operatorname{OSp}(1,4)$. The corresponding procedure will repeat, in its main steps, that one employed in the usual case /12,24/. However, the knowledge of supplementary conditions and projection operators which single out higher representations of $\operatorname{OSp}(1,4)$ is, in our opinion, rather of academic interest. Based on analogy with the conventional supersymmetry, it should be expected that in $\operatorname{OSp}(1,4)$-invariant theories of real interest
($\operatorname{OSp}(1,4)$-symmetric Yang-Mills theory, $\operatorname{OSp}(1,4)$-supergravity, etc.) a minimal set of relevant fields will be automatically picked out on account of additional local invariances (with the elimination of a subset of auxiliary fields afterwards through equations of motion).

From the existence of representations ($37_{ \pm}$) it follows that $0 S p(1,4)$ can be realized on "truncated" chiral ${ }^{ \pm}$superfields $T_{k}^{ \pm}\left(x, \theta_{ \pm}\right)$. To find these realizations, we reduce (37_{+}) in analogy with the case of usual supersymmetry to certain no $\frac{+}{n} l i n e a r ~ s h i f t s ~ o f ~ s u p e r-~$ field argumenta. For the purpose, we urilink first the matrix and differential parta in the operator $\exp \left\{\frac{1}{4} \bar{\theta}_{\gamma} \rho^{\rho} \gamma_{s} \theta \hat{\nabla}_{\rho}\right\}$. This can easily be done using the Baker-Hausdorf formula and the basic property of Grassmann coordinates $(\theta)^{5}=0$. We have

$$
\begin{aligned}
& \exp \left\{\mp \frac{1}{4} \bar{\theta} \gamma^{\rho} \gamma_{s} \theta \hat{\nabla}_{\rho}\right\}=\exp \left\{ \pm \frac{i m^{2}}{4} \bar{\theta} \gamma^{\rho} \gamma_{s} \theta x^{\nu} J_{\nu \rho}^{ \pm}\right\} \times \\
& \quad \times \exp \left\{\mp \frac{1}{4}\left[\bar{\theta} \gamma^{\rho} \gamma_{s} \theta a^{-1}(x) \partial_{\rho}+2 i m \bar{\theta} \theta \cdot \bar{\theta} \gamma_{5}\left(1+\frac{3}{4} i m x \gamma\right) \frac{\partial}{\partial \bar{\theta}}\right]\right\} \\
& \text { where } J_{\nu \rho}^{ \pm} \text {are matrices of generators of the Lorentz }
\end{aligned}
$$ sentations (35_{+}). Applying further the general identity $e^{f(z) \partial_{i} \varphi(z)=}$ $=\varphi\left(e^{f(z) \partial_{z}} Z\right) \stackrel{ \pm}{\text { we }}$ rewrite $\left(37_{+}\right)$as follows

$\widetilde{\Phi}_{ \pm k}(x, \theta) \equiv\left(\exp \left\{\mp \frac{i m^{2}}{4} \bar{\theta} \gamma^{\rho} \gamma_{s} \theta x^{\nu} J_{\nu \rho}^{ \pm}\right\}\right)_{k l} \Phi_{ \pm l}(x, \theta)=\left\{\begin{array}{l}T_{k}^{+}\left(x^{L}, \theta^{L}\right) \\ T_{k}^{-}\left(x^{R}, \theta^{R}\right)\end{array}\right.$
$\binom{x_{\mu}^{L}}{\theta^{L}}=\exp \left\{-\frac{1}{4}\left[\bar{\theta} \gamma^{\rho} \gamma_{5} \theta \alpha^{-1}(x) \partial_{\rho}+2 i m \bar{\theta} \theta \cdot \bar{\theta} \gamma_{5}\left(1+\frac{3}{4} i m x \gamma\right) \frac{\partial}{\partial \theta}\right]\right\}\binom{x_{\mu}}{\theta_{+}}=$
$\begin{aligned} & =\binom{\left[1+\frac{m^{2}}{16 a(x)}(\bar{\theta} \theta)^{2}\right] x_{\mu}-\frac{1}{4} \bar{\theta} \gamma_{\mu} \gamma_{5} \theta a^{-1}(x)}{\theta_{+}-\frac{m}{2} \bar{\theta} \theta\left(\theta_{+}+\frac{3}{4} i m x \gamma \theta_{-}\right)}\end{aligned}$
and $x_{\mu}^{R}=\left(x_{\rho}^{L}\right)^{2}, \theta^{R}=C^{4} \bar{\theta}^{L T}$ result from (41) simply by changes
$\theta_{+} \leftrightarrow \theta_{-}$. Based on these relations, and making use of the fact that the realization of $\operatorname{OSp}(1,4)$ on superfields $\Phi_{ \pm K}(x, \theta)$ (and on canonically related superfields $\widehat{\Phi}_{ \pm k}(x, \theta)$) is known we are now in a position to deduce the $\operatorname{OSp}(1,4)$-transformation rules of chiral auperfields $T_{k}^{ \pm}$. Tranaformation properties of their arguments $X_{\mu}^{L}, \theta_{\alpha}^{L}$ and $X_{\mu}^{R}, \theta_{\alpha}^{\alpha}$ are uniquely determined by the properties of X_{μ}, θ_{α} owing to the explicit connection (41) (and the analogous one between X_{μ}, θ_{α} and $X_{\mu}^{R}, \theta_{\alpha}^{R}$). As expected, these pairs of variables form irvariant apaces with respect to the action of $\operatorname{OSp}(1,4)$. Under the Lorentz-rotations and $O(2,3)$-translations they behave like coordinates X_{μ} and $\boldsymbol{\theta}_{\alpha}$. Their odd transformationa are given by

$$
\begin{align*}
& \delta_{Q} x_{\mu}^{L}=i \alpha^{-1}\left(x^{L}\right) \bar{\epsilon} \Lambda\left(x^{L}\right) \gamma_{\mu} \theta^{L} \tag{42}\\
& \delta_{Q} \bar{\theta}^{L}=\bar{\epsilon} \Lambda\left(x^{L}\right)\left[1-\frac{m}{2} \bar{\theta}^{L} \theta^{L}\left(1-\frac{3}{2} i m x_{\mu}^{L} \gamma^{\mu}\right)\right] \frac{1+i \gamma_{\rho}}{2}
\end{align*}
$$

(infinitesimal variations of $X_{\rho}^{R}, \bar{\theta}_{\alpha}^{R}$ are of the same form up to the replacements $L \rightarrow R, \frac{1+i \gamma_{5}}{2} \rightarrow \frac{1-i \gamma_{5}^{\alpha}}{}$). Matrix parts of $\operatorname{OSp}(1,4)$ -transformations of T_{k}^{+}and $T_{k}^{-} \sum_{\text {can }}^{2}$ also be shown to depend, respectively, either on $X_{\mu}^{L}, \theta_{\alpha}^{L}$ or on $X_{\mathcal{N}}^{R}, \theta_{\alpha}^{R}$ (at this point, it is significant that generators $\rceil_{\mu \nu}^{ \pm}$of representations ($3_{ \pm}$) do contain projectors $\left.\frac{1 \pm i \gamma_{5}}{2}\right)$.

For illustration, we write down the transformations induced by the supershifts (42) for components of scalar chiral superfields $T^{ \pm}\left(x, \theta_{ \pm}\right)$:

$$
\begin{align*}
& \delta_{Q} A_{ \pm}=\bar{\beta} \Psi_{ \pm} \tag{43}\\
& \delta_{Q} \Psi_{ \pm}=\frac{1 \pm i \gamma_{s}}{2}\left(-i \gamma^{\mu} \nabla_{\mu} A_{ \pm}+F_{ \pm}\right) \beta \\
& \delta_{Q} F_{ \pm}=\bar{\beta}\left(-i \gamma^{\mu} \nabla_{\mu} \Psi_{ \pm}-m \Psi_{ \pm}\right)
\end{align*}
$$

where $\beta=\Lambda^{-1}(x)$. The laws (43) are the same as those we have found earlier $/ 8 /$. In the contraction limit they become the usual transformation laws of scalar multiplets of "flat" supersymmetry.
liore detailed study of chiral realizations of $\operatorname{OSp}(1,4)$ will be carried out in subsequent paper $/ 13 /$ where also some linear $\operatorname{OSp}(1,4)$-symmetric models will be presented.

Appendix. The derivation of the structure equations.
As a first step, we differentiate the decomposition (22) and antisymmetrize independent differentials to obtain:

(for brevity we have suppressed Lorentz indices). Further, the l.h.s. of (A.1) can be written as the commutator:

$$
\begin{equation*}
\left[G^{-1} d_{1} G, G^{-1} d_{2} G\right] \tag{A.2}
\end{equation*}
$$

Inserting in the latter again the decomposition (22), making use of the (anti) commutator algebra (1) and finally comparing coefficients of $\operatorname{OSp}(1,4)$-generators in both sides of (A.1), we come to the equations (29).

References

1. Keck B.W., J. Phys. A: Rath. Gen., 1975, 8, p. 1819.
2. Deser S., Zumino B., Phys.Rev.Lett., 1977, 38, p. 1433.
3. Zumino B., Nucl.Phys., 1977, B127, p. 189.
4. MacDowell S.W., Mansouri F., Phys.Rev. Lett., 1977, 38, p. 739. Mansouri F., Phys.Rev., 1977, D16, p. 2456.
5. Chamseddine Ali H., Nucl. Phys., 1977, B131, p. 494; Ann. Phys., 1978, 113, p. 219.
6. Gürsey F., Marchildon L., J.Math. Phys., 1978, 19, p. 942 ; Phys. Rev., 1978, D17, p. 2038.
7. Ivanov E.A., Sorin A.S., preprint JINR E2-11610, 1978, Dubna.
8. Ivanov E.A., Sorin A.S., preprint JINR E2-12331, 1979, Dubna.
9. Wess J., Zumino B., Nucl. Phys., 1974, B70, p. 39.
10. Fubini S., Nuovo Cim., 1976, A34, p. 521.
11. Jackiw R., Rebbi C., Phys.Rev., 1976, D14, p. 517.
12. Salam A.,Strathdee J., Phys.Rev., 1975, D11, p. 1521.
13. Ivanov E.A., Sorin A.S., preprint JINR E2-12364, 1979, Dubna.
14. Gürsey F., 1964, Relativity, Groups and Topology eds. C.De Witt and B.De Witt (Iondon; Gordon and Breach).
15. Hawking S.W., Ellis G.F.R., 1973, The Large Scale Structure of Space-Time (Cambridge: Cambridge University Press).
16. Coleman S., Wess J., Zumino B., Phys.Rev., 1969, 177, p. 2239.
17. Callan C.G., Coleman S., Wess J., Zumino B., Phys.Rev., 1969, 177, p. 2247.
18. Volkov D.V., Preprint ITP-69-75, 1969, Kiev; Sov. J. Particles and Nuclei, 1973, 4, p. 3.
19. Ogievetsky V.I., Proc. X-th Winter School of Theoretical Physics in Karpacz, 1974, 1, p. 117.
20. Dirac P.A.M., Ann.Math., 1935, 36, p. 657.
21. Grensing G., J.Phys. A: Math. Gen., 1977, 10, p. 1687.
22. Arnowitt R., Nath P., Zumino B., Phys.Lett., 1975, B56, p. 81.
23. Pakhomov V.F., Matematicheskie Zametki, 1974, 16, p. 65.
24. Sokatchev E., Nucl. Phys., 1975, B99, p. 96.

Received by Publishing Department on April 21979.

[^0]: * Dnepropetrovsk State University.

[^1]: 2) A similar parametrization of cosets $0(2,3) / 0(1,3)$ has been used also by Gursey and Marchildon $/ 6 /$. However, their treatment of $O(2,3)$ (and $\operatorname{OSp}(1,4)$) essentially differs from ours. Together with MacDowell and Mansouri $/ 4 /$ and Chamseddine $/ 5 /$ they regard these groups as purely gauge, i.e., as acting in some internal tangent space. In such a treatmént parameters of cosets are fields over usual Minkowski apace-time which is not affected by group transformations at a:ll.
 3) These coordinates also determine a particular parametrization of the coset space $0(2,3) / O(1,3)$. Their explicit relation to Z_{μ}
 was given in refs. $/ 1,3 /$.
[^2]: 4) Hereafter we mean that the matrix part of each covariant derivative in operators of the type $\nabla_{\rho} \nabla_{\mu} \ldots \nabla_{\lambda}$ acts on all free Lorentz indices to the right of it, including vector indices of covariant derivatives.
[^3]: 5) In usual supersymmetry, due to the absence of vierbe parts in corresponding covariant derivatives, both definitions completely coincide. This is the reason why these derivatives for the true superalgebra (it is reproduced, of course, from (28) in
