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Monens Becca-3yMuHO Kak AuHeliHad ¢ —Moaeib CIOHTAHHO
HapyweHHbIX kKouboprtHoii 1 OSp(1, 4) ~CynepcuMMeTpuil

MayyeHa CTPyKTypa CMOHTAHHOrO HapyWeHHsS KOHGOPMHON U OpTOCHMI~
JeKTHYeCKOll CymepcumMeTpuil B Ge3maccoBoii mMoaenn Becca-3yMuHo 3a cueT
KnaccudeckuX peueHuid ¢pybunuenckoro runa. [lokasaHo, YTO Manol rpymnoi
COOTBeTCTBYWILET0 BaKyyMa #AB/steTCs rpajyupoBadHas noarpynma OSp(1, 4)
KOH$OPMHOIl Cylneprpynmel, CHMMETpUA O OTHOWEHHIO K apyroit OSp(1. 4) -
noarpynmne (OSH(LA}))CHOHT&HHO HapyweHa 00 O(23)-CUMMETPUH C BOSHUKHO—
BEHHEM MACCHBHOT'O INOJNACTOYHOBCKOT O ¢epMuoHa, OnpepeneHo cyneprnofieBoe
npeofpasosakue Befing, ¢ ero momomsio aelicTBHe ModenM mepemucaHo B Tep-
MHHAX cyneprnpocTpaHcTea03p(1,4)/((1,3), ABNAOMErocs CHUHOPHBIM pacilipeHue M
npocTpaHcrsa aHTW ae Currepa. [TokasaHo, 4YTO B TAKOM MpedcTAaBICHHH
CMOHTAHHO HApyWeHHas $a3a [NOMyCKaeT CTAHOAPTHYIO ¢ —MOOENbHYI) HHTep—
nperaudo. [locTpoen OSp(1. 4) —ananor MaccupHO# Monenu Becca-3yMuHo
M U3y4YeHA ero maKyymHAf CTPyKTypa. O6GHapyxeH sQQeKT CNOHTaHHOTO Hapy-
weHus P- 1 CP -4yeTHOCTeH ¢ KOHCTaHTOH, CBY3aHHOH C panauycoM npocTpaH-
crBa aHTu ge Currepa.

PaGora primonuena B JlaGopaTopuu TeopeTuueckos ¢uauxn OWSU.

Mpenpunr O6bednHEHHOTNO UHCTHTYTA SAEPHLIX HCCASIOBAHMME, Oy6ua 1979
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Wess-Zumino Model as Linear o -Model of Spontaneously
Broken Conformal and OSp(1,4)—Super5ymmetries

The maszless Wess-Zumino model is shown to exhibit the
spontaneous breaking of global conformal and orthosymplectic superd
syvametries on account of the Fubini-type classical solutions to the
e itions of motion, "Ve study the group structure of spontaneously
broken phase and analyze its particle spectrum. The little group of
the aronnd state is found to be the graded subgroup OSp(1,1) of
the conforrmal supergroup. The symmetry with respect to another
0Sp(1,1)-stbgroup (OSpI(l,/l)) is broken to O(2,3)-symmetry with emer-
gence of massive Goldstone fermion., The superfield Weyl trans-
for hation is defined and with its help the model action is rewritten
in terms of the suverspace 0OSp(1,4)/0(1,3), spinorial extension of
anti de Sitter space. In such a representation the spontaneously
broken phase admits the standard o-model interpretation. We also
construct the OSp{l,4)-analog of the massive Wess-Zumino model
and e=amine its vacuum structure, An effect of the spontaneous
breaking of P- and CP-parities with the strength related to anti de
Sitter radius is found,
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I. In the light of a recent progress in supergravity/1’2’3/
it seems of real importance to seek and study various mechanisms
of spontaneous breakdown of conformal (SU(2,2/1)) and orthosymp-
lectic (0Sp(1,4)) supersymmetries,

The nonlinear realizations of these supersymmetries have
been considered in/4’5/. It is interesting to construct corres-
ponding linear G ~models. As a first step, it is natural to
explore in detail the global case. The regularities found may es~
sentially clarify the situation in the local case which can be
achieved by introducing interactions with gauge fields of super-
gravity.

In the present paper we show that even in the simplest 1li-
near superconformal-invariant theory, the massless Wess-Zumino
model/6/, conformal and 0Sp(1,4 )-supersymmetries are spontane-
ously broken on account of X -dependent classical solutions to
the equations of motion, These solutions 7 are similar to those

./8/

revealed by Fubini in the massless q" -theory. They break

the Poincaré;symmetry but display invariance with respect to the
group of motions of anti de Sitter space 0(2,3). Among other
solutions of the Wess-Zumino model 0(2,3)-solutions are on a dis~
tinct status due to their Lorentz invariance and vanishing of

the (improved) energy-momentum tensor'1‘ on them1). For this
reason, they pretend to describe the ground state of the sponta-
neously broken phase of the model,

/9/

superconformal properties of vacua associated with 0(2,3)-solu-

In Sec., 2, following our previous paper , we study the
tions, The full little group of a fixed vacuum is shown to be a
graded subgroup 05p(1,4) of the conformal supergroup with 0(2,3)
as the even subgroup, The invariance with respect to another
0sp(1,4) (OS%(1.4) in the notation of ref./9/) which has the

1) All other nontrivial solutions of the massless (“ ~theory
(and of the massless Wess-Zumino model) have ‘Teg 2 O.




same 0(2,3)-subgroup and whose odd generator is given by an ortho-
goral combination of superconformal spinor charges is broken to
0(2,3). Corformal symmetry is also broken to 0(2,3)-symmetry, as
in the massless Yq —theory/B/. Besides, chiral ( Xg‘) invariance
is broken,

In Sec. 3 we examine the particle content of spontaneously
broken phase by transforming the model action to the manifestly
0(2,3)-invariant form in which it is represented in terms of
fields given on anti de Sitter space 0(2,3)/0(1,3)., We define a
superfield analog of Weyl transformation and with its help
demonstrate that the action in 0(2,3)-representation automatical-
ly possesses the manifest 0Sp(1,4)~symmetry. In 0(2,3)- (and
0Sp(1,4)~) invariant formalism 0(2,3)-solutions reduce to constants
minimizing the relevant potential, Thus, the massless Wess-Zumino
model can be interpreted as the simplest linear (3 -model of spon-
taneously broken conformal and 0Sp(1,4 )-supersymmetries (an ana-
logous interpretation of the massless ?V-—theory as a linear G -
model of conformal symmetry has been given by Fubini /). Each
component of the initial multiplet is proved to be the Goldstone
field with respect to a certain spontaneously broken superconformal
generator, In particular, the spinor component has the meaning
of Goldstino accompanying the spontaneous breakdown of OS%(1,4)—
symmetry. Upon separating vacuum expectation values of boson com-
ponents it acquires a ™mass" which is twice the inverse radius
of anti de Sitter space, in agreement with the general result
obtained by Zumino/4 within the nonlinear realization of 0Sp(1.4).

The second, closely related subject of the present paper is
the construction and examination of the 0Sp(1,4)-analog of the
massive Wess-Zumino model (Sec. 4). This theory reveals a rather
complicated vacuum structure whichineludes, along with 0Sp(1,4 )~
invariant vacua, those realizing the spontaneous breakdown of
0Sp(1,4) to 0(2,3)., The most interesting phenomenon is the pre-
sence of two 0Sp(1,4)-invariant vacua giving rise to the sponta-
neous violation of discrete P~ and CP-symmetries., As in the many~-
body problem, regines with a different symmetry of the ground
state go into each other with changing an extra ordering parameter
the role of which is played by the anti de Sitter radius. When
the latter tends to infinity, the fine structure of vacua disap-
pears and there remains one fully symmetric vacuum of the usual
massive Wess-Zumino model.

2, The invariant action of the massless Wess-Zumino model

in the standard superfield notation is

§=[dxdro {00 expE8FY:0) P.x,0) +
24 sT0)dx,8) + 8T0) P2x,0])

where':r)(x 0,)= A. «(X) +9+\K(X)+L9,,B, E(X)are two conjugated chiral
superfields, 8(95\'—9 9:_ ,e LH ‘-Xg)e 9;‘81—1[5: and 9 is the Lajo-
rana spinor coordinate“: After integration over 9 , transition
to the real componentsA B F G and Majorana splnor'y by the
formulae

A=k (A=iB), F,= & (F£i6), Yo 25U T Y
and ;ilmlnatlon of the auxiliary fleldsF'G} by their equations

of motion

F=-9(A*-B%) , G=29AB (2)
the action (1) takes the form
g JdxfalaAr+ B YR Y]- L(4+BY - gFA-By)Y} - o)
The maximal invariance group of the action is the conformal
supergroup/6/ with respect to which the components of superfields

dajx 0:) form left~ and right-handed scalar multiplets of weight
1/2 . Under odd superconformal transformations <§’(X 0.) trans-

(1)

form according to

Sé(x 9¢) p[b +LX9+]<P(X 9+) 2[9+aﬁ 9+ ) Xﬁ]q)(x 9&) (4)
where 9:4,_1,()(&’)0(2, (5)

andlxq , and 042 are spinor parameters of supertranslations
(generator 4 ) and proper superconformal transformations (gene—
rator T- .

Inda(idition to the fully symmetric vacuum (A:B=F=G=Y=O)
the model under consideration has vacua with smaller invariance
groups corresponding to the phase with spontaneously broken super-
conformal symmetry., Like in standard linear 63 -models, symmet-
ries of these vacua respect symmetries of the related ano-
malous vacuum expectation values of fields. The latter are found
from the condition that the action have an extremum on them,

77 Notations are the same as in ref./g/.




In other words, they should be solutions to the equations of
motior, Tt is natural to demand that the ground state of the
sportaneously broken phase preserve Lorentz invariance as well as
P~ and CP-parities. Then, the permissible vacuum structure of the
massless Wess-Zumino model is determined by classical solutions
for the field A(X) (and F(X) Yat B=G=%¥=0Q , i.e., in
fact, by solutions of the massless ‘Pq ~theory, The equations of
motion of such a theory are known to have no nontrivial constant
solutions/B/ (the trivial one A::O corresponds to the symmetric
phase )}, There exist, however, X -dependent Lorentz-invariant
golutiors which break the Poincaré symmetry but are instead inva-
riant under another subgroup of the conformal group, the anti de
Sitter group 0(2,3)., It is an extension of the Lorentz group
0(1,3) oC Mfﬂ, by the vector generator Rf.:%(ﬁ-maKr)([R ,R,]:-im’Mr-)

B. andl(r being the generators of 4~translations and conform-
mal boosts, [Tl a scale parameter ([rn]=[f }. The 0(2,3)-invariant
solution for A(X) and that one suggested by it for [ (X) are of
the form/7’8/

=m 2 =My,
AdX)=g T = g )
m? 4 N
Fol¥)=-F mmap=""9 X
It is convenient to combine (6) into the superfunctions

@t(x,et)n—% aw [1- T aw QzQz]EV—glgf,(X,Gs) 1)

which can be interpreted as the expectation values of superfields
@t(x.eﬂover the vacuum of the spontaneously broken phase |0>:

(P:_(X.Q:_) = (6' CPJX,G:)'O) .

It is seen that M measures the strength of the spontaneous
breaking of superconformal ard conformal symmetries.

Transformation properties of vacuum IO) with respect to
the corformal supergroup are determined by the transformation pro-
perties of the vacuum superfield (7)., Now we proceed to describe
them in brief,following our paperlg/ devoted to the aralysis of
superconformal properties of solutions (6). The invariance of va-

cuum |O> under 0(2,3)-transformations is expressed by the rela-
tions

M qu_:_(x.gz):O ’ qu):(xyez)=o' (8)

Each of o0dd generators S*and T; in itself yields no zero

when acting on @f(x,e,) that can easily be verified by substitu-
ting @f(x'g,,) for P, (x,gt) into the supercorformal transforma-
tion law (4). However, there holds the relation

(S-mT) P, (4,6,)=0 (9)

indicating that the spinor generator (S“EP-T) should also
be included into the little group of vacuumlo). It corresponds
to the special choice of function f_’; in the law (4):

B=E(+imxy)g, (10)
where 91 is a constant spinor parameter connected with the norma-
lized generator QI= ATZ—(S" m T) . The generator Q-; enlarges
the algebra of group 0(2,3) to the algebra of the graded group
osf>(1,4)oc(r1)..v,RJ.., QI) which is thus the full little group
of IZS) .

A1l the remaining independent generators of the conformal
supergroup are not zero on q?;(x,et)and hence are associated
with spontaneously broken symmetries., It i1s convenient to choose
these generators so that they belong to the coset space su(2,2/1)

/0SB(1,4):

4

D, Ns,Gp=5(Rrm K, Qg=F(S+mT) (D
Here D and Ng are the generators of dilatations and chiral
(fs—) transformations, resp. .

We see that in the bose-sector of the present model (as in
the 0(2,3)-sector of the massless ?q —theoryle/) there comes
out broken scale invariance and invariance under the fixed com-
bination of translations and proper conformal transformations
(generator GEF)' Chiral invariance is also broken. The spontan?-
ously broken component of odd superconformal transformatinns is
represented by’ tte generator Qi_i_ corresponding to the (fhoic(g—

p:\%—z (4'lmX3’)ﬁr_| in the law (4), This genera1':or, like Q1 ,
erlarges the algebra 0(2,;) to the %rthosymplectlc su?eralgebra,
OS%(1,4) (a closure of 0Sp(1,4), 0Sp(1,4) coincides with the
conformal superalgebra E ). Thus, the breakdown of superconformal
symmetry in the massless Wess~-Zumino model proceeds notEvia the
subgroup of usual supersymmetry but via the subgroup 0Sp(1,4).

Transformations with generators from the set (11), being
applied to vacuunlla) ,produce orbits of egquivalent vacua, in the
game way as in ordinary B -models. The relevant field expecta-




tiorn values are classical solutions rotated with respect to (6)
by the same transformations (they may involve bosonic as well as
Grassmann fermionic paramete 7 ). Theories built upon such
vacua are equivalent to each other in virtue of the superconformal
invariance of the action. 1In what follows, without loss of genera-
lity, we shall proceed from the solutions (6) and vacuum {6)
which is unambiguously fixed by the conditions (8), (9) and the
requirement of P- and CP-conservation’’ .

To conclude this Section, we note that vacuum |0) , like
0(2,3)-vacua of the massless ?q -theory, from the energetic point
of view is not distinguished in comparison with the fully sym-
metric vacuum (A=B=\P=F=G'=O) : on solutions (6) the improved
erergy-momentum tensoIJT}v vanishes (as well as the spin-vector
current and, correspondingly, the supercurrent ), This is the
essential difference between the present model (and the massless
Pq—theory) and standard O -models of internal symmetries where,
as a rule, vacua of the spontaneously broken phase already at
the classical level possess the lower energy as compared to the
symmetric vacuum, Perhaps, the situation will alter after allow-
ing for the radiative corrections3). In what follows, we confine
our consideration to the classical level reserving for the future

the analysis of the question under which conditions [0) dominates
over the symmetric vacuum,

3. Now we turn to determining the physical spectrum of the
spontaneously broken phase, As usual, this implies the transition
to fields with zero vacuum expectation values, However, upon a
direct subtraction of anomalous values (6) from the initial fields
the potential part of the rearranged Lagrangian would get explicit
dependence on )gp. For a better correspondence with usual & -
models it is more convenient to reconstruct before the action to
the form in which it displays the manifest 0(2,3)-invariance. By
this procedure, solutions (6) reduce to constants and all the
coordinate dependence of the corresponding Lagrangian turns out
to be concentrated in kinetic terms of fields where it enters
through the metric of anti de Sitter space 0(2,3)/0(1,3) playing
in 0(2,3)-formalism the role of a background space /8,11/,

The most straightforward way to arrive at the 0(2,3)~-repre-

3J The Tact that the symmetric, conformal-invariant phase of
the massless @Y -theory is unstable against radiative corrections
has been pointed out in /10/. Perhaps, this means that it would be
more correet to construct quantum theory from the beginning upon
the 0(2,3)-invariant vacuum,

sentation is to apply the relevant VWeyl transformation/11/ di-
rectly to fields in the component action (33, by ana}giy with the
procedure employed, say, in the massless ?9 ~-theory . NeYer—
theless, we prefer to proceed from the action in the superfield
form (1) having for the object to demonstrate that Weyl transfor-
mation for the physical components is in fact a part of a more
general superfield transformation describing the transition to the
manifestly 0Sp(1,4)~invariant formulation of the massless Wess-
Zumino model,

Remind before the meaning of Weyl transformations and also
what is understood by Weyl covariance of conformal-invariant
theories,

Any conformal~invariant theory‘Fan be represented.not only
by the standard, manifestly Poincaré-invariant Lagrangian but
equally by lagrangiana manifestly invariant with respect to
other subgroups of the conformal group isomorphic to groups of
motions of conformally flat spaces (a Riemannian space is said to
be conformally flat if its metric differs fronxqrv=(1f1f1;1)mere1y
by a local factor/11/; such spaces have isomorphic conformal
groups and comprise both lMinkowski and anti de Sitter spa?ea).
This property is called Weyl covariance. Weyl transformatlo?s
(see e.g. /M ) connect equivalent sets of fields representing
a given conformal-invariant theory in different conformally flat
gspaces, The concrete form of Weyl transformation to a certain
conformally flat space can easily be found from purely group-
theoretical considerations: its structure, up to an unessential
scale factor, is fixed by the requirement that the relevant sub-
group of the conformal group be realized with zero weight on the
Weyl transformed fields., For instance, the transformation from
Poincaré- covariant fields /Z\¢(X) to 0(2,3 )-covariant fields

7{;@) can be determined frgm the condition of absence of welgh?
terms in the generator Rr.=3( Pj“—mzKl‘) when the latter is applied
to Ax(X) , The result iss

~ -d/\ 2
/\K(,):[Pa(x)] Ac(x) - (12)
Here c{A is the dimensionality of Ag(X) (in mass units) and
the function LX) is the same as in (6). Without loss of genera-
lity, the scale multiplier P will be set one from now o?.
It is natural to expect that the notion of Weyl covariance
generalizes to superconformal-invariant theories. In other words,




they should admit equivalent representations in any superspace
havirg the same dimensionality as the usual superspace and includ-~
ing one or another conformally flat space as the maximal even
subspace, The manifest invariance group of a given formulation of
a theory 1s expected to be that graded subgroup of the conformal
supergroup which is a suitable spinor extension of the group of
motiors of corresponding even subspace. We have as yet no general
rigorous proof of the above statements but are able to confirm
them in the particular case we are irterested in, —

To find a superfield extension of (12), cl):(x,et)—— P, (x,6:)
transforming the actior (1) to the representation in the super-
space 0Sp(1,4)/0(1,3)> 0(2,3)/0(1,3), one may require that gene~
rators of a certain subgroup 0Sp(1,4) of the conformal supergroup,
say OSp(1 4), contain no weight terms when realized on Qh(x 8,).
It is not hard to be convinced that for removing the weight fac-
tor —2,_9.1(1+me3')91 from the transformation with the gene~
rator QI-——(S mT) (ﬁ (4+ mex) in the transformation
rule (4)) it is suff1c1ent to multiply superflelds 4?+(x 8+) vy
superfunctions f (x,68+) , the inverse of (7). The weight con-
nected with 0(2,3)-translations ie taken away by the variable
change 9.*‘.1—“6,. As a result, we have

<I> (x,84)= §° (x,q——e.)fp.(x ﬁ6+\=a'}(x)(1+ﬂ539!)(13*(,(‘%: g.) (13a)
d. (1,65)-§, (x, 9+)CP(x Ve 6.)= ax(1- —am9+91)<15+(x vae,) (130)

or, in components:

in n ~ -y
Aw=a'n A, T =a Y
'ftm =’ )+t m 4, ().

For the physical components, as promised, the mapping (14 ) reduces
to the transformatior (12)., A nontrivial novel structure of this

(14)

mapping manifests itself in relation between the auxiliary compo-
pents: F ) appears a fixed combination of 0(2,3)-covariant fields
a_a(x) F, (end_ o'x) A, ),
The odd 085(1 4 )~transformations induced for q) , 9*) by
the law (4) (via the connection (13a)) are as follows:

S0 D kOIPE[ TR 1A, Benr s
-+-— f38U‘9+ a (F% (X e*)

10

Sag A =
Squ’;O—— (——xf'é A‘+F*)§

SQIIE =\d M_ ¥" 3. Y. +m(4+-umx5)%]

where as before ﬁ——‘— (A+imxx)By , Under 0(2,3)~translations
dn(x 6:) transform as

ch1> (x,8)=— Lm “A'x’8. 6, rv— qD (x,0:) +
[A"+2mzux)xf'— mtx?A"] 3, cp (x,8:),

}» being the infinitesimal transformatlon parameter. Thus, super-
ields 1%2.(X O:)traneform in OSp(1 4) exclusively due to non-
linear shifts of their arguments Xr, 6+ and, hence,’_yey are
0Sp(1,4 )-scalars, Correspondingly, the fields As®, ¥p(0) 'K X)
form conjugated left- and right-handed scalar 0Sp(1,4)-multiplets.
Under contraction M—=0 the laws (15)~(17) go into the transfor-
mation rules of scalar multiplets of the usual supersymmetry., The
fact that 0Sp(1,4) has scalar multiplets has been established
earlier by Keck 12 but without indicating their cornection with
the realization of 0Sp(1,4) in the left- and right-handed chiral
superspaces, Our results show that this connection is quite ana-

N

|+ ;62

(16)

?J‘J

(17)

logous to that one in the usual supersymmetry.

Now We are ready to obtain the 0Sp(1,4)-invariant represen-
tation of the action (1). Upon the substitutior (13b) and the sub-
sequent variable change 93-—’ Iy O+ the pofential and kinetic
parts of the action take the form-

-2 Sd‘xd“ ’m(xB,)S (e)@(x 8,)+1.1,0)510) P> x )] (18)

V
-5 087 i~ Loty 0% ~

S, S&“,d“em(x B)e ’c’{)‘(x,eg TP (0, (19
where

Malx,0,) = oMx) (1 - % m B+ 6:) (20)

mMxe) = a't[1-2m 88+ 3 m(86Y) (21)

A - i — 3

Vi = a'(x) 9 - 2B mxSGp) ] 25 - (22)

Without going into details (the complete derivation will be given
in a separate paper devoted to the superfield formulation of




0Sp(1,4 )-symmetry) we indicate only that dﬁxdfezin7ta,eg a?e ;he
0Sp(1,4 )~-invariant integration measures over conjugated Chlri.
superspaces (their invariance with respect to the tTansformafléns
(15), (17) can be checked straightforwardly, by Taklng uss1g/)ge-
neral rules for chgnging’yagiﬁbles in Grasséann 1ntegrals. . R
the objects QXPI}%BXF&Q Vp}CPI(X,Q,)are‘ nothing Z}‘lxt Jkée’r;]h&rga)h
05Sp(1,4)-superfields in the real basis, S@ and. ' a' av?,rIt
resp., the meaning of the vector covariant derlv?tlve and 1nvar;a
integration measure in this basis, Thus, the aCtIO? of th? usué
massless Wess-Zumino model is identical to the action of its di-
rect 0Sp(1,4)-analog, in the same way-as the action of t?e mas?—
less q“‘—theory ig identical to that of its counterpart in anti
de Sitter space/B . Point out once more that this remarkable fact
should be traced to the generalized Weyl covariance of the action
its superconformal invariance,

o ciii:zr:1ing ovei <iq9 and eliminating the auxiliary fields
EY;), 2:(XN by their equations o{Jmotion
—~ — 2 2
Fln =mAx -g(Aw-B )

Tt = m BW + 29Ax) B

ore reduces the action §=(18)+(19) to the form
z L ~, —
v -~ A Hon . 242, n2)~
§= [anaton[ 177 AGA-GBYE i VL0 ¥)e BB oy
-~ 2 ~~ ~
- (A - gV (A-BYs) Y]
where V§:=C%QX)3r-+u- is the 0(2,3)-covariant deriwative, dots
stand for the matrix part which is not essential for our purposes
(it does not contribute to (24) because of scalarity of fields
/T;E and the Majorana nature of Y ). Taking into account that .
i = a? i the metric tensor o
the quantity gy, =0 fpcan be %nterfre.f(;sllﬁs -\ = g=dl pt
anti de Sitter space with radius Z=M (3fv 9 N
ot v i i direct and inverse
x) n¥ being appropriate
O e o1 “?X)‘g\J v mi=-1ip where
vierbeins) and also that QU X)= -“qr,“ ’ oy .
R is the scalar curvature for the metric grv(x), one recognlz?s
(24) as the standard conformal-invariant action for massless fields
in curved background. Note that the representation (24) and the
equations (23) might be attained directly by applying Weyl trans-
formation (12) to the fields AaBa\y in (3) agd 2). Howevgr? whin
doing so,it is difficult to make out the manifest 0Sp(1,4)-inva

riante of the action (23),

(23)

12

Return to the analysis of structure of the spontaneously
broken phase., As has been snticipated at the beginning of this

Section,the classical solutions (6) 1in terms of 0(2,3)-covariant
fields reduce to constants:

Koz? ) Fozgo:ao:q)ﬂzo (25)
- AN = m
01 2.0,010) = 01 P, 0.0)0) = 2 - (26)

Being X -independent, these solutions can be obtained directly
from the condition of extremum of the potential in the action
(24): N 2 s = ~
V(?I',TS,‘V)=—m2(ﬁ2+|~3‘)+g_(ﬂzr82)1+g Y(A-Bys) Y (27)
It is remmrkable that they supply just the minimum to the poten-
tial, i,e, play the role analogous to constant solutions in li-
near 8 -models of internal symmetries, Indeed, due to the wrong
sign of the "mass" term the bosonic part of (27) strongly resemb-
les the usual Higgs potential and attains minima on the circle of
radius‘%‘\ inﬁ—E plane:

BB (28)
The general solution of this equation and the related solution
for the auxiliary components can be written as

ﬁ,\z ;’;"wsA 3 g,{ = Y;"— sind

ﬁ:%‘l(m—cos%),'@f 'r;“z(si"/\H""ZM’ (29

where A 18 an arbitrary parameter which reflects a degeneracy
with respect to chiral transformations., In virtue of chiral inva-
riance, solutions with different R should be treated on equal
footing and without loss of generality one may choose the solu-~
tion (25) corresponding to A=0 ,

On passing to the field with zero wacuum expectation value
ﬁ": A-m » the potential (27) rearranges to the form:

V=‘—’Z"—ql +2m"ﬁ'2+r_n;‘i’c?i"+2m9ﬁ(fr?u’z+§2) +J7;(ﬁla* B*)*+
g P qP (A By Y.

Thus, the spectrum of the spontaggously broken phasge cqg§}ats of

the massless pseudoscalar field B , the scalar field A with

nass 2m » and the Majorana spinor q7 of the same mass4 all defi-
ned on anti de Sitter space,

(30)

7) For Tields over anti de Sitter space the ™mass" is a rather
ambiguous concept. We define bare mass parameters of the Lagran-
gian in the conventional manner, via terms quadratic in fields,

I3



Let us clarify the status of these fields with respect to
superconformal transformations. As expected, the little group
005(1 4) is realized on them homogeneously. At the same time, ge-
nerators from the set (11) give rise to Jnhomogeneous transforma-
tions. We begir by corsidering the action of the OSp(1 4 )-genera-
tor Q!! . After a little labour we find:

SqFe-va Y (WM Fm2mA) G (- imxy) By 1)

Extracting from A+ the vacuum value, we observe that (QE -
transformation of ‘Y(x)starts with a constant:

SQ,,Y \r-—ﬁr+l-\r——(X&’)j5u+ O x?, A+)- (32)
Hence, Y is the Goldstone fermlon (Goldstino) accompanying the
spontaneous breaking of OSp(1 4 )-symmetry, The fact that it pos-
gesses the mass term ﬂTW‘V , unusual for Goldstone fields, agrees
with the general result obtained by Zum1n0/4/ in the framework of
the nonlinear realization,

It is interesting to trace in detail how the 0Sp(1,4 )-struc-
ture arises in the Wess-Zumino model, When deriving the represen-
tation (24 ),we proceeded from the superfield formulation manifest~
ly invariant with respect to 0Sp(1,4). H%wever, we would come to
the same result choosing the subgroup 0sp(1,4) to begin with.

This is clear already from the fact that (24) is an even function
of parameter M , Ir other words, the action (24 ) simultaneously
describes the linear realiz%tions of two different 0Sp(1,4 )-super-
gymmetries, 05p(1,4) and 05p(1,4). So far as the superconformal
gymmetry is unbroken, these 0Sp(1,4) are on entirely equal status.
After allowing for the solution (25) the degeneracy is removed:
OSQ(1 4) takes the role of the stability subgroup of (25) while
OSp(1 4) gets broken to 0(2,3). If one chooses the gsolution with
A=F the situation is reversed, liore geneﬁ?lly, the solution Xlth
a fixed A is stable under the subgroup 95?(1 4 )= e P““)e-¢ ‘and
breaks the symmetry with respect to 0Sp (1,4)= QM'IOS%UN)E/ /5
(all OSpk1 4) have the common even subgroup 0(2, 3)eC (M, RN/97).
The Goldstone fields may be assigned not only to (Q" but also
to all of the remaining generators from the set (11). The field
i;u)transforms inhomogeneously under the action of the genera-
tor Ils and therefore is the Goldstonion associated with the spon-
taneous breaking of chiral symmetry., Its "nasslessness" can be
traced to the fact that chiral symmetry is purely internal for

14

which reason the standard arguments of Goldstone's theorem apply.
The component A(ﬂplays the double role. With respect to the gene-
rator [15 it is the Higgs field while with respect to I) the
Higgs and simultaneously Goldstone field (dilaton) for its infi-
nitesimal scale transformation begins with a constant. The "mass"
term 2m? A' has the meaning analogous to that of n11’? In
both cases, for invariance of the action under corresponding
spontaneously broken transformations (i.e.,, dilatations and
05Sp(1,4 }-supertranslations) it is necessary that the Goldstone
field kinetic terms occur in the combination with these unconven-
tioral mass terms (because of an explicit dependence of the tran-
sformations on Xu ). As to the generator G-ﬂ=ia—(P‘.,+m" KJ“) ,
there is no independent Goldstone field for it among components
of the initial multiplet. However, taking notice of the fact that
Gﬁ.—transformation of the field qux)begins with a term~ (tf'Xp),
where tp is an appropriate group parameter, it is clear that
a migsing Goldstonion is imitated by the gradient ar A whose
~transformation includes a purely constant tenn"tr

To summarize, we have shown that the ordinary massless Wesa-
Zumino model is the linear G‘-model 51mu1taneousl¥ of two sponta-
neously broken supersymmetries, 5U(2,2/1) and O0Sp(1,4), realized
respectlvely, in homogeneous spaceas SU(2, 2/1)/OSp§1 4) and
OSp(1 4)/0(2,3), Their breakdown is induced by OSp(1 4 )-invariant
classical solutiona to the equationas of motion, These solutions
display the coordinate dependence when considered in Minkowski
space but reduce to constants in anti de Sitter space., The regime
of spontaneous breaking is stable: tachyons do not appear.

4. Having the expressions for the 0Sp(1,4)-invariant integ-
ration measures in chiral superspaces (20 ) we are in a position
to construct 0Sp(1,4 )-symmetric modelsr_;th scalar potentials of
an arbitrary structure in superfields 4b+(' 9*) All such models,
except the special case of the massless ‘@3 theory considered
above, contain dimensional constants (beyond M ), For this
reason they possess no superconformal symmetry and, as a result,
are not equivalent to any kind of supersymmetric theories in Min-
kowski space. The simplest model is set up by adding to the ac-
tion (18)+(19) the 0Sp{1,4 )-invariant mass term:

—_——

An analogous phenomenon in nonlinear realizations is
known as the inverse Higgs phenomenon /14/.
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T2 ~2 (33)
Su= MSd_"x d'0 [ M. (x,0)816) P, .80+ T.1x,6.) § [6) B (6] .
The theory thus constructed is the 0sp(1,4 )-analog of the usual

/6v/ and provides a nontrivial example

masgive Wess~Zumino model
of linear globally supersymmetric theo;l’%g curved space-time.
After eliminating the auxiliary fields F, & through their equa-

tions of motion 22 =2
4 ~
F=(m-2M)A -g(A°-B%)
G=(m+2M)B +29 AB

we find that the kinetic part of the Lagrangian density in the

actionsg+sv1—sﬁ expressed in terms of the physical components

A,B,w coincides with the corresponding part of the density of
the action (24). The potential part is now given by the expres-

(34)

gion: s . — ﬂf’ a2
VH=(H+m)(2M—mlﬂ +(:1—m)(2r_vr1+~m)~52+1w~r +4 (A%+ B

+2gMA@ B + gV (A-BE)Y (35)
The potential (35) in contrast to (27) is not symmetric under the
change M-=-mM , This reflects non%nvariance of the present model
with respect to the supergroup 0Sp(1,4) (and thereby to the con-
formal supergroup, the closure of OS£(1,4) and 035(1,4)).

As is well known, the conventional massive Wess-Zumino model
exhibits no nontrivial vacuum structure/15/. In the present case,
the situation is quite different. Depending on a relation between
the parameters M and M , the potential (35) attains minima on
four different sets of constant solutions to the equations of
motion (M>0 fixed):

a) IF” >m ~ B _
<E>¢.=<’E>‘,:<W>a:'(F)c:(G')o:O ’ <Tru>D=O (36)
b) M22m ov M40 n_2m)?

<"4">': m—-2H) <§>°= (?)u: (E)o: (E?o =0, <T,.v>.=<js.va —9—;’ (37)

c) -m<Mso oo mEML 2m

~ ~ MY(H-2m) 5o s - dT520 ¢T Sea me(Mem)
: (A)°=_M'<F>°=<EL,—4T)(B?;(‘VZ % ,(T,.v>;ﬂrvM~a—sT(38)
a) os¢Mem N B N
(Rye=- M2 (F5 =t ez Bm-2H) (2,2 (G2 = L¥270
23 ;g(m+2M)(m—2M) (39)
g gom M2
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Here]}v is the energy-momentum tensor defined according to the

general prescriptions for curved backgrounds /16/

Tf"= 3”\}'“ - :gi_q grua(;f2+ 'Ez) + derivative terus

The existence domains of vacua (37)-(40) are pictured in Pig. 1

-m 0 m 2m —

Fig.1
(the vacuum structure for the choice m<O0  can be obtained by
reversing the positive direction on axis M.
For the lack of room, we do not give explicit forms for rear-
ranged potentials in sectors a)-d) and are forced to limit our-
selves to a number of comments,

First of all, point out that the physical masses in all these
sectors are real, i.e.,ghosts are absent in the particle spectrum
(this is because solutions (36)—(39t) supply true minima to the
potential (35)).

Vacua (36), (37) correspond to the symmetric phase, In terms
of zero vacuum expectation fields the potential in sector b) looks
as in a) but with Ml=m—M instead ofM . The boson and fermion
masses split already at the symmetric level, 1 being a splitting
parameter,

Vacuum (38) gives rise to the spontaneous breaking of 9§p(1,4)
down to 0(2,3)-symmetry as <FZ*()over it, In this sector, ¥ is
the Goldstino, Its mass is nnv=2"1again in agreement with the
general theorem/gf Zumino/4 . The masses of the Higgs fields ZT:E
are related to \P by the simple mass formula

mﬂ»,.}.m%:m%‘;. (41)

The most interesting and unexpected feature of the model un-
der consideration is the presence of two stable 0Sp(1,4)-sym-
metric vacua (39+) with spontaneously broken P- and CP-parities,




Within the range 0<M<4M  there are no other stable vacua,
i.,e.,80lutions (39+) give absolute minima to the potential (35)
in this range. The constart of the P- and CP-violating interac-
tion in the diagonalized potential appears to be a function of
bare parameters g,n1,r4 . We expect that the phenomenon of P-
and CP-violation will occur also in other, more realistic 0Sp(1,4)
~invariant models,

It is seen from Fig. 1 that with bq fixed and the space ra-
dius!ﬂ4 varying, phases with a different symmetry of the ground
state change each other. In this sense the parameter M is gi-
milar to the ordering parameter (temperature) in the many-body
problem, In the case of large curvature (M%7 M ) the phase with
spontaneously broken P- and CP-parities dominates., To the small
curvature there corresponds the fully symmetric phaseé)When h1=0,
the solutions (37)-(39+) go into solutions from the set (29),
with A=O0 |3 ,%‘:ﬁ. “,4 9 , respectively, In this limit, the
violation of P- and CP-parities becomes unobservable because,
due to chiral invariance, sectors b)-d) turn out to be related by

equivalence field fransformations,

In the limit m—>» 0 M+#0 leading to the usual massive
Wess~Zumino model there survives, as expected, the symmetric
phase alone, As M~->0 |, the fine vacuum structure locked in the
interval-m<{M<2m degenerates into the point M=0 .

5. In this paper we have studied simplest Q@ -models with
spontaneously broken global conformal and 0Sp(1,4 )-supersymmetries.
In conclusion we discuss in brief what happens in the local case,
i.es. after coupling these models to gauge fields of supergravity.

To maintain global superconformal symmetry, one must couple
the massless Wess-Zuming 9943; to conformal supergravity 1 . As
far as all the fields /12 B, Y of the spontaneously broken phase
are of the Goldstone type, it is clear without explicit calcula-
tions that in the local case they can be removed from the Lagran-
glan by the Higgs effect. The Lagrangian in unitary gauge is
expected to contain only terms of gauge fields and to show the
manifest invariance only with respect to local 0Sp(1,4 )~transfor-
mations, Just such a situation has been observed recently by Kaku
and Townsend for the case of the self-interacting massless scalar
multiplet mirnimally coupled tgtconforqgl supergravity/18/. They
have shown that in the gauge A=wnst, B=0 | ¥=0 the relevant
T &) K similar situation for some open metrics has been revealed
also in /17/.

Lagrangian coincides with the pure gauge Lagrangian of 0Sp(1,4)-
supergravity 19 (that of Poincaré supergravity plus a fixed com-
bination of the gravitino mass term and the cosmological term).
We have verified that this gauge exactly corresponds to the clas-
sical solutior (25), i.e..is the usual unitary gauge if one
works ir terms of the Goldstone fields ', 8 , Y with zero
vacuum expectation values,

To make the model of Sec.4 1locally 0Sp(1,4)-invariant, one
has to couple it to 0Sp(1,4)-supergravity. To reproduce features
of the real world the resulting model should give a reasonable
order of the mass splitting between bosons and fermions involved
(i.e., the splitting parameter M must be~ 1 GeV), and, besi-
des, ensures the cosmological term to be observably small (va-
nishing). Presumably, these requirements can both be satisfied
only in sector c) corresponding to the phase with spontane-
ously broken 0Sp(1,4 )-symmetry, where the Deser-Zumino/B/ mecha-
nism of compensating cosmological terms may be operative, The
detailed discussion of this possibility and also of the question
how the CP-violating phase d) manifests itself in the local case
will be given elsewhere.

Pinally, point out that the model of Sec, 4 may bear inte-
reat irrespective of its possible relation to supergravity. Assum-
ing that integration in the invariant action is only over a small
space~time region of ar order of the hadron size, I’l’\‘1 being ~
radius of this region, this model can be regarded as a Supersym-
metric extension of the bag model with the anti de Sitter geo-
metry proposed in/zo

Ve express our deep gratitude to V.P,Akulov, A.A.Kapustni-
kov, D,V.Volkov, V.Yu,Tzeitlin for useful discussions, We are
egpecially grateful to V,I.Ogievetsky for interemt in the work,
kird attentiorn, and valuable discussions,
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